近岸微生物群落演替特征对浓缩溶解有机质添加的响应
作者:
基金项目:

国家自然科学基金(92051115);山东省自然科学基金(ZR2024JQ006,ZR2022YQ38)


Responses of coastal microbial communities to addition of concentrated dissolved organic matter
Author:
  • SUN Kaixuan

    SUN Kaixuan

    College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong, China;Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong, China;Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, Shandong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XIN Yu

    XIN Yu

    Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, Shandong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Jiwen

    LIU Jiwen

    College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong, China;Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong, China;Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, Shandong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    海洋中的溶解有机质(dissolved organic matter, DOM)成分复杂、来源多样,异养细菌作为DOM的主要分解者也呈现高度的生物多样性,二者之间的相互作用在生物地球化学循环中起着重要作用。截至目前,海洋中DOM的组成与微生物群落之间的相互作用尚不完全清楚。【目的】 探究添加海洋来源的浓缩DOM后微生物群落的动态变化。【方法】 将从近岸海水中富集到>1 kDa的DOM添加至微宇宙培养体系后,分别在不同的培养天数进行Illumina扩增子测序、溶解有机碳(dissolved organic carbon, DOC)浓度监测及异养细菌分离纯化。【结果】 DOM添加导致微生物群落组成发生了明显的演替,且高DOM处理组中微生物群落的变化更明显,在第3、10、30天分别出现弯曲杆菌门(Campylobacterota)、亚硝化球菌目(Nitrosococcales)和栖苏打菌科(Nitrincolaceae)等类群占比的升高。群落的α多样性和均匀度先在0−3 d内降低,而后又在10−30 d内升高,在3−10 d发生变化趋势的转折。网络分析发现,高DOM处理组的网络结构比对照组更加紧密复杂。此外,不同浓度DOM培养体系中分离得到的可培养菌株明显不同,并分离获得了DOM处理组的特有属,它们可能是重要的DOM降解类群。【结论】 浓缩DOM添加引起微宇宙培养体系中微生物群落结构的明显演替,其群落组成可能与DOM成分协同变化,影响着群落的演替方向。不同浓度DOM的培养体系也可能促进了具有不同生存策略的细菌的生长。本研究为更深入地理解微生物对海洋DOM的响应机制提供了理论依据。

    Abstract:

    Dissolved organic matter (DOM) in the ocean encompasses complex and diverse organic compounds, and heterotrophic bacteria, the main DOM decomposers, also exhibit high biodiversity. The interactions between heterotrophic bacteria and DOM play an important role in biogeochemical cycles, which, however, are not fully understood. [Objective] To explore the dynamics of microbial communities with the addition of marine-derived concentrated DOM. [Methods] DOM with a molecular weight exceeding 1 kDa and enriched from coastal seawater was introduced into microcosm culture systems. Illumina amplicon sequencing, dissolved organic carbon (DOC) concentration measurement, and bacterial isolation were performed on different days of incubation. [Results] The addition of DOM significantly influenced bacterial community composition, inducing more pronounced changes in the high-DOM group. Specifically, the relative abundance of Campylobacterota, Nitrosococcales, and Nitrincolaceae increased in the high-DOM group on days 3, 10, and 30, respectively. The alpha diversity and evenness of the microbial community decreased during days 0−3 and increased during days 10−30, with a transition point occurring between days 3 and 10. The network analysis revealed that the high-DOM group exhibited a more tightly interconnected and complex network than the control group. In addition, bacterial isolates from the culture systems added with different concentrations of DOM were distinct. The specific genera of different DOM treatments were identified, which may be key groups in DOM degradation. [Conclusion] The addition of DOM triggers the succession of microbial community structures within microcosm culture systems, and the community composition may be associated with specific DOM components, which influence the direction of community succession. Furthermore, the varying DOM concentrations select for culturable bacteria with diverse survival strategies. This study provides a basis for enriching our understanding about the mechanisms underlying microbial responses to marine-derived DOM.

    参考文献
    [1] MOPPER K, STUBBINS A, RITCHIE JD, BIALK HM, HATCHER PG. Advanced instrumental approaches for characterization of marine dissolved organic matter: extraction techniques, mass spectrometry, and nuclear magnetic resonance spectroscopy[J]. Chemical Reviews, 2007, 107(2): 419-442.
    [2] DAFNE-EV, WANGERSKY PJ. A brief overview of modern directions in marine DOC studies part II: recent progress in marine DOC studies[J]. Journal of Environmental Monitoring, 2002, 4(1): 55-69.
    [3] MARIE E, JEAN-CHRISTOPHE P, FRANCE VW, DOMINIQUE LÂV, RICHARD SÂRÂ. Modelling DOC assimilation and bacterial growth efficiency in biodegradation experiments: a case study in the Northeast Atlantic Ocean[J]. Aquatic Microbial Ecology, 2006, 43(2): 139-151.
    [4] CARLSON CA, DUCKLOW HW. Dissolved organic carbon in the upper ocean of the central equatorial Pacific Ocean, 1992: daily and finescale vertical variations[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1995, 42(2): 639-656.
    [5] BAUER JE, WILLIAMS PM, DRUFFEL ERM. 14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea[J]. Nature, 1992, 357: 667-670.
    [6] KIRCHMAN DL, MEON B, DUCKLOW HW, CARLSON CA, HANSELL DA, STEWARD GF. Glucose fluxes and concentrations of dissolved combined neutral sugars (polysaccharides) in the Ross Sea and Polar Front Zone, Antarctica[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 48(19): 4179-4197.
    [7] HOPKINSON CS, VALLINO JJ. Efficient export of carbon to the deep ocean through dissolved organic matter[J]. Nature, 2005, 433(7022): 142-145.
    [8] 吴凯. 海洋溶解有机碳循环简介[J]. 科技资讯, 2013, 8: 165, 178. WU K. An introduction to the marine dissolved organic carbon cycle[J]. Science & Technology Information, 2013, 8: 165, 178(in Chinese).
    [9] NAGATA T, FUKUDA H, FUKUDA R, KOIKE I. Bacterioplankton distribution and production in deep Pacific waters: large-scale geographic variations and possible coupling with sinking particle fluxes[J]. Limnology and Oceanography, 2000, 45(2): 426-435.
    [10] DUCKLOW H, STEINBERG D, BUESSELER K. Upper ocean carbon export and the biological pump[J]. Oceanography, 2001, 14(4): 50-58.
    [11] WORDEN AZ, FOLLOWS MJ, GIOVANNONI SJ, WILKEN S, ZIMMERMAN AE, KEELING PJ. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes[J]. Science, 2015, 347(6223): 1257594.
    [12] POMEROY LR, WILLIAMS PJL, AZAM F, HOBBIE JE. The microbial loop[J]. Oceanography, 2007, 20: 28-33.
    [13] SHARMA AK, BECKER JW, OTTESEN EA, BRYANT JA, DUHAMEL S, KARL DM, CORDERO OX, REPETA DJ, DELONG EF. Distinct dissolved organic matter sources induce rapid transcriptional responses in coexisting populations of Prochlorococcus, Pelagibacter and the OM60 clade[J]. Environmental Microbiology, 2014, 16(9): 2815-2830.
    [14] LANDA M, COTTRELL MT, KIRCHMAN DL, KAISER K, MEDEIROS PM, TREMBLAY L, BATAILLER N, CAPARROS J, CATALA P, ESCOUBEYROU K, ORIOL L, BLAIN S, OBERNOSTERER I. Phylogenetic and structural response of heterotrophic bacteria to dissolved organic matter of different chemical composition in a continuous culture study[J]. Environmental Microbiology, 2014, 16(6): 1668-1681.
    [15] GÓMEZ-CONSARNAU L, LINDH MV, GASOL JM, PINHASSI J. Structuring of bacterioplankton communities by specific dissolved organic carbon compounds[J]. Environmental Microbiology, 2012, 14(9): 2361-2378.
    [16] LIU JW, XUE CX, SUN H, ZHENG YF, MENG Z, ZHANG XH. Carbohydrate catabolic capability of a Flavobacteriia bacterium isolated from hadal water[J]. Systematic and Applied Microbiology, 2019, 42(3): 263-274.
    [17] TEELING H, FUCHS BM, BECHER D, KLOCKOW C, GARDEBRECHT A, BENNKE CM, KASSABGY M, HUANG SX, MANN AJ, WALDMANN J, WEBER M, KLINDWORTH A, OTTO A, LANGE J, BERNHARDT J, REINSCH C, HECKER M, PEPLIES J, BOCKELMANN FD, CALLIES U, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom[J]. Science, 2012, 336(6081): 608-611.
    [18] GIOVANNONI SJ. SAR11 bacteria: the most abundant plankton in the oceans[J]. Annual Review of Marine Science, 2017, 9: 231-255.
    [19] SMRIGA S, FERNANDEZ VI, MITCHELL JG, STOCKER R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(6): 1576-1581.
    [20] NELSON CE, CARLSON CA. Tracking differential incorporation of dissolved organic carbon types among diverse lineages of Sargasso Sea bacterioplankton[J]. Environmental Microbiology, 2012, 14(6): 1500-1516.
    [21] LIANG JC, LIU JW, ZHAN YC, ZHOU S, XUE CX, SUN C, LIN Y, LUO CL, WANG XC, ZHANG XH. Succession of marine bacteria in response to Ulva prolifera-derived dissolved organic matter[J]. Environment International, 2021, 155: 106687.
    [22] ZHANG T, WANG XC. Release and microbial degradation of dissolved organic matter (DOM) from the macroalgae Ulva prolifera[J]. Marine Pollution Bulletin, 2017, 125(1/2): 192-198.
    [23] ZHANG YY, HE PM, LI HM, LI G, LIU JH, JIAO FL, ZHANG JH, HUO YZ, SHI XY, SU RG, YE NH, LIU DY, YU RC, WANG ZL, ZHOU MJ, JIAO NZ. Ulva prolifera green-tide outbreaks and their environmental impact in the Yellow Sea, China[J]. National Science Review, 2019, 6(4): 825-838.
    [24] 孙承哲, 辛宇, 崔西亮, 李遵伟, 张孟, 徐洪军, 毕显斌, 尚宏坤, 刘文锋, 郑芳. 海洋溶解有机质分离富集浓缩系统[P]. CN 217921678U. 2022-11-29.
    [25] 崔西亮, 辛宇, 李遵伟, 孙承哲, 张孟, 徐洪军, 毕显斌, 尚宏坤, 刘文锋, 郑芳. 海水溶解有机质分离富集方法[P]. CN 114047049B. 2023-12-29.
    [26] 孙承哲. 海水溶解有机质快速分离富集技术和系统的设计与研发[D]. 青岛: 中国海洋大学硕士学位论文, 2023. SUN CZ. Development of equipment and method for rapid isolation and enrichment of marine dissolv????偲?????堠佭乡?????卄敝愮猠潑湩慮汧?癡慯爺椠慍扡楳汴楥瑲礙?椠湔?浥楳捩牳漠扯楦愠汏?浥敡瑮栠慕湮潩汶?畲瑳楩汴楹猠慯瑦椠潃湨?楮湡?挠漲愰猲琳愨汩?眠慃瑨敩牮獥?潥昩?琼桢敲 ̄睛攲猷瑝攠犐湩??渠杗氥楐猬栠??栛愬渠湛攰氰嬬?嶋???愠牱検渁敍??捍濪氭澶柣礉?傳爁澶柣狠攺玳玌※匮斄牓榦旘猖??日〆??????ク?????????戱父?嬠??崨′?娺娠???中????????千??嘠?单?匠?奌?????儠啙?听?升???楔??摗敁汎汇漠癘楃戮爠楃潯??楥??慲湡摴?汯楮欠敡?潤爠杳慯湵楲獣浥猠??捳略牳牳敭湥瑮?甠湯摦攠牤獩瑳慳湯摬楶湥杤?慯湲摧?歮湩潣眠污敮摤朠敩?杯慲灧獡?潩晣?瑣桡敲?獯浮愠污汮敤猠瑤?捳敳汯汬當汥慤爠?桩畴湲瑯敧牥獮?潩普?瑳桮敯?洠楡据牤漠扲楡慩汮?睡潬牬汳搠孩?崠???牮楤瑯楮捧愠汐?副敶癩楮散睥獛?楝渮??楣捴牡漠打楣潩汥潮杴祩??㈠ぃ????????????????????戠爳?嬨??崺????嘭????剩??啃????偳佥丩匮?????瘲愸湝??佅啉呓??卒??块?匬吠剂???剓???測琠敐牅慌捌瑅楔潉湅獒?扄敁琬眠敌敁湎?戠慄捊琮攠爱椶慓氠?慩湢摯?灯桭慡杬攠?捎潁洠浡畭湰楬瑩楦敩獣?楴湩?湮愠瑦畯牲愠汰?敹湬癯楧牥潮湥浴敩湣琠獳孴?嵤??乊慝琮甠牊敯?割敮癡楬攠睯獦??楡捣牴潥扲楩潯汬潯杧祹??㈱?代㈱??㈱??ㄨ???????木??戳爮?孢??嵛′???剗??????????噈??????????卒??剌????????剁????乍?????匬????乐??塅婙????乐?????匠?????????????椬朠湊潁捎敓汓汏畎氠潊獋攬?摃敁材牏慒摁慓瑏椠潊湇?戠祆?版畒浍敁湎?扊慁挬琠敁牐楐慒汉?捌漠流洬甠湋楎瑉楇效獔??渮攠睉?楰湲獯楶来桤琠獢?晣牴潥浲?浡敬琠愱朶敓渠潲浒敎?愠湧慥汮祥猠攨獖嬴?嵡???湖瘴椭爵漩渠浡敮湤琠慦汵?剧敡獬攠慩牮捴桥???ぬ㈠????????????????扥牲?孭??嵫??传啧卥卮?吠???????丠?佯?????????呡婬?乣佯呭?卵??????????乹?????传??呹?????唬删?‰嘱????唨由洩氺?卥??‰???刱????? ̄????删?噁?呋吠??圠??十????卍?????癓慈湍?摎敁牒???????乃??????奂佈啁卄卒???丬???婎??乔??堮圠??坧???婵???佴??坳???坬桥攠牡敭?汬敩獣獯?洠慳祥?扵敥?浣潩牮敧??桥潴睨?瑤栠敦?牲愠物敬?扵業潩獮灡栠敍物敓?灱甠汰汬獡?敦捯潲獭礠獵瑳敩浮獧?獰瑯牯楬渠杯獦嬠?嵎??吨栰攭??匩????潣略牲渭慬汩???つㄠ???????????????????扭牥?孳??嵩??奯乵????????买?啫??????????捍潃氠潇来祮?慭湩摣?攬砠瀲氰漲爳愬琠椲漴渨?漩昺?琱栴攱?爼慢牲放?戳椱潝猠灂桏敌牙故孎?嵅??乒慉瑄畅牏敕?删敊癒椬攠睄獉??楏捎爠潍扒椬漠求潏杋祕??至えㄠ???ㄠ??????至???休????扁牌?孔??嵇?匬???剅??剎???传????????????剒?????偍传啍刬??????呁??????????匬匠??偓佁啎剚??????卉?呔剉低啇????匬???楅潊摎敒杏牄愠摁愬琠楂潒湉?潌晁?灎漠汃祊挬礠捂汒楏捗?愠牃潔洬愠瑃楁捌?桁祈摁牎漠捂慊爬戠潃湁獒?扂祁?慌?戭慒捏瑄敒爦楉慡汣?捴潥渻獇潕牅瑚椠畁浍?攠湃版楁捓桅攠摊?映牃潏浐?洠慅湋本爠潥癴攠?獬攮搠楒浥数湲瑯獤孵?嵩???漬甠物湮慴汥?潡晣??湶癥椬爠潳湣浡敬湡瑢慬汥??敮慤氠瑥桸?卥据楳敩湢捬敥??慩浣灲???湯杭楥渠敤敡牴楡渠杳???の????????????????扛牊?嬮??嵡?噵?????????剨??慬捯畧瑹攬??‰丱??吠伳??????券吵?中匸‵???卢偲刾?丳?????????則??佊???????楓捅牎漠払楈愬氠?捉潅浍流畎湎椠瑌礬?獓瑔牅畄捍瑏畎爠敃?漮映?愠?桯敤慥癬礠?晦甠敥汸?潲楡汣?摬敬杵牬慡摲椠湥杮?浹慭牥楳渠敩?挠潦湲獥潥爭瑬楩當浩??氠業湩正楲湯杢?浳椺挠牷潨扩楣慨氠?摴祲湡慴浥楧捹猠?睡楹瑳栠?灦潦氿祛捊祝挮氠楁捰?慬物潥浤愠瑡楮捤?桅祮摶物潲捯慮牭扥潮湴?畬琠楍汩楣穲慯瑢楩潯湬孯?嵹?????匵??椸挱爨漲戱椩漺氠漷朳礸‵?挷漳氹漳朮礼??资せ?????????????????休??扁爠?嬬??嵒?婎??丠??夬????佔义??????坏?久??奂匬???啒?????央?乔??偮?????????????乥??????漠浯灦愠牢慡瑴楨癹数?杬敡湧潩浣椠捭獡?物敮癥攠慢污獣?瑥桲敩?数癬楡摮敫湴捯敮?潴景?慴牨潥洠慄瑥楥捰?桡祴摥牲漠捈慯牲扩潺湯獮?摯敩杬爠慳摰慩瑬楬潛湊?瀮漠瑔敨湥琠楉慓汍?椠湊?杵敲湮畡獬??椲?刱漳猬攠漷瘨愱爲椩町猠??椱??椲渳′洹愮爼楢湲放?攳渴癝椠牓潁湒浇故湁瑎孔?嵓???湍瑕敒牒湅慌瑌椠潊湃愬氠??楇潈摔敉瑎敇爀椀漀爀愀琀椀漀渀??愀洀瀀???椀漀搀攀最爀愀搀愀琀椀漀渀??? ?????????? ?? ??
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙凯旋,辛宇,刘吉文. 近岸微生物群落演替特征对浓缩溶解有机质添加的响应[J]. 微生物学报, 2024, 64(12): 4561-4577

复制
分享
文章指标
  • 点击次数:272
  • 下载次数: 218
  • HTML阅读次数: 337
  • 引用次数: 0
历史
  • 收稿日期:2024-10-21
  • 在线发布日期: 2024-12-07
  • 出版日期: 2024-12-04
文章二维码