深海冷泉微生物遗传资源研究进展
作者:
基金项目:

国家自然科学基金(92351304,42376115);福建省自然科学基金(2023J06042);自然资源部天然气水合物重点实验室开放基金(KLFH-2023-03);广州海洋地质调查局局长科研基金(2023GMGSJZJJ00017)


Research progress of microbial genetic resources in deep-sea cold seeps
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [80]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    深海冷泉由甲烷等烃类化合物渗漏形成,其独特的生态环境孕育了新颖且系统发育多样的原核生物、真核生物和病毒。冷泉微生物通过化能合成作用获得能量和物质,驱动碳、硫、氮等元素的生物地球化学循环,维持着冷泉生态系统的稳定。冷泉生境蕴含丰富的微生物遗传资源,特别是极端环境下产生的酶和次级代谢产物,具有脱卤、固氮和抗菌等作用,在农业、药物开发和环境保护等领域展现出潜在的应用前景。此外,冷泉微生物与天然气水合物开采的环境影响评估紧密相关,并在全球气候变化中扮演重要角色。为了有效开发深海冷泉微生物的遗传资源,未来研究应通过原位采样、测序和培养技术,结合环境参数监测,深入探讨冷泉微生物的生态角色与进化机制,挖掘冷泉微生物的基因资源,研究水合物开采中的微生物响应,从而为全面开发深海冷泉微生物遗传资源及水合物资源提供科学依据。

    Abstract:

    Deep-sea cold seeps are formed by the leakage of hydrocarbons such as methane, creating unique eco-environments that foster novel and phylogenetically diverse prokaryotes, eukaryotes, and viruses. Cold seep microorganisms obtain energy and substances through chemosynthesis, driving the biogeochemical cycles of elements such as carbon, sulfur, and nitrogen, thereby maintaining the stability of the cold seep ecosystem. Cold seep habitats contain rich microbial genetic resources, especially enzymes and secondary metabolites produced under extreme conditions, which exhibit dehalogenating, nitrogen-fixing, and antimicrobial activities, with potential applications in agriculture, drug development, and environmental protection. Additionally, cold seep microorganisms are closely related to the environmental impact assessment of natural gas hydrate extraction and play a significant role in global climate change. To effectively develop the microbial genetic resources in deep-sea cold seeps, researchers should combine in situ sampling, sequencing, and culture methods with environmental parameter monitoring to explore the ecological roles and evolutionary mechanisms of these microorganisms, delve into their genetic resources, and investigate microbial responses during hydrate extraction. Such efforts will provide a scientific basis for comprehensively developing microbial genetic resources and hydrate resources in deep-sea cold seeps.

    参考文献
    [1] BOETIUS A, WENZHÖFER F. Seafloor oxygen consumption fuelled by methane from cold seeps[J]. Nature Geoscience, 2013, 6: 725-734.
    [2] PAULL CK, HECKER B, COMMEAU R, FREEMAN-LYNDE RP, NEUMANN C, CORSO WP, GOLUBIC S, HOOK JE, SIKES E, CURRAY J. Biological communities at the Florida escarpment resemble hydrothermal vent taxa[J]. Science, 1984, 226(4677): 965-967.
    [3] DONG XY, RATTRAY JE, CAMPBELL DC, WEBB J, CHAKRABORTY A, ADEBAYO O, MATTHEWS S, LI C, FOWLER M, MORRISON NM, MacDONALD A, GROVES RA, LEWIS IA, WANG SH, MAYUMI D, GREENING C, HUBERT CRJ. Thermogenic hydrocarbon biodegradation by diverse depth-stratified microbial populations at a Scotian Basin cold seep[J]. Nature Communications, 2020, 11(1): 5825.
    [4] RUFF SE, FELDEN J, GRUBER-VODICKA HR, MARCON Y, KNITTEL K, RAMETTE A, BOETIUS A. In situ development of a methanotrophic microbiome in deep-sea sediments[J]. The ISME Journal, 2019, 13(1): 197-213.
    [5] NIEMANN H, LÖSEKANN T, de BEER D, ELVERT M, NADALIG T, KNITTEL K, AMANN R, SAUTER EJ, SCHLÜTER M, KLAGES M, FOUCHER JP, BOETIUS A. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink[J]. Nature, 2006, 443(7113): 854-858.
    [6] GRIFFITHS HJ. Antarctic marine biodiversity: what do we know about the distribution of life in the Southern Ocean?[J]. PLoS One, 2010, 5(8): e11683.
    [7] LIANG QY, HU Y, FENG D, PECKMANN J, CHEN LY, YANG SX, LIANG JQ, TAO J, CHEN DF. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: constraints on fluid sources, formation environments, and seepage dynamics[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 124: 31-41.
    [8] LIN S, LIM Y, LIU C, YANG TF, CHEN YG, MACHIYAMA H, SOH W, FUJIKURA K. Taiwan Ridge, a cold seep with densely populated chemosynthetic community in the passive margin, southwest of Taiwan[J]. Geochimica et Cosmochimica Acta, 2007, 71: 582.
    [9] JOYE SB. The geology and biogeochemistry of hydrocarbon seeps[J]. Annual Review of Earth and Planetary Sciences, 2020, 48: 205-231.
    [10] HE X, XU T, CHEN C, LIU X, LI YX, ZHONG ZY, GU XY, LIN YT, LAN Y, YAN GY, SUN YN, QIU JW, QIAN PY, SUN J. Same (sea) bed different dreams: biological community structure of the Haima seep reveals distinct biogeographic affinities[J]. The Innovation Geoscience, 2023, 1(2): 100019.
    [11] KIEL S, FERNANDO A, MAGTOTO C, KASE T. Mollusks from Miocene hydrocarbon-seep deposits in the Ilocos-Central Luzon Basin, Luzon Island, Philippines[J]. Acta Palaeontologica Polonica, 2022, 67(4): 917-947.
    [12] CRAMM MA, de MOURA NEVES B, MANNING CCM, OLDENBURG TBP, ARCHAMBAULT P, CHAKRABORTY A, CYR-PARENT A, EDINGER EN, JAGGI A, MORT A, TORTELL P, HUBERT CRJ. Characterization of marine microbial communities around an Arctic seabed hydrocarbon seep at Scott Inlet, Baffin Bay[J]. Science of the Total Environment, 2021, 762: 143961.
    [13] RUFF SE, BIDDLE JF, TESKE AP, KNITTEL K, BOETIUS A, RAMETTE A. Global dispersion and local diversification of the methane seep microbiome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(13): 4015-4020.
    [14] BOETIUS A, RAVENSCHLAG K, SCHUBERT CJ, RICKERT D, WIDDEL F, GIESEKE A, AMANN R, JØRGENSEN BB, WITTE U, PFANNKUCHE O. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6804): 623-626.
    [15] VIGNERON A, ALSOP EB, CRUAUD P, PHILIBERT G, KING B, BAKSMATY L, LAVALLEE D, LOMANS BP, ELOE-FADROSH E, KYRPIDES NC, HEAD IM, TSESMETZIS N. Contrasting pathways for anaerobic methane oxidation in gulf of Mexico cold seep sediments[J]. mSystems, 2019, 4(1): e00091-18.
    [16] GARCIA PS, GRIBALDO S, BORREL G. Diversity and evolution of methane-related pathways in archaea[J]. Annual Review of Microbiology, 2022, 76: 727-755.
    [17] DONG XY, PENG YY, WANG MH, WOODS L, WU WX, WANG Y, XIAO X, LI JW, JIA KT, GREENING C, SHAO ZZ, HUBERT CRJ. Evolutionary ecology of microbial populations inhabiting deep sea sediments associated with cold seeps[J]. Nature Communications, 2023, 14(1): 1127.
    [18] ZHANG CW, PENG YY, LIU XY, WANG JN, DONG XY. Deep-sea microbial genetic resources: new frontiers for bioprospecting[J]. Trends in Microbiology, 2024, 32(4): 321-324.
    [19] ZHIVKOPLIAS E, JOUFFRAY JB, DUNSHIRN P, PRANINDITA A, BLASIAK R. Growing prominence of deep-sea life in marine bioprospecting[J]. Nature Sustainability, 2024, 7(8): 1027-1037.
    [20] ARCHER D, BUFFETT B, BROVKIN V. Ocean methane hydrates as a slow tipping point in the global carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49): 20596-20601.
    [21] KETZER M, PRAEG D, RODRIGUES LF, AUGUSTIN A, PIVEL MAG, RAHMATI-ABKENAR M, MILLER DJ, VIANA AR, CUPERTINO JA. Gas hydrate dissociation linked to contemporary ocean warming in the southern hemisphere[J]. Nature Communications, 2020, 11(1): 3788.
    [22] LI ZX, PAN D, WEI GS, PI WL, ZHANG CW, WANG JH, PENG YY, ZHANG L, WANG Y, HUBERT CRJ, DONG XY. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity[J]. The ISME Journal, 2021, 15(8): 2366-2378.
    [23] KELLOGG CA. Enumeration of viruses and prokaryotes in deep-sea sediments and cold seeps of the Gulf of Mexico[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(21/22/23): 2002-2007.
    [24] ZHANG Y, HUANG N, JING HM. Biogeography and population divergence of microeukaryotes associated with fluids and chimneys in the hydrothermal vents of the southwest Indian Ocean[J]. Microbiology Spectrum, 2022, 10(5): e0263221.
    [25] MUÑOZ-GÓMEZ SA. Energetics and evolution of anaerobic microbial eukaryotes[J]. Nature Microbiology, 2023, 8(2): 197-203.
    [26] del CAMPO J, BASS D, KEELING PJ. The eukaryome: diversity and role of microeukaryotic organisms associated with animal hosts[J]. Functional Ecology, 2020, 34(10): 2045-2054.
    [27] ZHENG RK, WU SM, SUN CM. Pseudodesulfovibrio cashew sp. nov., a novel deep-sea sulfate-reducing bacterium, linking heavy metal resistance and sulfur cycle[J]. Microorganisms, 2021, 9(2): 429.
    [28] LIU R, SHAN YQ, XI SC, ZHANG X, SUN CM. A deep-sea sulfate-reducing bacterium generates zero-valent sulfur via metabolizing thiosulfate[J]. mLife, 2022, 1(3): 257-271.
    [29] ZHENG RK, WANG C, SUN CM. Deep-sea in situ and laboratory multi-omics provide insights into the sulfur assimilation of a deep-sea Chloroflexota bacterium[J]. mBio, 2024, 15(4): e0000424.
    [30] HAN YC, ZHANG CW, ZHAO ZM, PENG YY, LIAO J, JIANG QY, LIU Q, SHAO ZZ, DONG XY. A comprehensive genomic catalog from global cold seeps[J]. Scientific Data, 2023, 10(1): 596.
    [31] ZHOU HH, JIANG LJ, LI KL, CHEN CL, LIN XY, ZHANG CF, XIE QL. Enhanced bioremediation of diesel oil-contaminated seawater by a biochar-immobilized biosurfactant-producing bacteria Vibrio sp. LQ2 isolated from cold seep sediment[J]. Science of The Total Environment, 2021, 793: 148529.
    [32] PENG YY, LU ZJ, PAN D, SHI LD, ZHAO Z, LIU Q, ZHANG CW, JIA KT, LI JW, HUBERT CRJ, DONG XY. Viruses in deep-sea cold seep sediments harbor diverse survival mechanisms and remain genetically conserved within species[J]. The ISME Journal, 2023, 17(10): 1774-1784.
    [33] XU ZM, CHEN JW, LI YD, SHEKARRIZ E, WU WX, CHEN BZ, LIU HB. High microeukaryotic diversity in the cold-seep sediment[J]. Microbial Ecology, 2023, 86(3): 2003-2020.
    [34] HUANG QY, LYU L, LI QQ, SU HF, LI J. Hwangdonia lutea sp. nov., isolated from the Haima cold seep, South China Sea[J]. International Journal of Systematic and Evolutionary Microbiology, 2024, 74(6): 006428.
    [35] 王风平, 周悦恒, 张新旭, 肖湘. 深海微生物多样性[J]. 生物多样性, 2013, 21(4): 445-455. WANG FP, ZHOU YH, ZHANG XX, XIAO X. Biodiversity of deep-sea microorganisms[J]. Biodiversity Science, 2013, 21(4): 445-455(in Chinese).
    [36] 孙瑜, 牛明杨, 刘俏, 庄光超, 王风平. 南海Taiwan冷泉区沉积物微生物多样性与分布规律研究[J]. 微生物学报, 2022, 62(6): 2001-2020. SUN Y, NIU MY, LIU Q, ZHUANG GC, WANG FP. Diversity and distribution of microorganisms in the sediment of Taiwan cold seep in South China Sea[J]. Acta Microbiologica Sinica, 2022, 62(6): 2001-2020(in Chinese).
    [37] CRUAUD P, VIGNERON A, PIGNET P, CAPRAIS JC, LESONGEUR F, TOFFIN L, GODFROY A, CAMBON-BONAVITA MA. Comparative study of Guaymas Basin microbiomes: cold seeps vs. hydrothermal vents sediments[J]. Frontiers in Marine Science, 2017, 4: 417.
    [38] CHEN Y, XU CL, WU NY, SUN ZL, LIU CL, ZHEN Y, XIN YZ, ZHANG XL, GENG W, CAO H, ZHAI B, LI J, QIN SS, ZHOU YC. Diversity of anaerobic methane oxidizers in the cold seep sediments of the Okinawa trough[J]. Frontiers in Microbiology, 2022, 13: 819187.
    [39] GRÜNDGER F, CARRIER V, SVENNING MM, PANIERI G, VONNAHME TR, KLASEK S, NIEMANN H. Methane-fuelled biofilms predominantly composed of methanotrophic ANME-1 in Arctic gas hydrate-related sediments[J]. Scientific Reports, 2019, 9(1): 9725.
    [40] WU YZ, QIU JW, QIAN PY, WANG Y. The vertical distribution of prokaryotes in the surface sediment of Jiaolong cold seep at the northern South China Sea[J]. Extremophiles, 2018, 22(3): 499-510.
    [41] KLASEK SA, HONG WL, TORRES ME, ROSS S, HOSTETLER K, PORTNOV A, GRÜNDGER F, COLWELL FS. Distinct methane-dependent biogeochemical states in Arctic seafloor gas hydrate mounds[J]. Nature Communications, 2021, 12(1): 6296.
    [42] CHADWICK GL, SKENNERTON CT, LASO-PÉREZ R, LEU AO, SPETH DR, YU H, MORGAN-LANG C, HATZENPICHLER R, GOUDEAU D, MALMSTROM R, BRAZELTON WJ, WOYKE T, HALLAM SJ, TYSON GW, WEGENER G, BOETIUS A, ORPHAN VJ. Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea[J]. PLoS Biology, 2022, 20(1): e3001508.
    [43] MURALI R, YU H, SPETH D, WU FB, METCALFE K, CRÉMIÈRE A, LASO-PÉREZ R, MALMSTROM R, GOUDEAU D, WOYKE T, HATZENPICHLER R, CHADWICK G, ORPHAN V. Physiological adaptation of sulfate reducing bacteria in syntrophic partnership with anaerobic methanotrophic archaea[J]. bioRxiv, 2022: 2022.11.23.517749.
    [44] ADAM PS, BORREL G, BROCHIER-ARMANET C, GRIBALDO S. The growing tree of archaea: new perspectives on their diversity, evolution and ecology[J]. The ISME Journal, 2017, 11(11): 2407-2425.
    [45] TIMMERS PHA, WELTE CU, KOEHORST JJ, PLUGGE CM, JETTEN MSM, STAMS AJM. Reverse methanogenesis and respiration in methanotrophic archaea[J]. Archaea, 2017, 2017: 1654237.
    [46] LI WL, WU YZ, ZHOU GW, HUANG H, WANG Y. Metabolic diversification of anaerobic methanotrophic archaea in a deep-sea cold seep[J]. Marine Life Science & Technology, 2020, 2(4): 431-441.
    [47] WEGENER G, KRUKENBERG V, RIEDEL D, TEGETMEYER HE, BOETIUS A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria[J]. Nature, 2015, 526(7574): 587-590.
    [48] MURALI R, YU H, SPETH DR, WU FB, METCALFE KS, CRÉMIÈRE A, LASO-PÈREZ R, MALMSTROM RR, GOUDEAU D, WOYKE T, HATZENPICHLER R, CHADWICK GL, CONNON SA, ORPHAN VJ. Physiological potential and evolutionary trajectories of syntrophic sulfate-reducing bacterial partners of anaerobic methanotrophic archaea[J]. PLoS Biology, 2023, 21(9): e3002292.
    [49] HANSON RS, HANSON TE. Methanotrophic bacteria[J]. Microbiological Reviews, 1996, 60(2): 439-471.
    [50] NIU MY, DENG LH, SU L, RUFF SE, YANG N, LUO M, QI Q, LI JT, WANG FP. Methane supply drives prokaryotic community assembly and networks at cold seeps of the South China Sea[J]. Molecular Ecology, 2023, 32(3): 660-679.
    [51] LV YX, YANG SS, XIAO X, ZHANG Y. Stimulated organic carbon cycling and microbial community shift driven by a simulated cold-seep eruption[J]. mBio, 2022, 13(2): e0008722.
    [52] SEABROOK S, TORRES ME, BAUMBERGER T, BUTTERFIELD D, ROE K, CUMMINGS M, CRAWFORD R, THURBER AR. Ubiquitous but unique: water depth and oceanographic attributes shape methane seep communities[J]. Limnology and Oceanography, 2024, 69(5): 1218-1232.
    [53] BIDDLE JF, SYLVAN JB, BRAZELTON WJ, TULLY BJ, EDWARDS KJ, MOYER CL, HEIDELBERG JF, NELSON WC. Prospects for the study of evolution in the deep biosphere[J]. Frontiers in Microbiology, 2012, 2: 285.
    [54] SHU WS, HUANG LN. Microbial diversity in extreme environments[J]. Nature Reviews Microbiology, 2022, 20(4): 219-235.
    [55] PASULKA AL, LEVIN LA, STEELE JA, CASE DH, LANDRY MR, ORPHAN VJ. Microbial eukaryotic distributions and diversity patterns in a deep-sea methane seep ecosystem[J]. Environmental Microbiology, 2016, 18(9): 3022-3043.
    [56] NAGAHAMA T, TAKAHASHI E, NAGANO Y, ABDEL-WAHAB MA, MIYAZAKI M. Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments[J]. Environmental Microbiology, 2011, 13(8): 2359-2370.
    [57] SAFFO MB, McCOY AM, RIEKEN C, SLAMOVITS CH. Nephromyces, a beneficial api complexan symbiont in marine animals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(37): 16190-16195.
    [58] ZHANG Y, HUANG N, WANG MX, LIU HB, JING HM. Microbial eukaryotes associated with sediments in deep-sea cold seeps[J]. Frontiers in Microbiology, 2021, 12: 782004.
    [59] ZHAO F, FILKER S, XU KD, HUANG PP, ZHENG S. Microeukaryote communities exhibit phyla-specific distance-decay patterns and an intimate link between seawater and sediment habitats in the Western Pacific Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2020, 160: 103279.
    [60] WAKEMAN KC. Molecular Molecular phylogeny of marine gregarines (Apicomplexa) from the Sea of Japan and the Northwest Pacific including the description of three novel species of Selenidium and Trollidium akkeshiense n. gen. n. sp.[J]. Protist, 2020, 171(1): 125710.
    [61] SUTTLE CA. Marine viruses: major players in the global ecosystem[J]. Nature Reviews Microbiology, 2007, 5(10): 801-812.
    [62] CAI LL, WEINBAUER MG, XIE L, ZHANG R. The smallest in the deepest: the enigmatic role of viruses in the deep biosphere[J]. National Science Review, 2023, 10(4): nwad009.
    [63] BIRD DF, JUNIPER SK, RICCIARDI-RIGAULT M, MARTINEU P, PRAIRIE YT, CALVERT SE. Subsurface viruses and bacteria in Holocene/Late Pleistocene sediments of Saanich Inlet, BC: ODP Holes 1033B and 1034B, Leg 169S[J]. Marine Geology, 2001, 174(1/2/3/4): 227-239.
    [64] MIDDELBOE M, GLUD RN, FILIPPINI M. Viral abundance and activity in the deep sub-seafloor biosphere[J]. Aquatic Microbial Ecology, 2011, 63(1): 1-8.
    [65] CAI LL, JØRGENSEN BB, SUTTLE CA, HE MQ, CRAGG BA, JIAO NZ, ZHANG R. Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years[J]. The ISME Journal, 2019, 13(7): 1857-1864.
    [66] ZHANG XY, WAN HT, JIN M, HUANG LQ, ZHANG XB. Environmental viromes reveal global virosphere of deep-sea sediment RNA viruses[J]. Journal of Advanced Research, 2024, 56: 87-102.
    [67] DOMBROWSKI N, SEITZ KW, TESKE AP, BAKER BJ. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments[J]. Microbiome, 2017, 5(1): 106.
    [68] ORCUTT BN, SYLVAN JB, KNAB NJ, EDWARDS KJ. Microbial ecology of the dark ocean above, at, and below the seafloor[J]. Microbiology and Molecular Biology Reviews, 2011, 75(2): 361-422.
    [69] REGNIER P, DALE AW, ARNDT S, LaROWE DE, MOGOLLÓN J, van CAPPELLEN P. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: a modeling perspective[J]. Earth-Science Reviews, 2011, 106(1/2): 105-130.
    [70] COCHRAN JK, LANDMAN NH, JAKUBOWICZ M, BREZINA J, NAUJOKAITYTE J, RASHKOVA A, GARB MP, LARSON NL. Geochemistry of cold hydrocarbon seeps: an overview[M]//Topics in Geobiology. Cham: Springer International Publishing, 2022: 3-45.
    [71] XIAO X, LUO M, ZHANG CW, ZHANG TT, YIN XR, WU XM, ZHAO J, TAO J, CHEN ZH, LIANG QY, DONG XY. Metal-driven anaerobic oxidation of methane as an important methane sink in methanic cold seep sediments[J]. Microbiology Spectrum, 2023, 11(2): e0533722.
    [72] CUI MM, MA AZ, QI HY, ZHUANG XL, ZHUANG GQ. Anaerobic oxidation of methane: an “active” microbial process[J]. MicrobiologyOpen, 2015, 4(1): 1-11.
    [73] JING HM, WANG RN, JIANG QY, ZHANG Y, PENG XT. Anaerobic methane oxidation coupled to denitrification is an important potential methane sink in deep-sea cold seeps[J]. Science of the Total Environment, 2020, 748: 142459.
    [74] YANG SS, LV YX, LIU XP, WANG YZ, FAN QL, YANG ZF, BOON N, WANG FP, XIAO X, ZHANG Y. Genomic and enzymatic evidence of acetogenesis by anaerobic methanotrophic archaea[J]. Nature Communications, 2020, 11(1): 3941.
    [75] RUFF SE, ARNDS J, KNITTEL K, AMANN R, WEGENER G, RAMETTE A, BOETIUS A. Microbial communities of deep-sea methane seeps at Hikurangi continental margin (New Zealand)[J]. PLoS One, 2013, 8(9): e72627.
    [76] MIYAJIMA Y, AOYAGI T, YOSHIOKA H, HORI T, TAKAHASHI HA, TANAKA M, TSUKASAKI A, GOTO S, SUZUMURA M. Impact of concurrent aerobic-anaerobic methanotrophy on methane emission from marine sediments in gas hydrate area[J]. Environmental Science & Technology, 2024, 58(11): 4979-4988.
    [77] ZHANG CW, FANG YX, YIN XR, LAI HF, KUANG ZG, ZHANG T, XU XP, WEGENER G, WANG JH, DONG XY. The majority of microorganisms in gas hydrate-bearing subseafloor sediments ferment macromolecules[J]. Microbiome, 2023, 11(1): 37.
    [78] CHEN SC, TENG NH, LIN YS, LAI MC, CHEN HH, WANG CC. Methanofollis fontis sp. nov., a methanogen isolated from marine sediment near a cold seep at Four-Way Closure Ridge offshore southwestern Taiwan[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(10): 5497-5502.
    [79] LI LY, ZHANG WT, ZHANG SJ, SONG L, SUN QL, ZHANG H, XIANG H, DONG XZ. Bacteria and Archaea synergistically convert glycine betaine to biogenic methane in the Taiwan cold seep of the South China Sea[J]. mSystems, 2021, 6(5): e0070321.
    [80] CHEN SC, MUSAT N, LECHTENFELD OJ, PASCHKE H, SCHMIDT M, SAID N, POPP D, CALABRESE F, STRYHANYUK H, JAEKEL U, ZHU YG, JOYE SB, RICHNOW HH, WIDDEL F, MUSAT F. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep[J]. Nature, 2019, 568(7750): 108-111.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

廖静,姜秋云,韩迎春,肖曦,董西洋. 深海冷泉微生物遗传资源研究进展[J]. 微生物学报, 2024, 64(12): 4537-4560

复制
分享
文章指标
  • 点击次数:578
  • 下载次数: 456
  • HTML阅读次数: 346
  • 引用次数: 0
历史
  • 收稿日期:2024-08-17
  • 在线发布日期: 2024-12-07
  • 出版日期: 2024-12-04
文章二维码