南海F-冷泉和冲绳海槽热液区可培养二甲基巯基丙酸内盐合成与降解细菌的分离鉴定及其多样性
作者:
基金项目:

中央高校基本科研业务费专项资金(202172002);国家自然科学基金(42306115);山东省自然科学基金(ZR2023QD017);中国博士后科学基金(2022M722975);山东省博士后创新项目(SDCX-ZG-202201016)


Isolation, identification, and diversity analysis of culturable DMSP-synthesizing and-degrading bacteria in F-cold seep of the South China Sea and hydrothermal fields of the Okinawa Trough
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [66]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】 冷泉和热液是海洋中典型的化能生态系统,其独特的理化特征孕育了特殊的微生物类群。二甲基巯基丙酸内盐(dimethylsulfoniopropionate, DMSP)是地球上最丰富的有机硫化合物之一,多种海洋细菌能够合成与降解DMSP,在驱动海洋碳、硫元素循环过程中发挥重要作用。本研究对南海F-冷泉和冲绳海槽热液区的DMSP合成与降解细菌进行了分离鉴定,分析其多样性与分布,拓展了对海洋中DMSP代谢细菌的认识。【方法】 选取南海F-冷泉和冲绳海槽Yaeyama Knoll热液区不同深度水体、沉积物和动物为研究对象,利用3种富集培养基(甲硫氨酸添加、高盐低氮条件用于富集DMSP合成细菌,DMSP添加用于富集DMSP降解细菌)和2216E分离培养基进行细菌的富集与分离培养。通过16S rRNA基因测序确定菌株分类地位,并检测代表菌株的DMSP合成与降解能力。【结果】 本研究共获得874株可培养细菌,其中γ-变形菌纲(Gammaproteobacteria)为3种培养基中获得的优势纲;海杆菌属(Marinobacter)为优势属。经富集后冷泉样品的可培养菌株数量和多样性均高于热液样品。冷泉来源的14株DMSP合成细菌分属于7个属,其中5株属于近海螺旋菌属(Thalassospira)且含有DMSP合成基因mmtN,2株属于假栖大洋菌属(Pseudooceanicola)并含有dsyB。冷泉来源的130株DMSP降解细菌分属于39个属,谷氨酸杆菌属(Glutamicibacter)为最优势属(24株)且不含已知DMSP降解基因。热液区来源的DMSP合成细菌仅1株,降解细菌18株,均远少于冷泉样品。具有DMSP裂解途径的菌株占降解细菌总数(148株)的98.6%,其中55株裂解活性较强且以放线菌纲(Actinobacteria)为主。在40株不同种且DMSP降解能力较强的菌株中,9株含有已知的裂解基因,3株含有已知的脱甲基基因。【结论】 南海F-冷泉和冲绳海槽热液区存在丰富的DMSP合成与降解细菌,包括多种含有潜在新型DMSP合成/降解基因的细菌类群。本研究为进一步深入理解化能生态系统中微生物驱动的有机硫循环提供了基础。

    Abstract:

    [Objective] Cold seeps and hydrothermal fields are typical chemosynthetic ecosystems in the ocean. With distinctive physicochemical properties, they harbor unique microbial communities. Dimethylsulfoniopropionate (DMSP), one of the most abundant organic sulfur-containing compounds on Earth, is synthesized and degraded by a variety of marine bacteria, which plays an important role in driving carbon and sulfur cycles in the ocean. In this study, we isolated and identified DMSP-synthesizing and degrading bacteria from the F-cold seep of the South China Sea and hydrothermal fields of the Okinawa Trough and analyzed their diversity and distribution, aiming to expand the understanding of these bacteria in the ocean. [Methods] Water, sediment, and animal samples were collected at different depths from both the F-cold seep of the South China Sea and the Yaeyama Knoll hydrothermal field of the Okinawa Trough. Three enrichment media (l-methionine addition and high salinity and low nitrogen for DMSP-synthesizing bacteria; DMSP addition for DMSP-degrading bacteria) and the 2216E medium were used for the enrichment and isolation of bacteria. The taxonomic status of strains was determined by 16S rRNA gene sequencing, and the abilities of representative strains to synthesize or degrade DMSP were assessed. [Results] A total of 874 culturable strains were obtained. Gammaproteobacteria emerged as the dominant class in the three media, and Marinobacter was the most abundant genus. The number and diversity of culturable strains obtained from cold seep samples after enrichment were higher than those from the hydrothermal field. The 14 strains of DMSP-synthesizing bacteria from the cold seep belonged to 7 genera, including 5 Thalassospira strains carrying the DMSP synthesis gene mmtN and 2 Pseudooceanicola strains carrying dsyB. A total of 130 DMSP-degrading bacterial strains were obtained from the cold seep, belonging to 39 genera, among which Glutamicibacter was the most abundant genus (24 strains) without known genes associated with DMSP degradation. There was only 1 strain of DMSP-synthetizing bacteria and 18 strains of DMSP-degrading bacteria from the hydrothermal field, both were much fewer than those from the cold seep. The strains with DMSP cleavage pathway accounted for 98.6% of the total DMSP-degrading strains (148), among which 55 strains had strong cleavage activity and were mainly Actinobacteria. Among the 40 strains with strong DMSP-degrading activity, 9 strains contained known cleavage genes and 3 strains contained known demethylation genes. [Conclusion] Abundant DMSP-synthesizing and -degrading bacteria exist in F-cold seep of the South China Sea and hydrothermal fields of the Okinawa Trough, including a variety of bacterial groups carrying potential novel DMSP synthesis/degradation genes. This study provides a basis for further understanding the microbial-driven organosulfur cycling in chemosynthetic ecosystems.

    参考文献
    [1] BOETIUS A, WENZHÖFER F. Seafloor oxygen consumption fuelled by methane from cold seeps[J]. Nature Geoscience, 2013, 6: 725-734.
    [2] SUESS E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions[J]. International Journal of Earth Sciences, 2014, 103(7): 1889-1916.
    [3] MACHIYAMA H, LIN S, FUJIKURA K, HUANG C, KU C, LIN L, LIU C, MORITA S, NUNOURA T, SOH W, TOKI T, YANG TF. Discovery of “Hydrothermal” chemosynthetic community in a cold seep environment, Taiwan Ridge: seafloor observation results from first rov cruise, off southwestern Taiwan[C]//AGU Fall Meeting Abstracts, US: American Geophysical Union, 2007: OS23A-1041.
    [4] LIN S, LIM Y, LIU C, YANG TF, CHEN YG, MACHIYAMA H, SOH W, FUJIKURA K. Taiwan Ridge, a cold seep with densely populated chemosynthetic community in the passive margin, southwest of Taiwan[J]. Geochimica et Cosmochimica Acta, 2007, 71: 582.
    [5] LIN S, MACHIYAMA H, CHEN Y, SOH W, YANG T, WANG Y, LIM Y. Near sea floor gas hydrate formation and influence on pore water chemistry and authigenic carbonate at the Taiwan Ridge, South China sea[C]//AGU Fall Meeting Abstracts, US: American Geophysical Union, 2007: OS21A-05.
    [6] WANG XD, GUAN HX, QIU JW, XU T, PECKMANN J, CHEN DF, FENG D. Macro-ecology of cold seeps in the South China Sea[J]. Geosystems and Geoenvironment, 2022, 1(3): 100081.
    [7] TIVEY MK. How to build a black smoker chimney[J]. Oceanus, 1998, 41(2): 22-26.
    [8] BEAULIEU SE, BAKER ET, GERMAN CR, MAFFEI A. An authoritative global database for active submarine hydrothermal vent fields[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(11): 4892-4905.
    [9] MIYAZAKI J, KAWAGUCCI S, MAKABE A, TAKAHASHI A, KITADA K, TORIMOTO J, MATSUI Y, TASUMI E, SHIBUYA T, NAKAMURA K, HORAI S, SATO S, ISHIBASHI JI, KANZAKI H, NAKAGAWA S, HIRAI M, TAKAKI Y, OKINO K, WATANABE HK, KUMAGAI H, et al. Deepest and hottest hydrothermal activity in the Okinawa Trough: the Yokosuka site at Yaeyama Knoll[J]. Royal Society Open Science, 2017, 4(12): 171570.
    [10] LEVIN LA, BACO AR, BOWDEN DA, COLACO A, CORDES EE, CUNHA MR, DEMOPOULOS AWJ, GOBIN J, GRUPE BM, LE J, METAXAS A, NETBURN AN, ROUSE GW, THURBER AR, TUNNICLIFFE V, van DOVER CL, VANREUSEL A, WATLING L. Hydrothermal vents and methane seeps: rethinking the sphere of influence[J]. Frontiers in Marine Science, 2016, 3: 72.
    [11] KIENE RP, LINN LJ, BRUTON JA. New and important roles for DMSP in marine microbial communities[J]. Journal of Sea Research, 2000, 43(3/4): 209-224.
    [12] CHALLENGER F, SIMPSON MI. A precursor of the dimethyl sulphide evolved by Polysiphonia fastigiata; dimethyl-beta-propiothetine (dimethyl-beta-carboxythylsulphonium hydroxide) and its salts[J]. Biochemical Journal, 1947, 41(3): xl.
    [13] ARCHER SD, WIDDICOMBE CE, TARRAN GA, REES AP, BURKILL PH. Production and turnover of particulate dimethylsulphoniopropionate during a coccolithophore bloom in the northern North Sea[J]. Aquatic Microbial Ecology, 2001, 24: 225-241.
    [14] HOWARD EC, HENRIKSEN JR, BUCHAN A, REISCH CR, BÜRGMANN H, WELSH R, YE WY, GONZÁLEZ JM, MACE K, JOYE SB, KIENE RP, WHITMAN WB, MORAN MA. Bacterial taxa that limit sulfur flux from the ocean[J]. Science, 2006, 314(5799): 649-652.
    [15] KIRST GO, THIEL C, WOLFF H, NOTHNAGEL J, WANZEK M, ULMKE R. Dimethylsulfoniopropionate (DMSP) in icealgae and its possible biological role[J]. Marine Chemistry, 1991, 35(1/2/3/4): 381-388.
    [16] ZHENG YF, WANG JY, ZHOU S, ZHANG YH, LIU J, XUE CX, WILLIAMS BT, ZHAO XX, ZHAO L, ZHU XY, SUN C, ZHANG HH, XIAO T, YANG GP, TODD JD, ZHANG XH. Bacteria are important dimethylsulfoniopropionate producers in marine aphotic and high-pressure environments[J]. Nature Communications, 2020, 11(1): 4658.
    [17] SUNDA W, KIEBER DJ, KIENE RP, HUNTSMAN S. An antioxidant function for DMSP and DMS in marine algae[J]. Nature, 2002, 418(6895): 317-320.
    [18] KARSTEN U, KÜCK K, VOGT C, KIRST GO. Dimethylsulfoniopropionate production in phototrophic organisms and its physiological functions as a cryoprotectant[M]//KIENE RP, VISSCHER PT, KELLER MD, KIRST GO. Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. Boston. MA: Springer US, 1996: 143-153.
    [19] WOLFE GV, STEINKE M, KIRST GO. Grazing-activated chemical defence in a unicellular marine alga[J]. Nature, 1997, 387: 894-897.
    [20] JOHNSON WM, KIDO SOULE MC, KUJAWINSKI EB. Evidence for quorum sensing and differential metabolite production by a marine bacterium in response to DMSP[J]. The ISME Journal, 2016, 10(9): 2304-2316.
    [21] TROTTMANN F, ISHIDA K, FRANKE J, STANIŠIĆ A, ISHIDA-ITO M, KRIES H, POHNERT G, HERTWECK C. Sulfonium acids loaded onto an unusual thiotemplate assembly line construct the cyclopropanol warhead of a Burkholderia virulence factor[J]. Angewandte Chemie International Edition, 2020, 59(32): 13511-13515.
    [22] CHARLSON RJ, LOVELOCK JE, ANDREAE MO, WARREN SG. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate[J]. Nature, 1987, 326: 655-661.
    [23] KELLER MD, BELLOWS WK, GUILLARD RRL. Dimethylsulfide production and marine phytoplankton: an additional impact of unusual blooms[M]//Novel Phytoplankton Blooms. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989: 101-115.
    [24] EDWARDS DM, REED RH, CHUDEK JA, FOSTER R, STEWART WDP. Organic solute accumulation in osmotically-stressed Enteromorpha intestinalis[J]. Marine Biology, 1987, 95(4): 583-592.
    [25] RAINA JB, TAPIOLAS DM, FORÊT S, LUTZ A, ABREGO D, CEH J, SENECA FO, CLODE PL, BOURNE DG, WILLIS BL, MOTTI CA. DMSP biosynthesis by an animal and its role in coral thermal stress response[J]. Nature, 2013, 502(7473): 677-680.
    [26] PAQUET L, RATHINASABAPATHI B, SAINI H, ZAMIR L, DA GG, HUANG ZH, HANSON AD. Accumulation of the compatible solute 3-dimethylsulfoniopropionate in sugarcane and its relatives, but not other gramineous crops[J]. Functional Plant Biology, 1994, 21(1): 37.
    [27] JAMES F, PAQUET L, SPARACE SA, GAGE DA, HANSON AD. Evidence implicating dimethylsulfoniopropionaldehyde as an intermediate in dimethylsulfoniopropionate biosynthesis[J]. Plant Physiology, 1995, 108(4): 1439-1448.
    [28] KOCSIS MG, NOLTE KD, RHODES D, SHEN TL, GAGE DA, HANSON AD. Dimethylsulfoniopropionate biosynthesis in Spartina alterniflora1. evidence that S-methylmethionine and dimethylsulfoniopropylamine are intermediates[J]. Plant Physiology, 1998, 117(1): 273-281.
    [29] CURSON ARJ, LIU J, BERMEJO MARTÍNEZ A, GREEN RT, CHAN Y, CARRIÓN O, WILLIAMS BT, ZHANG SH, YANG GP, BULMAN PAGE PC, ZHANG XH, TODD JD. Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process[J]. Nature Microbiology, 2017, 2: 17009.
    [30] GAGE DA, RHODES D, NOLTE KD, HICKS WA, LEUSTEK T, COOPER AJ, HANSON AD. A new route for synthesis of dimethylsulphoniopropionate in marine algae[J]. Nature, 1997, 387(6636): 891-894.
    [31] UCHIDA A, OOGURI T, ISHIDA T, ISHIDA Y. Incorporation of methionine into dimethylthiopropanoic acid in the dinoflagellate Crypthecodinium cohnii[J]. Nippon Suisan Gakkaishi, 1993, 59(5): 851-855.
    [32] CURSON ARJ, WILLIAMS BT, PINCHBECK BJ, SIMS LP, MARTÍNEZ AB, RIVERA PPL, KUMARESAN D, MERCADÉ E, SPURGIN LG, CARRIÓN O, MOXON S, CATTOLICO RA, KUZHIUMPARAMBIL U, GUAGLIARDO P, CLODE PL, RAINA JB, TODD JD. DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton[J]. Nature Microbiology, 2018, 3(4): 430-439.
    [33] KAGEYAMA H, TANAKA Y, SHIBATA A, WADITEE-SIRISATTHA R, TAKABE T. Dimethylsulfoniopropionate biosynthesis in a diatom Thalassiosira pseudonana: identification of a gene encoding MTHB-methyltransferase[J]. Archives of Biochemistry and Biophysics, 2018, 645: 100-106.
    [34] WILLIAMS BT, COWLES K, MARTÍNEZ AB, CURSON ARJ, ZHENG YF, LIU JL, NEWTON-PAYNE S, HIND AJ, LI CY, RIVERA PPL, CARRIÓN O, LIU J, SPURGIN LG, BREARLEY CA, MACKENZIE BW, PINCHBECK BJ, PENG M, PRATSCHER J, ZHANG XH, ZHANG YZ, MURRELL JC, TODD JD. Bacteria are important dimethylsulfoniopropionate producers in coastal sediments[J]. Nature Microbiology, 2019, 4(11): 1815-1825.
    [35] WANG JY, CURSON ARJ, ZHOU S, CARRIÓN O, LIU J, VIEIRA AR, WALSHAM KS, MONACO S, LI CY, DONG QY, WANG Y, RIVERA PPL, WANG XD, ZHANG M, HANWELL L, WALLACE M, ZHU XY, LEÃO PN, LEA-SMITH DJ, ZHANG YZ, ZHANG XH, TODD JD. Alternative dimethylsulfoniopropionate biosynthesis enzymes in diverse and abundant microorganisms[J]. Nature Microbiology, 2024, 9(8): 1979-1992.
    [36] CURSON ARJ, TODD JD, SULLIVAN MJ, JOHNSTON AWB. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes[J]. Nature Reviews Microbiology, 2011, 9(12): 849-859.
    [37] REISCH CR, MORAN MA, WHITMAN WB. Bacterial catabolism of dimethylsulfoniopropionate (DMSP)[J]. Frontiers in Microbiology, 2011, 2: 172.
    [38] REISCH CR, STOUDEMAYER MJ, VARALJAY VA, AMSTER IJ, MORAN MA, WHITMAN WB. Novel pathway for assimilation of dimethylsulphoniopropionate widespread in marine bacteria[J]. Nature, 2011, 473(7346): 208-211.
    [39] YOCH DC. Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide[J]. Applied and Environmental Microbiology, 2002, 68(12): 5804-5815.
    [40] THUME K, GEBSER B, CHEN L, MEYER N, KIEBER DJ, POHNERT G. The metabolite dimethylsulfoxonium propionate extends the marine organosulfur cycle[J]. Nature, 2018, 563(7731): 412-415.
    [41] CURSON ARJ, ROGERS R, TODD JD, BREARLEY CA, JOHNSTON AWB. Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine alpha-proteobacteria and Rhodobacter sphaeroides[J]. Environmental Microbiology, 2008, 10(3): 757-767.
    [42] TODD JD, CURSON ARJ, DUPONT CL, NICHOLSON P, JOHNSTON AWB. The dddP gene, encoding a novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete fungi[J]. Environmental Microbiology, 2009, 11(6): 1376-1385.
    [43] TODD JD, CURSON ARJ, KIRKWOOD M, SULLIVAN MJ, GREEN RT, JOHNSTON AWB. DddQ, a novel, cupin-containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria[J]. Environmental Microbiology, 2011, 13(2): 427-438.
    [44] TODD JD, KIRKWOOD M, NEWTON-PAYNE S, JOHNSTON AWB. DddW, a third DMSP lyase in a model Roseobacter marine bacterium, Ruegeria pomeroyi DSS-3[J]. The ISME Journal, 2012, 6(1): 223-226.
    [45] CURSON ARJ, SULLIVAN MJ, TODD JD, JOHNSTON AWB. DddY, a periplasmic dimethylsulfoniopropionate lyase found in taxonomically diverse species of Proteobacteria[J]. The ISME Journal, 2011, 5(7): 1191-1200.
    [46] SUN J, TODD JD, THRASH JC, QIAN YP, QIAN MC, TEMPERTON B, GUO JZ, FOWLER EK, ALDRICH JT, NICORA CD, LIPTON MS, SMITH RD, de LEENHEER P, PAYNE SH, JOHNSTON AWB, DAVIE-MARTIN CL, HALSEY KH, GIOVANNONI SJ. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol[J]. Nature Microbiology, 2016, 1(8): 16065.
    [47] TODD JD, ROGERS R, LI YG, WEXLER M, BOND PL, SUN L, CURSON ARJ, MALIN G, STEINKE M, JOHNSTON AWB. Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria[J]. Science, 2007, 315(5812): 666-669.
    [48] LI CY, WANG XJ, CHEN XL, SHENG Q, ZHANG S, WANG P, QUARESHY M, RIHTMAN B, SHAO X, GAO C, LI FC, LI SY, ZHANG WP, ZHANG XH, YANG GP, TODD JD, CHEN Y, ZHANG YZ. A novel ATP dependent dimethylsulfoniopropionate lyase in bacteria that releases dimethyl sulfide and acryloyl-CoA[J]. eLife, 2021, 10: e64045.
    [49] WANG SY, ZHANG N, TENG ZJ, WANG XD, TODD JD, ZHANG YZ, CAO HY, LI CY. A new dimethylsulfoniopropionate lyase of the cupin superfamily in marine bacteria[J]. Environmental Microbiology, 2023, 25(7): 1238-1249.
    [50] 刘骥. 中国东海DMSP分解和合成代谢细菌多样性及典型菌株相关功能基因研究[D]. 青岛: 中国海洋大学博士学位论文, 2018. LIU J. Diversity of DMSP-decomposing and anabolic bacteria and related functional genes of typical strains in the East China Sea of China[D]. Qingdao: Doctoral Dissertation of Ocean University of China, 2018(in Chinese).
    [51] LIU J, ZHANG YH, LIU JL, ZHONG HH, WILLIAMS BT, ZHENG YF, CURSON ARJ, SUN C, SUN H, SONG DL, WAGNER MACKENZIE B, BERMEJO MARTÍNEZ A, TODD JD, ZHANG XH. Bacterial dimethylsulfoniopropionate biosynthesis in the East China Sea[J]. Microorganisms, 2021, 9(3): 657.
    [52] ZHANG YH, SUN K, SUN C, SHI XC, TODD JD, ZHANG XH. Dimethylsulfoniopropionate biosynthetic bacteria in the subseafloor sediments of the South China Sea[J]. Frontiers in Microbiology, 2021, 12: 731524.
    [53] 高雪雨, 商丽, 吴蕾蕾, 张晓华, 史晓翀. 参与DMSP/DMS循环的极地细菌初步筛选及其多样性研究[J]. 中国海洋大学学报(自然科学版), 2022, 52(9): 61-70. GAO XY, SHANG L, WU LL, ZHANG XH, SHI XC. Preliminary screening of polar bacteria participating in DMSP/DMS cycle and the diversity analysis[J]. Periodical of Ocean University of China, 2022, 52(9): 61-70(in Chinese).
    [54] 张晓华, 刘吉文, 于敏, 战渊超, 史晓翀, 莫照兰, 张蕴慧, 王晓磊, 杨世民, 李伟, 高风, 于淑贤, 李静, 张钰琳, 何新新, 王金燕, 冉凌蔓, 刘荣华, 翟欣奕, 顾冰玉, 等. 海洋微生物学[M]. 3版. 北京: 科学出版社, 2024: 1-496. ZHANG XH, LIU JW, YU M, ZHAN YC, SHI XC, MO ZL, ZHANG YH, WANG XL, YANG SM, LI W, GAO F, YU SX, LI J, ZHANG YL, HE XX, WANG JY, RAN LM, LIU RH, ZHAI XY, GU BY, et al. Marine Microliology[M]. 3rd Edition. Beijing: Science Press, 2024: 1-496(in Chinese).
    [55] MOORE E, ARNSCHEIDT A, KRÜGER A, STRÖMPL C, MAU M. Section 1 update: simplified protocols for the preparation of genomic DNA from bacterial cultures[M]//Molecular Microbial Ecology Manual. Dordrecht: Springer Netherlands, 2008: 1905-1919.
    [56] WEISBURG WG, BARNS SM, PELLETIER DA, LANE DJ. 16S ribosomal DNA amplification for phylogenetic study[J]. Journal of Bacteriology, 1991, 173(2): 697-703.
    [57] RAINA JB, TAPIOLAS D, WILLIS BL, BOURNE DG. Coral-associated bacteria and their role in the biogeochemical cycling of sulfur[J]. Applied and Environmental Microbiology, 2009, 75(11): 3492-3501.
    [58] VARALJAY VA, HOWARD EC, SUN SL, MORAN MA. Deep sequencing of a dimethylsulfoniopropionate-degrading gene (dmdA) by using PCR primer pairs designed on the basis of marine metagenomic data[J]. Applied and Environmental Microbiology, 2010, 76(2): 609-617.
    [59] 商丽, 史晓翀, 王晓宇, 张晓华. 北欧海海水可培养细菌多样性[J]. 微生物学报, 2017, 57(9): 1323-1331. SHANG L, SHI XC, WANG XY, ZHANG XH. Diversity of culturable bacterial in the surface seawater of the Nordic Sea[J]. Acta Microbiologica Sinica, 2017, 57(9): 1323-1331(in Chinese).
    [60] 孙创, 王金燕, 张钰琳, 张蕴慧, 朱晓雨, 陈朝晖, 张晓华. 利用改良培养基探究西太平洋海水可培养细菌多样性[J]. 微生物学报, 2021, 61(4): 845-861. SUN C, WANG JY, ZHANG YL, ZHANG I, ZHU XY, CHEN HC, ZHANG XH. Exploring the diversity of cultivated bacteria in the Western Pacific waters through improved culture media[J]. Acta Microbiologica Sinica, 2021, 61(4): 845-861(in Chinese).
    [61] 林钰, 刘荣华, 周顺, 朱晓雨, 王金燕, 张晓华. 马里亚纳海沟沉积物可培养异养细菌的多样性及其DMSP降解能力[J]. 微生物学报, 2021, 61(4): 828-844. LIN Y, LIU RH, ZHOU S, ZHU XY, WANG JY, ZHANG XH. Diversity of culturable heterotrophic bacteria from sediments of the Mariana Trench and their ability to degrade dimethylsulfoniopropionate (DMSP)[J]. Acta Microbiologica Sinica, 2021, 61(4): 828-844(in Chinese).
    [62] 周田田. 南海F冷泉区DMSP降解与合成菌的筛选及弧菌中新型DMSP/l-Met降解基因的研究[D]. 青岛: 中国海洋大学硕士学位论文, 2024. ZHOU TT. Screening of DMSP degrading and producing strains in F Cold Seep of the South China Sea and research on the new-type DMSP/l-Met degradation genes in vibrios[D]. Qingdao: Master’s Thesis of Ocean University of China, 2024(in Chinese).
    [63] 杨硕, 高峥, 邵宗泽. 南海冷泉区深海沉积物中细菌的分离培养及多样性分析[J]. 氨基酸和生物资源, 2016, 38(1): 34-40. YANG S, GAO Z, SHAO ZZ. Diversity of cultivable bacteria in deep sea sediments from cold seeps in the South China Sea[J]. Amino Acids & Biotic Resources, 2016, 38(1): 34-40(in Chinese).
    [64] ZHANG YH, SUN C, GUO ZH, LIU LY, ZHANG XT, SUN K, ZHENG YF, GATES AJ, TODD JD, ZHANG XH. An S-methyltransferase that produces the climate-active gas dimethylsulfide is widespread across diverse marine bacteria[J]. Nature Microbiology, 2024, 9(10): 2614-2625.
    [65] 赵秀秀. 马里亚纳海沟异养细菌的分离培养、碳源利用及DMSP合成与降解能力研究[D]. 青岛: 中国海洋大学硕士学位论文, 2020. ZHAO XX. Isolation, culture, carbon source utilization, DMSP synthesis and degradation ability of heterotrophic bacteria in Mariana Trench[D]. Qingdao: Master’s Thesis of Ocean University of China, 2020(in Chinese)
    [66] HOWARD EC, SUN SL, BIERS EJ, MORAN MA. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters[J]. Environmental Microbiology, 2008, 10(9): 2397-2410.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高熠,刘秀杰,刘仪,李倩宇,郭瑞红,张晓华,张蕴慧. 南海F-冷泉和冲绳海槽热液区可培养二甲基巯基丙酸内盐合成与降解细菌的分离鉴定及其多样性[J]. 微生物学报, 2024, 64(12): 4515-4536

复制
分享
文章指标
  • 点击次数:190
  • 下载次数: 297
  • HTML阅读次数: 376
  • 引用次数: 0
历史
  • 收稿日期:2024-11-11
  • 在线发布日期: 2024-12-07
  • 出版日期: 2024-12-04
文章二维码