菌毛可视化及其在蓝细菌研究中的应用
作者:
基金项目:

中国博士后科学基金(2023M740523);四川省医学科学院·四川省人民医院院科研基金(2022B1013);国家自然科学基金(91751102)


Visualization of pili and its applications in the study of cyanobacteria
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [64]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    蓝细菌是海洋水圈的重要成员,同时作为海洋生物活性化合物的重要来源而备受关注。IV型菌毛(type IV pili, TFP)在蓝细菌中至关重要,参与多种生理功能,包括介质表面运动、趋光行为和自然转化等过程。随着菌毛可视化技术的不断进步,对这些微生物的TFP相关细胞行为有了更深入的了解。本文以菌毛可视化为切入点,总结了该技术在蓝细菌蹭行运动、趋光、自然转化等研究领域的最新研究和应用,本文旨在促进对蓝细菌中TFP介导的细胞行为的理解,以及蓝细菌在水圈中的生态学功能及意义,同时也为发展基于TFP的蓝细菌行为调控提供新思路。

    Abstract:

    Cyanobacteria have garnered great attention as important players in the marine hydrosphere and the source of bioactive compounds. Type IV pili (TFP) play a crucial role in cyanobacteria by participating in various physiological functions such as substrate surface movement, phototaxis, and natural transformation. With the continuous advancements in the visualization of pili, we have gained a deeper understanding of the TFP-mediated cell behaviors of cyanobacteria. We review the recent progress and applications of visualization of pili in the research on the twitching, phototaxis, and natural transformation of cyanobacteria. This review is expected to improve our understanding of the TFP-mediated cell behaviors and the ecological function and significance of cyanobacteria in the hydrosphere. Additionally, it provides new insights for developing TFP-based regulation on cell behaviors of cyanobacteria.

    参考文献
    [1] LAU NS, MATSUI M, ABDULLAH AAA. Cyanobacteria: photoautotrophic microbial factories for the sustainable synthesis of industrial products[J]. BioMed Research International, 2015, 2015: 754934.
    [2] SHARMA NK, TIWARI SP, TRIPATHI K, RAI AK. Sustainability and cyanobacteria (blue-green algae): facts and challenges[J]. Journal of Applied Phycology, 2011, 23(6): 1059-1081.
    [3] MAZARD S, PENESYAN A, OSTROWSKI M, PAULSEN IT, EGAN S. Tiny microbes with a big impact: the role of cyanobacteria and their metabolites in shaping our future[J]. Marine Drugs, 2016, 14(5): 97.
    [4] MUÑOZ-MARÍN MDC, SHILOVA IN, SHI T, FARNELID H, CABELLO AM, ZEHR JP. The transcriptional cycle is suited to daytime N2 fixation in the unicellular cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-a)[J]. mBio, 2019, 10(1): e02495-18.
    [5] EL-SEEDI HR, EL-MALLAH MF, YOSRI N, ALAJLANI M, ZHAO C, MEHMOOD MA, DU M, ULLAH H, DAGLIA M, GUO ZM, KHALIFA SAM, SHOU QY. Review of marine cyanobacteria and the aspects related to their roles: chemical, biological properties, nitrogen fixation and climate change[J]. Marine Drugs, 2023, 21(8): 439.
    [6] DAWIEC-LIŚNIEWSKA A, PODSTAWCZYK D, BASTRZYK A, CZUBA K, PACYNA-IWANICKA K, OKORO OV, SHAVANDI A. New trends in biotechnological applications of photosynthetic microorganisms[J]. Biotechnology Advances, 2022, 59: 107988.
    [7] QIAO Y, WANG WH, LU XF. Engineering cyanobacteria as cell factories for direct trehalose production from CO2[J]. Metabolic Engineering, 2020, 62: 161-171.
    [8] ABED RMM, DOBRETSOV S, SUDESH K. Applications of cyanobacteria in biotechnology[J]. Journal of Applied Microbiology, 2009, 106(1): 1-12.
    [9] BHADURY P, WRIGHT PC. Exploitation of marine algae: biogenic compounds for potential antifouling applications[J]. Planta, 2004, 219(4): 561-578.
    [10] MANDHATA CP, BISHOYI AK, SAHOO CR, SWAIN S, BEJ S, JALI BR, MEHER RK, DUBEY D, PADHY RN. Investigation of in vitro antimicrobial, antioxidant and antiproliferative activities of Nostoc calcicola biosynthesized gold nanoparticles[J]. Bioprocess and Biosystems Engineering, 2023, 46(9): 1341-1350.
    [11] HERNÁNDEZ-URCERA J, ROMERO A, CRUZ P, VASCONCELOS V, FIGUERAS A, NOVOA B, RODRÍGUEZ F. Screening of microalgae for bioactivity with antiviral, antibacterial, anti-inflammatory and anti-cancer assays[J]. Biology, 2024, 13(4): 255.
    [12] TSAI SC, HUANG YW, WU CC, WANG JJ, CHEN YT, SINGHANIA RR, CHEN CW, DONG CD, HSIEH SL. Anti-obesity effect of Nostoc commune ethanol extract in vitro and in vivo[J]. Nutrients, 2022, 14(5): 968.
    [13] GUERREIRO A, ANDRADE MA, MENEZES C, VILARINHO F, DIAS E. Antioxidant and cytoprotective properties of cyanobacteria: potential for biotechnological applications[J]. Toxins, 2020, 12(9): 548.
    [14] ABRAÚL M, ALVES A, HILÁRIO S, MELO T, CONDE T, DOMINGUES MR, REY F. Evaluation of lipid extracts from the marine fungi Emericellopsis cladophorae and Zalerion maritima as a source of anti-inflammatory, antioxidant and antibacterial compounds[J]. Marine Drugs, 2023, 21(4): 199.
    [15] TATON A, ERIKSON C, YANG YL, RUBIN BE, RIFKIN SA, GOLDEN JW, GOLDEN SS. The circadian clock and darkness control natural competence in cyanobacteria[J]. Nature Communications, 2020, 11(1): 1688.
    [16] MAIER B, WONG GCL. How bacteria use type IV pili machinery on surfaces[J]. Trends in Microbiology, 2015, 23(12): 775-788.
    [17] SCHUERGERS N, WILDE A. Appendages of the cyanobacterial cell[J]. Life, 2015, 5(1): 700-715.
    [18] KHAYATAN B, MEEKS JC, RISSER DD. Evidence that a modified type IV pilus-like system powers gliding motility and polysaccharide secretion in filamentous cyanobacteria[J]. Molecular Microbiology, 2015, 98(6): 1021-1036.
    [19] HOICZYK E, BAUMEISTER W. The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria[J]. Current Biology, 1998, 8(21): 1161-1168.
    [20] WADHWA N, BERG HC. Bacterial motility: machinery and mechanisms[J]. Nature Reviews Microbiology, 2022, 20(3): 161-173.
    [21] GILTNER CL, NGUYEN Y, BURROWS LL. Type IV pilin proteins: versatile molecular modules[J]. Microbiology and Molecular Biology Reviews, 2012, 76(4): 740-772.
    [22] CRAIG L, FOREST KT, MAIER B. Type IV pili: dynamics, biophysics and functional consequences[J]. Nature Reviews Microbiology, 2019, 17(7): 429-440.
    [23] ELLISON CK, DALIA TN, VIDAL CEBALLOS A, WANG JCY, BIAIS N, BRUN YV, DALIA AB. Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae[J]. Nature Microbiology, 2018, 3(7): 773-780.
    [24] BHAYA D, BIANCO NR, BRYANT D, GROSSMAN A. Type IV pilus biogenesis and motility in the cyanobacterium Synechocystis sp. PCC 6803[J]. Molecular Microbiology, 2000, 37(4): 941-951.
    [25] YOSHIHARA S, GENG X, OKAMOTO S, YURA K, MURATA T, GO M, OHMORI M, IKEUCHI M. Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC 6803[J]. Plant & Cell Physiology, 2001, 42(1): 63-73.
    [26] LORENZ MG, WACKERNAGEL W. Bacterial gene transfer by natural genetic transformation in the environment[J]. Microbiological Reviews, 1994, 58(3): 563-602.
    [27] NIES F, SPRINGSTEIN BL, HANKE DM, DAGAN T. Natural competence in the filamentous, heterocystous cyanobacterium Chlorogloeopsis fritschii PCC 6912[J]. mSphere, 2022, 7(4): e0099721.
    [28] BHAYA D, WATANABE N, OGAWA T, GROSSMAN AR. The role of an alternative sigma factor in motility and pilus formation in the cyanobacterium Synechocystis sp. strain PCC 6803[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(6): 3188-3193.
    [29] NAKANE D, NISHIZAKA T. Asymmetric distribution of type IV pili triggered by directional light in unicellular cyanobacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(25): 6593-6598.
    [30] ZHANG JC, LI SB, SUN T, ZONG YW, LUO Y, WEI YF, ZHANG WW, ZHAO K. Oscillation of type IV pili regulated by the circadian clock in cyanobacterium Synechococcus elongatus PCC7942[J]. Science Advances, 2024, 10(4): eadd9485.
    [31] WILDE A, MULLINEAUX CW. Motility in cyanobacteria: polysaccharide tracks and type IV pilus motors[J]. Molecular Microbiology, 2015, 98(6): 998-1001.
    [32] YOSHIMURA H, YOSHIHARA S, OKAMOTO S, IKEUCHI M, OHMORI M. A cAMP receptor protein, SYCRP1, is responsible for the cell motility of Synechocystis sp. PCC 6803[J]. Plant & Cell Physiology, 2002, 43(4): 460-463.
    [33] LIVNAH O, BAYER EA, WILCHEK M, SUSSMAN JL. Three-dimensional structures of avidin and the avidin-biotin complex[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(11): 5076-5080.
    [34] ELLISON CK, KAN JB, DILLARD RS, KYSELA DT, DUCRET A, BERNE C, HAMPTON CM, KE ZL, WRIGHT ER, BIAIS N, DALIA AB, BRUN YV. Obstruction of pilus retraction stimulates bacterial surface sensing[J]. Science, 2017, 358(6362): 535-538.
    [35] ELLISON CK, DALIA TN, DALIA AB, BRUN YV. Real-time microscopy and physical perturbation of bacterial pili using maleimide-conjugated molecules[J]. Nature Protocols, 2019, 14(6): 1803-1819.
    [36] ZHANG JC, LI SB, SUN T, ZONG YW, ZHANG WW, ZHAO K. A simple, switchable pili-labelling method by plasmid-based replacement of pilin[J]. Environmental Microbiology, 2021, 23(5): 2692-2703.
    [37] ENGELMANN T. Bacterium photometricum[J]. Pflügers Archiv European Journal of Physiology, 1883, 30: 95-124.
    [38] WATERBURY JB, WILLEY JM, FRANKS DG, VALOIS FW, WATSON SW. A cyanobacterium capable of swimming motility[J]. Science, 1985, 230(4721): 74-76.
    [39] BRAHAMSHA B. Non-flagellar swimming in marine Synechococcus[J]. Journal of Molecular Microbiology and Biotechnology, 1999, 1(1): 59-62.
    [40] VAARA T. The outermost surface structures in chroococcacean cyanobacteria[J]. Canadian Journal of Microbiology, 1982, 28(8): 929-941.
    [41] RISSER DD, MEEKS JC. Comparative transcriptomics with a motility-deficient mutant leads to identification of a novel polysaccharide secretion system in Nostoc punctiforme[J]. Molecular Microbiology, 2013, 87(4): 884-893.
    [42] OKAMOTO S, OHMORI M. The cyanobacterial PilT protein responsible for cell motility and transformation hydrolyzes ATP[J]. Plant & Cell Physiology, 2002, 43(10): 1127-1136.
    [43] LAMPARTER T, BABIAN J, FRÖHLICH K, MIELKE M, WEBER N, WUNSCH N, ZAIS F, SCHULZ K, ASCHMANN V, SPOHRER N, KRAUß N. The involvement of type IV pili and the phytochrome CphA in gliding motility, lateral motility and photophobotaxis of the cyanobacterium Phormidium lacuna[J]. PLoS One, 2022, 17(1): e0249509.
    [44] SONG WY, ZANG SS, LI ZK, DAI GZ, LIU K, CHEN M, QIU BS. Sycrp2 is essential for twitching motility in the cyanobacterium Synechocystis sp. strain PCC 6803[J]. Journal of Bacteriology, 2018, 200(21): e00436-18.
    [45] SCHUERGERS N, NÜRNBERG DJ, WALLNER T, MULLINEAUX CW, WILDE A. PilB localization correlates with the direction of twitching motility in the cyanobacterium Ssynechocystis sp. PCC 6803[J]. Microbiology, 2015, 161(Pt 5): 960-966.
    [46] NAKANE D, ENOMOTO G, BÄHRE H, HIROSE Y, WILDE A, NISHIZAKA T. Thermosynechococcus switches the direction of phototaxis by a c-di-GMP-dependent process with high spatial resolution[J]. eLife, 2022, 11: e73405.
    [47] OESER S, WALLNER T, SCHUERGERS N, BUČINSKÁ L, SIVABALASARMA S, BÄHRE H, ALBERS SV, WILDE A. Minor pilins are involved in motility and natural competence in the cyanobacterium Synechocystis sp. PCC 6803[J]. Molecular Microbiology, 2021, 116(3): 743-765.
    [48] YOSHIHARA S, SUZUKI F, FUJITA H, GENG XX, IKEUCHI M. Novel putative photoreceptor and regulatory genes Required for the positive phototactic movement of the unicellular motile cyanobacterium Synechocystis sp. PCC 6803[J]. Plant & Cell Physiology, 2000, 41(12): 1299-1304.
    [49] CHEN Z, XU XD. DnaJ-like protein gene sll1384 is involved in phototaxis in Synechocystis sp. PCC 6803[J]. Chinese Science Bulletin, 2009, 54(23): 4381-4386.
    [50] CHAU RMW, URSELL T, WANG S, HUANG KC, BHAYA D. Maintenance of motility bias during cyanobacterial phototaxis[J]. Biophysical Journal, 2015, 108(7): 1623-1632.
    [51] JAKOB A, NAKAMURA H, KOBAYASHI A, SUGIMOTO Y, WILDE A, MASUDA S. The (PATAN)-CheY-like response regulator PixE interacts with the motor ATPase PilB1 to control negative phototaxis in the cyanobacterium Synechocystis sp. PCC 6803[J]. Plant & Cell Physiology, 2020, 61(2): 296-307.
    [52] HAN Y, JAKOB A, ENGEL S, WILDE A, SCHUERGERS N. PATAN-domain regulators interact with the type IV pilus motor to control phototactic orientation in the cyanobacterium Synechocystis[J]. Molecular Microbiology, 2022, 117(4): 790-801.
    [53] SHESTAKOV SV, KHYEN NT. Evidence for genetic transformation in blue-green alga Anacystis nidulans[J]. Molecular & General Genetics, 1970, 107(4): 372-375.
    [54] GOLDEN SS, NALTY MS, CHO DSC. Genetic relationship of two highly studied Synechococcus strains designated Anacystis nidulans[J]. Journal of Bacteriology, 1989, 171(1): 24-29.
    [55] WEBER N, HOFMEISTER M, WUNSCH N, KOHLER A, KASTER AK, VOLLMERS J, KACHEL B, MACK M, LAMPARTER T. Natural transformation, protein expression, and cryoconservation of the filamentous cyanobacterium Phormidium lacuna[J]. Journal of Visualized Experiments, 2022(180): e63470.
    [56] NAKASUGI K, SVENSON CJ, NEILAN BA. The competence gene, comF, from Synechocystis sp. strain PCC 6803 is involved in natural transformation, phototactic motility and piliation[J]. Microbiology, 2006, 152(Pt 12): 3623-3631.
    [57] SUBAN SR, SENDERSKY E, GOLDEN SS, SCHWARZ R. Impairment of a cyanobacterial glycosyltransferase that modifies a pilin results in biofilm development[J]. Environmental Microbiology Reports, 2022, 14(2): 218-229.
    [58] SAMIR S, DOELLO S, ZIMMER E, HAFFNER M, ENKERLIN AM, MÜLLER T, DENGLER L, LAMBIDIS SP, SIVABALASARMA S, ALBERS SV, SELIM KA. The second messenger c-di-AMP controls natural competence via ComFB signaling protein[J]. bioRxiv, 2023. DOI: https://doi.org/10.1101/2023.11. 27. 568819.
    [59] SKERKER JM, BERG HC. Direct observation of extension and retraction of type IV pili[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(12): 6901-6904.
    [60] AGUILO-FERRETJANS MDM, BOSCH R, PUXTY RJ, LATVA M, ZADJELOVIC V, CHHUN A, SOUSONI D, POLIN M, SCANLAN DJ, CHRISTIE-OLEZA JA. Pili allow dominant marine cyanobacteria to avoid sinking and evade predation[J]. Nature Communications, 2021, 12(1): 1857.
    [61] ALLEN R, RITTMANN BE, CURTISS R 3rd. Axenic biofilm formation and aggregation by Synechocystis sp. strain PCC 6803 are induced by changes in nutrient concentration and require cell surface structures[J]. Applied and Environmental Microbiology, 2019, 85(7): e02192-18.
    [62] KERA K, YOSHIZAWA Y, SHIGEHARA T, NAGAYAMA T, TSUJII M, TOCHIGI S, UOZUMI N. Hik36-Hik43 and Rre6 act as a two-component regulatory system to control cell aggregation in Synechocystis sp. PCC 6803[J]. Scientific Reports, 2020, 10(1): 19405.
    [63] JARRELL KF, McBRIDE MJ. The surprisingly diverse ways that prokaryotes move[J]. Nature Reviews Microbiology, 2008, 6(6): 466-476.
    [64] AROETI B, FRIEDMAN G, ZLOTKIN-RIVKIN E, DONNENBERG MS. Retraction of enteropathogenic E. coli type IV pili promotes efficient host cell colonization, effector translocation and tight junction disruption[J]. Gut Microbes, 2012, 3(3): 267-271.
    引证文献
引用本文

张静超,李威,赵坤,张卫文. 菌毛可视化及其在蓝细菌研究中的应用[J]. 微生物学报, 2024, 64(12): 4593-4606

复制
分享
文章指标
  • 点击次数:204
  • 下载次数: 499
  • HTML阅读次数: 524
  • 引用次数: 0
历史
  • 收稿日期:2024-08-03
  • 在线发布日期: 2024-12-07
  • 出版日期: 2024-12-04
文章二维码