化能自养硫氧化细菌Halothiobacillus diazotrophicus低氧硫氧化特性及其机制
作者:
基金项目:

国家自然科学基金(91951118)


Characteristics and mechanism of sulfur oxidation of Halothiobacillus diazotrophicus exposed to low oxygen
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [4]
  • | | |
  • 文章评论
    摘要:

    【目的】 探究Halothiobacillus diazotrophicus LS2在不同氧浓度下的硫氧化特性,并揭示其低氧适应机制。【方法】 通过离子色谱测定S2O32-和SO42-浓度,平板稀释涂布法跟踪测定菌体生长情况,转录组测序及生物信息学分析其差异表达基因及相关代谢通路。【结果】 菌株LS2在氧含量0.2%-21%的条件下能够进行硫氧化代谢和生长,并且在氧含量高于1.6%的条件下维持较高的硫氧化活性。比较转录组学分析筛选出851个可能与低氧适应相关的差异表达基因,包括表达上调基因464个,表达下调基因387个,其中硫代硫酸盐硫转移酶(thiosulfate sulfurtransferase, TST)、硫氧化酶/还原酶(sulfur oxidase/reductase, SOR)、硫化物:醌氧化还原酶(sulfide:quinone oxidoreductase, SQR)上调表达,Sox酶系下调表达,菌株LS2低氧硫氧化代谢途径可能发生改变。低氧组菌株LS2上调表达cbb3型细胞色素c氧化酶,以增加O2与酶的结合效率,同时上调表达固氮酶基因nifDKH和Fix复合体基因fixAfixBfixCfixX,利用N2、CO2为最终电子受体维持胞内氧化还原平衡。【结论】 菌株LS2是一株在低氧环境中仍能维持较高硫氧化活性的硫氧化细菌,SQR、高氧亲和末端氧化酶及固氮酶对其适应低氧环境有重要作用,本研究对丰富低氧硫氧化代谢机制认识有积极意义,为优化含硫废水处理工艺提供一定理论基础。

    Abstract:

    [Objective] To study the sulfur oxidation characteristics of Halothiobacillus diazotrophicus LS2 under different oxygen levels and to decipher the mechanism of strain LS2 adapting to low-oxygen environments. [Methods] The concentrations of S2O32- and SO42- were measured by ion chromatography. Bacterial growth was determined by plate dilution coating method. The differentially expressed genes and related metabolic pathways were identified and analyzed by transcriptome sequencing and bioinformatics technology. [Results] Strain LS2 oxidized reduced sulfur compounds and grew under 0.2%-21.0% oxygen, and it maintained high sulfur oxidation activity under the oxygen level above 1.6%. Comparative transcriptomic analysis screened out 851 differentially expressed genes that might be related to the adaptation to low oxygen, including 464 up-regulated genes and 387 down-regulated genes. In sulfur metabolism, thiosulfate sulfurtransferase, sulfur oxidase/reductase, and sulfide:quinone oxidoreductase were up-regulated, while the Sox enzyme system was down-regulated, which indicated that strain LS2 might change the sulfur oxidation pathway to adapt to low-oxygen environment. In the low-oxygen group, the cbb3-type cytochrome c oxidase was up-regulated to increase the O2-binding efficiency. Meanwhile, since less electron could be received by O2, the nitrogenase genes nifDKH and Fix complex genes fixA, fixB, fixC, fixX were up-regulated, making N2 and CO2 the alternative electron accepters to maintain redox balance, which explained the higher maximum bacterial growth in low-oxygen environments. [Conclusion] Strain LS2 is a sulfur-oxidizing bacterium that can maintain high sulfur oxidation activity in the low-oxygen environment. Sulfide:quinone oxidoreductase, high-oxygen-affinity terminal oxidases, and nitrogenase play a role in the adaptation to the low-oxygen environment. This study is of positive significance for deciphering the mechanism of sulfur oxidation under low oxygen and provides a theoretical basis for optimizing the treatment process of sulfur-containing wastewater.

    参考文献
    [1] KRAYZELOVA L, BARTACEK J, DÍAZ I, JEISON D, VOLCKE EIP, JENICEK P. Microaeration for hydrogen sulfide removal during anaerobic treatment: a review[J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(4): 703-725.
    [2] MAHMOOD Q, ZHENG P, CAI J, HAYAT Y, HASSAN MJ, WU DL, HU BL. Sources of sulfide in waste streams and current biotechnologies for its removal[J]. Journal of Zhejiang University: Science A, 2007, 8(7): 1126-1140.
    [3] LIM J, PYUN J, CHAR K. Recent approaches for the direct use of elemental sulfur in the synthesis and processing of advanced materials[J]. Angewandte Chemie International Edition, 2015, 54(11): 3249-3258.
    [4] SOUSA FM, PEREIRA JG, MARREIROS BC, PEREIRA MM. Taxonomic distribution, structure/function relationship and metabolic context of the two families of sulfide dehydrogenases: SQR and FCSD[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2018, 1859(9): 742-753.
    [5] WANG TQ, RAN MX, LI XJ, LIU YQ, XIN YF, LIU HL, LIU HW, XIA YZ, XUN LY. The pathway of sulfide oxidation to octasulfur globules in the cytoplasm of aerobic bacteria[J]. Applied and Environmental Microbiology, 2022, 88(3): e0194121.
    [6] WANG R, LIN JQ, LIU XM, PANG X, ZHANG CJ, YANG CL, GAO XY, LIN CM, LI YQ, LI Y, LIN JQ, CHEN LX. Sulfur oxidation in the acidophilic autotrophic Acidithiobacillus spp.[J]. Frontiers in Microbiology, 2019, 9: 3290.
    [7] DAI CM, LI JH, YAN HS, LIN WT, LUO JF. Halothiobacillus diazotrophicus sp. nov., a chemolithoautotrophic sulphur-oxidizing and nitrogen- fixing bacterium isolated from freshwater[J]. International Journal of Systematic and Evolutionary Microbiology, 2023, 73(12). DOI: 10.1099/ijsem.0.006202.
    [8] WIDDEL F, BAK F. Gram-negative mesophilic sulfate-reducing bacteria[M]//BALOWS A, TRÜPER HG, DWORKIN M, HARDER W, SCHLEIFER KH. The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. New York, NY: Springer, 1992: 3352-3378.
    [9] KHODURSKY AB, BERNSTEIN JA, PETER BJ, RHODIUS V, WENDISCH VF, ZIMMER DP. Escherichia coli spotted double-strand DNA microarrays: RNA extraction, labeling, hybridization, quality control, and data management[J]. Methods in Molecular Biology, 2003, 224: 61-78.
    [10] FEIKE J, JÜRGENS K, HOLLIBAUGH JT, KRÜGER S, JOST G, LABRENZ M. Measuring unbiased metatranscriptomics in suboxic waters of the central Baltic Sea using a new in situ fixation system[J]. The ISME Journal, 2012, 6(2): 461-470.
    [11] LOVE MI, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550.
    [12] YOUNG MD, WAKEFIELD MJ, SMYTH GK, OSHLACK A. Gene ontology analysis for RNA-seq: accounting for selection bias[J]. Genome Biology, 2010, 11(2): R14.
    [13] LUO WJ, BROUWER C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization[J]. Bioinformatics, 2013, 29(14): 1830-1831.
    [14] NARAYAN KD, SABAT SC, DAS SK. Mechanism of electron transport during thiosulfate oxidation in an obligately mixotrophic bacterium Thiomonas bhubaneswarensis strain S10(DSM 18181T)[J]. Applied Microbiology and Biotechnology, 2017, 101(3): 1239-1252.
    [15] GLEISNER M, HERBERT RB, FROGNER KOCKUM PC. Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen[J]. Chemical Geology, 2006, 225(1/2): 16-29.
    [16] YIN HQ, ZHANG X, LI XQ, HE ZL, LIANG YL, GUO X, HU Q, XIAO YH, CONG J, MA LY, NIU JJ, LIU XD. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans[J]. BMC Microbiology, 2014, 14: 179.
    [17] BODEN R. Reclassification of Halothiobacillus hydrothermalis and Halothiobacillus halophilus to Guyparkeria gen. nov. in the Thioalkalibacteraceae fam. nov., with emended descriptions of the genus Halothiobacillus and family Halothiobacillaceae[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(10): 3919-3928.
    [18] BELLER HR, CHAIN PSG, LETAIN TE, CHAKICHERLA A, LARIMER FW, RICHARDSON PM, COLEMAN MA, WOOD AP, KELLY DP. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans[J]. Journal of Bacteriology, 2006, 188(4): 1473-1488.
    [19] van den ENDE FP, van GEMERDEN H. Sulfide oxidation under oxygen limitation by a thiobacillus thioparus isolated from a marine microbial mat[J]. FEMS Microbiology Ecology, 1993, 13(1): 69-77.
    [20] VIKROMVARASIRI N, CHAMPREDA V, BOONYAWANICH S, PISUTPAISAL N. Hydrogen sulfide removal from biogas by biotrickling filter inoculated with Halothiobacillus neapolitanus[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18425-18433.
    [21] 张宏, 李颖杰, 王文颖, 王禄山. 微生物硫循环网络的研究进展[J]. 微生物学报, 2021, 61(6): 1567-1581. ZHANG H, LI YJ, WANG WY, WANG LS. Research progress of the microbial sulfur-cycling network[J]. Acta Microbiologica Sinica, 2021, 61(6): 1567-1581(in Chinese).
    [22] ZHANG L, QIU YY, ZHOU Y, CHEN GH, van LOOSDRECHT MCM, JIANG F. Elemental sulfur as electron donor and/or acceptor: mechanisms, applications and perspectives for biological water and wastewater treatment[J]. Water Research, 2021, 202: 117373.
    [23] FRIGAARD NU, DAHL C. Sulfur metabolism in phototrophic sulfur bacteria[J]. Advances in Microbial Physiology, 2008, 54: 103-200.
    [24] GHOSH W, DAM B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea[J]. FEMS Microbiology Reviews, 2009, 33(6): 999-1043.
    [25] SPIRO S, GUEST JR. Adaptive responses to oxygen limitation in Escherichia coli[J]. Trends in Biochemical Sciences, 1991, 16(8): 310-314.
    [26] SWEM DL, BAUER CE. Coordination of ubiquinol oxidase and cytochrome cbb3 oxidase expression by multiple regulators in Rhodobacter capsulatus[J]. Journal of Bacteriology, 2002, 184(10): 2815-2820.
    [27] BAYER B, SAITO MA, McILVIN MR, LÜCKER S, MORAN DM, LANKIEWICZ TS, DUPONT CL, SANTORO AE. Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira marina and its proteomic response to oxygen-limited conditions[J]. The ISME Journal, 2021, 15(4): 1025-1039.
    [28] PITCHER RS, WATMOUGH NJ. The bacterial cytochrome cbb3 oxidases[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2004, 1655: 388-399.
    [29] LYONS JA, HILBERS F, CAFFREY M. Structure and function of bacterial cytochrome c oxidases[M]//CRAMER WA, KALLAS T, eds. Advances in Photosynthesis and Respiration. Dordrecht: Springer Netherlands, 2016: 307-329.
    [30] KUHNS M, TRIFUNOVIĆ D, HUBER H, MÜLLER V. The Rnf complex is a Na+ coupled respiratory enzyme in a fermenting bacterium, Thermotoga maritima[J]. Communications Biology, 2020, 3(1): 431.
    [31] LEDBETTER RN, GARCIA COSTAS AM, LUBNER CE, MULDER DW, TOKMINA-LUKASZEWSKA M, ARTZ JH, PATTERSON A, MAGNUSON TS, JAY ZJ, DUAN HD, MILLER J, PLUNKETT MH, HOBEN JP, BARNEY BM, CARLSON RP, MILLER AF, BOTHNER B, KING PW, PETERS JW, SEEFELDT LC. The electron bifurcating FixABCX protein complex from Azotobacter vinelandii: generation of low-potential reducing equivalents for nitrogenase catalysis[J]. Biochemistry, 2017, 56(32): 4177-4190.
    [32] ALLEMAN AB, GARCIA COSTAS A, MUS F, PETERS JW. Rnf and fix have specific roles during aerobic nitrogen fixation in Azotobacter vinelandii[J]. Applied and Environmental Microbiology, 2022, 88(17): e0104922.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

严洪珊,林炜铁,罗剑飞. 化能自养硫氧化细菌Halothiobacillus diazotrophicus低氧硫氧化特性及其机制[J]. 微生物学报, 2024, 64(11): 4358-4370

复制
分享
文章指标
  • 点击次数:84
  • 下载次数: 293
  • HTML阅读次数: 257
  • 引用次数: 0
历史
  • 收稿日期:2024-06-05
  • 在线发布日期: 2024-10-30
  • 出版日期: 2024-11-04
文章二维码