两种根癌农杆菌储铁蛋白功能的鉴定和体外自组装
作者:
基金项目:

国家自然科学基金(31870118,32300151,22278350)


Functional identification and in vitro self-assembly of two ferritins of Agrobacterium fabrum
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [1]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】 验证根癌农杆菌(Agrobacterium fabrum,以前也叫Agrobacterium tumefaciens)两种储铁蛋白——饥饿细胞的DNA结合蛋白(DNA-binding protein from starved cells, Dps)和细菌铁蛋白(bacterioferritin, Bfr)的编码基因atu2477atu2771的功能。确定Bfr编码基因的开放阅读框。研究末端融合、血红素和个别关键氨基酸突变对Bfr功能和体外自组装的影响。探讨两种储铁蛋白的可能应用潜力。【方法】 通过质粒将编码储铁蛋白的基因重新引入根癌农杆菌储铁蛋白缺失突变体中,回补储铁蛋白,验证回补的储铁蛋白编码基因是否能表达出具有储铁能力的储铁蛋白。用非变性凝胶电泳分离细胞粗提液中的蛋白质,铁特异性染色的方法鉴定电泳分离的蛋白质中是否有储铁蛋白。将不同的肽或蛋白质融合到储铁蛋白的末端,通过异源过量表达和纯化储铁蛋白的重组蛋白,用非变性凝胶电泳分析这些重组蛋白在体外的自组装。用血红素重构处理和氨基酸定点突变的方法研究血红素和个别关键氨基酸对Bfr功能和体外自组装的影响。【结果】 非变性凝胶电泳和铁特异性染色结果显示,在根癌农杆菌的野生菌株、其相关突变体以及对应的回补菌株中,均仅检测到Bfr的表达,未检测到Dps的存在。当分别回补能编码161个和169个氨基酸Bfr的基因后,发现野生型菌株中的Bfr与回补编码161个氨基酸Bfr的回补菌株一样大。多肽和蛋白质的末端融合对Bfr的功能和自组装有一定影响,但不会使Bfr完全失去功能和自组装能力。结果还表明,血红素和预测可络合血红素铁的Met60的替换也只影响Bfr的功能和自组装,并未使Bfr功能完全丧失。【结论】 根癌农杆菌主要通过Bfr存储铁元素。bfr基因的开放阅读框(open reading frame, ORF)以少见的UUG为起始密码子,编码产生包含161个氨基酸的蛋白质,而非169个氨基酸。根癌农杆菌的dps基因在本文的测定条件下均处于不表达状态。根癌农杆菌的Bfr和Dps蛋白均比较稳定,能够承受末端的多肽或蛋白质融合,不会使蛋白质的结构完全破坏,因此,经适当改造后具有开发应用的潜力。

    Abstract:

    [Objective] This study aims to validate the functions of two ferritin-encoding genes: bacterioferritin (Bfr)-encoding gene (atu2771) and DNA-binding protein from starved cells (Dps)-encoding gene (atu2477), in Agrobacterium fabrum, to determine the open reading frame (ORF) of the Bfr-encoding gene, to investigate the effects of terminal fusion, heme group, and key residues on the function and self-assembly of A. fabrum Bfr, and to explore the potential applications of the two ferritin nano-cages. [Methods] We re-introduced the two ferritin-encoding genes into the ferritin-deficient mutants of A. fabrum respectively via plasmids to verify if the re-introduction could complement the ferritins of the ferritin-deficient mutants and thus validate the functions of the two genes. Native PAGE was employed to separate the ferritins in the crude extract of A. fabrum and potassium ferrocyanide (an iron-specific staining reagent) was used to stain the ferritins. Various peptides or protein were fused to the termini of two ferritins to test if the terminal fusion would affect the functions and self-assembly of the two ferritins. Site-directed mutation was then employed to test the effects of the key residue and heme group on the function and self-assembly of Bfr. [Results] Iron-specific staining on the ferritins separated by native PAGE showed that the Bfr-encoding gene expressed Bfr in all the tested A. fabrum strains, whereas the Dps-encoding gene expressed Dps in none of the tested A. fabrum strains. Complementary experiment with two different Bfr-encoding ORFs (encoding 161 residues and 169 residues) showed that Bfr in the wild type was encoded by the ORF encoding 161 residues. The results demonstrated that terminal fusions with different peptides or protein influenced but did not abolish the function and self-assembly of Bfr. The substitution of Met60, which was predicted to chelate the iron of heme, indicated that heme affected the function and self-assembly of Bfr but was not indispensable. [Conclusion] A. fabrum utilizes Bfr to store iron. The ORF of the Bfr-encoding gene utilizes uug (a rare start code) as its start code and encodes a Bfr composed of 161 residues. The Dps-encoding gene of A. fabrum expressed in none of the tested conditions. The structures of both Bfr and Dps of A. fabrum are stable enough to withstand the terminal fusion with various peptides or protein, suggesting that both Bfr and Dps nano-cages demonstrate great promise for biotechnological applications.

    参考文献
    [1] de CLEENE M, de LEY J. The host range of crown gall[J]. The Botanical Review, 1976, 42(4): 389-466.
    [2] GUO ML, YE JY, GAO DW, XU N, YANG J. Agrobacterium-mediated horizontal gene transfer: mechanism, biotechnological application, potential risk and forestalling strategy[J]. Biotechnology Advances, 2019, 37(1): 259-270.
    [3] LACROIX B, CITOVSKY V. Genetic factors governing bacterial virulence and host plant susceptibility during Agrobacterium infection[J]. Advances in Genetics, 2022, 110: 1-29.
    [4] 胡懋, 曾杨璇, 苗华彪, 赵元昊, 黄遵锡. 根癌农杆菌介导真菌遗传转化的研究及应用[J]. 微生物学通报, 2021, 48(11): 4344-4363. HU M, ZENG YX, MIAO HB, ZHAO YH, HUANG ZX. Research and application of Agrobacterium tumefaciens-mediated fungal genetic transformation[J]. Microbiology China, 2021, 48(11): 4344-4363(in Chinese).
    [5] DESMET S, DHOOGHE E, de KEYSER E, van HUYLENBROECK J, MÜLLER R, GEELEN D, LÜTKEN H. Rhizogenic agrobacteria as an innovative tool for plant breeding: current achievements and limitations[J]. Applied Microbiology and Biotechnology, 2020, 104(6): 2435-2451.
    [6] TIWARI M, MISHRA AK, CHAKRABARTY D. Agrobacterium-mediated gene transfer: recent advancements and layered immunity in plants[J]. Planta, 2022, 256(2): 37.
    [7] EXPERT D. Iron, an element essential to life[M]//Molecular Aspects of Iron Metabolism in Pathogenic and Symbiotic Plant-Microbe Associations. Dordrecht: Springer, 2012: 1-6.
    [8] RIVERA M. Bacterioferritin: structure, dynamics, and protein-protein interactions at play in iron storage and mobilization[J]. Accounts of Chemical Research, 2017, 50(2): 331-340.
    [9] BRADLEY JM, le BRUN NE, MOORE GR. Ferritins: furnishing proteins with iron[J]. JBIC Journal of Biological Inorganic Chemistry, 2016, 21(1): 13-28.
    [10] PLAYS M, MÜLLER S, RODRIGUEZ R. Chemistry and biology of ferritin[J]. Metallomics: Integrated Biometal Science, 2021, 13(5): mfab021.
    [11] ARNOLD AR, ZHOU A, BARTON JK. Characterization of the DNA-mediated oxidation of dps, a bacterial ferritin[J]. Journal of the American Chemical Society, 2016, 138(35): 11290-11298.
    [12] ORBAN K, FINKEL SE. Dps is a universally conserved dual-action DNA-binding and ferritin protein[J]. Journal of Bacteriology, 2022, 204(5): e0003622.
    [13] GUO ML, GAO MM, LIU JJ, XU N, WANG H. Bacterioferritin nanocage: structure, biological function, catalytic mechanism, self-assembly and potential applications[J]. Biotechnology Advances, 2022, 61: 108057.
    [14] HAGEN WR. Maximum iron loading of ferritin: half a century of sustained citation distortion[J]. Metallomics: Integrated Biometal Science, 2022, 14(9): mfac063.
    [15] PARIDA A, MOHANTY A, KANSARA BT, BEHERA RK. Impact of phosphate on iron mineralization and mobilization in nonheme bacterioferritin B from Mycobacterium tuberculosis[J]. Inorganic Chemistry, 2020, 59(1): 629-641.
    [16] 马龙, 范克龙. 纳米酶和铁蛋白新特性的发现和应用[J]. 自然杂志, 2020, 42(1): 1-11. MA L, FAN KL. The finding and application of the novel properties of nanozyme and ferritin[J]. Chinese Journal of Nature, 2020, 42(1): 1-11(in Chinese).
    [17] JUTZ G, van RIJN P, SANTOS MIRANDA B, BÖKER A. Ferritin: a versatile building block for bionanotechnology[J]. Chemical Reviews, 2015, 115(4): 1653-1701.
    [18] SONG NN, ZHANG JL, ZHAI J, HONG JJ, YUAN C, LIANG MM. Ferritin: a multifunctional nanoplatform for biological detection, imaging diagnosis, and drug delivery[J]. Accounts of Chemical Research, 2021, 54(17): 3313-3325.
    [19] KURUPPU AI, TURYANSKA L, BRADSHAW TD, MANICKAM S, GALHENA BP, PARANAGAMA P, de SILVA R. Apoferritin and Dps as drug delivery vehicles: some selected examples in oncology[J]. Biochimica et Biophysica Acta General Subjects, 2022, 1866(2): 130067.
    [20] van der VEN AM, GYAMFI H, SUTTISANSANEE U, AHMAD MS, SU ZD, TAYLOR RM, POOLE A, CHIOREAN S, DAUB E, URQUHART T, HONEK JF. Molecular engineering of E. coli bacterioferritin: a versatile nanodimensional protein cage[J]. Molecules, 2023, 28(12): 4663.
    [21] DUBROVIN EV, DADINOVA LA, PETOUKHOV MV, SOSHINSKAYA EY, MOZHAEV AA, KLINOV DV, SCHÄFFER TE, SHTYKOVA EV, BATISHCHEV OV. Spatial organization of Dps and DNA-Dps complexes[J]. Journal of Molecular Biology, 2021, 433(10): 166930.
    [22] WOOD DW, SETUBAL JC, KAUL R, MONKS DE, KITAJIMA JP, OKURA VK, ZHOU Y, CHEN L, WOOD GE, ALMEIDA NF Jr, WOO L, CHEN Y, PAULSEN IT, EISEN JA, KARP PD, SR DB, CHAPMAN P, CLENDENNING J, DEATHERAGE G, GILLET W, et al. The genome of the natural genetic engineer Agrobacterium tumefaciens C58[J]. Science, 2001, 294(5550): 2317-2323.
    [23] GOODNER B, HINKLE G, GATTUNG S, MILLER N, BLANCHARD M, QUROLLO B, GOLDMAN BS, CAO Y, ASKENAZI M, HALLING C, MULLIN L, HOUMIEL K, GORDON J, VAUDIN M, IARTCHOUK O, EPP A, LIU F, WOLLAM C, ALLINGER M, DOUGHTY D, et al. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58[J]. Science, 2001, 294(5550): 2323-2328.
    [24] YANG J, PAN XY, XU YJ, LI Y, XU N, HUANG ZW, YE JY, GAO DW, GUO ML. Agrobacterium tumefaciens ferritins play an important role in full virulence through regulating iron homeostasis and oxidative stress survival[J]. Molecular Plant Pathology, 2020, 21(9): 1167-1178.
    [25] 徐楠, 徐宇娟, 孙盼, 宗仁杰, 郭敏亮. 根癌农杆菌vbp2基因启动子转录调控的探析[J]. 生物技术通报, 2021, 37(12): 41-49. XU N, XU YJ, SUN P, ZONG RJ, GUO ML. Exploration of the transcriptional regulation of Agrobacterium tumefaciens vbp2 promoter[J]. Biotechnology Bulletin, 2021, 37(12): 41-49(in Chinese).
    [26] 宗仁杰, 高苗苗, 张梦琪, 王浩, 徐楠, 郭敏亮. 根癌农杆菌化学受体MCP1912调节趋化响应功能的鉴定[J]. 微生物学报, 2022, 62(5): 1949-1961. ZONG RJ, GAO MM, ZHANG MQ, WANG H, XU N, GUO ML. Functional identification of Agrobacterium tumefaciens chemoreceptor MCP1912 in regulating chemotactic response[J]. Acta Microbiologica Sinica, 2022, 62(5): 1949-1961(in Chinese).
    [27] GUO ML, JIN SG, SUN DY, HEW CL, PAN SQ. Recruitment of conjugative DNA transfer substrate to Agrobacterium type IV secretion apparatus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(50): 20019-20024.
    [28] PUNCHI HEWAGE AND, YAO HL, NAMMALWAR B, GNANASEKARAN KK, LOVELL S, BUNCE RA, ESHELMAN K, PHANIRAJ SM, LEE MM, PETERSON BR, BATTAILE KP, REITZ AB, RIVERA M. Small molecule inhibitors of the BfrB-bfd interaction decrease Pseudomonas aeruginosa fitness and potentiate fluoroquinolone activity[J]. Journal of the American Chemical Society, 2019, 141(20): 8171-8184.
    [29] YAO HL, SOLDANO A, FONTENOT L, DONNARUMMA F, LOVELL S, CHANDLER JR, RIVERA M. Pseudomonas aeruginosa bacterioferritin is assembled from FtnA and BfrB subunits with the relative proportions dependent on the environmental oxygen availability[J]. Biomolecules, 2022, 12(3): 366.
    [30] SUBHADARSHANEE B, MOHANTY A, JAGDEV MK, VASUDEVAN D, BEHERA RK. Surface charge dependent separation of modified and hybrid ferritin in native PAGE: impact of lysine 104[J]. Biochimica et Biophysica Acta Proteins and Proteomics, 2017, 1865(10): 1267-1273.
    [31] WEDDERHOFF I, KURSULA I, GROVES MR, ORTIZ de ORUÉ LUCANA D. Iron binding at specific sites within the octameric HbpS protects streptomycetes from iron-mediated oxidative stress[J]. PLoS One, 2013, 8(8): e71579.
    [32] WANG H, ZHANG MQ, XU YJ, ZONG RJ, XU N, GUO ML. Agrobacterium fabrum atu0526-encoding protein is the only chemoreceptor that regulates chemoattraction toward the broad antibacterial agent formic acid[J]. Biology, 2021, 10(12): 1345.
    [33] MOHANTY A, PARIDA A, SUBHADARSHANEE B, BEHERA N, SUBUDHI T, KOOCHANA PK, BEHERA RK. Alteration of coaxial heme ligands reveals the role of heme in bacterioferritin from Mycobacterium tuberculosis[J]. Inorganic Chemistry, 2021, 60(22): 16937-16952.
    [34] WONG SG, ABDULQADIR R, Le BRUN NE, MOORE GR, MAUK AG. Fe-haem bound to Escherichia coli bacterioferritin accelerates iron core formation by an electron transfer mechanism[J]. The Biochemical Journal, 2012, 444(3): 553-560.
    [35] JIANG B, ZHANG RF, ZHANG JL, HOU YX, CHEN XH, ZHOU M, TIAN XY, HAO CY, FAN KL, YAN XY. GRP78-targeted ferritin nanocaged ultra-high dose of doxorubicin for hepatocellular carcinoma therapy[J]. Theranostics, 2019, 9(8): 2167-2182.
    [36] CECI P, ILARI A, FALVO E, CHIANCONE E. The Dps protein of Agrobacterium tumefaciens does not bind to DNA but protects it toward oxidative cleavage: X-ray crystal structure, iron binding, and hydroxyl-radical scavenging properties[J]. The Journal of Biological Chemistry, 2003, 278(22): 20319-20326.
    [37] YAO HL, JEPKORIR G, LOVELL S, NAMA PV, WEERATUNGA S, BATTAILE KP, RIVERA M. Two distinct ferritin-like molecules in Pseudomonas aeruginosa: the product of the bfrA gene is a bacterial ferritin (FtnA) and not a bacterioferritin (Bfr)[J]. Biochemistry, 2011, 50(23): 5236-5248.
    [38] 苏恺, 范葶莉, 宋勤叶. 铁蛋白纳米载体及其在生物医学领域的应用潜力[J]. 畜牧兽医学报, 2021, 52(4): 909-919. SU K, FAN TL, SONG QY. Ferritin nanocarrier and its application potential in the field of biomedicine[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4): 909-919(in Chinese).
    [39] 向建全, 周彩玉, 张若飞, 曾凡才, 范克龙. 铁蛋白装载“铁-阿霉素”新策略[J]. 中国科学(生命科学), 2021, 51(7): 871-878. XIANG JQ, ZHOU CY, ZHANG RF, ZENG FC, FAN KL. A new strategy of loading ferritin with “iron-Dox” complex[J]. Scientia Sinica (Vitae), 2021, 51(7): 871-878(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周琴,高苗苗,潘晓玥,王浩,徐楠,郭敏亮. 两种根癌农杆菌储铁蛋白功能的鉴定和体外自组装[J]. 微生物学报, 2024, 64(11): 4234-4247

复制
分享
文章指标
  • 点击次数:102
  • 下载次数: 217
  • HTML阅读次数: 179
  • 引用次数: 0
历史
  • 收稿日期:2024-04-28
  • 在线发布日期: 2024-10-30
  • 出版日期: 2024-11-04
文章二维码