黄河小浪底库区旱季上游和下游原核生物群落与固碳功能微生物群的环境驱动因素
作者:
基金项目:

国家自然科学基金(42402310);河南省自然科学基金(242300421657);河南省高等学校重点科研项目(23B240001)


Environmental drivers of prokaryotic microbial communities and carbon-fixing microbial groups in the upper and lower reaches of the Xiaolangdi Reservoir of the Yellow River during the dry season
Author:
  • GUI Zewei

    GUI Zewei

    College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China;Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang 453007, Henan, China;Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WU Zhuanghui

    WU Zhuanghui

    College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China;Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang 453007, Henan, China;Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHAO Bo

    ZHAO Bo

    College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China;Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang 453007, Henan, China;Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Guokun

    YANG Guokun

    College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China;Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang 453007, Henan, China;Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHANG Xulu

    CHANG Xulu

    College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China;Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang 453007, Henan, China;Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GAO Xiaofei

    GAO Xiaofei

    College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China;Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang 453007, Henan, China;Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • MENG Xiaolin

    MENG Xiaolin

    College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China;Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang 453007, Henan, China;Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Yanmin

    ZHANG Yanmin

    College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China;Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang 453007, Henan, China;Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [59]
  • |
  • 相似文献 [15]
  • | | |
  • 文章评论
    摘要:

    【目的】 探究旱季黄河小浪底库区及下游原核生物及其固碳功能群的环境驱动因素。【方法】 采集旱季(2020年11月)黄河小浪底库区及下游水体和表层沉积物样品进行理化因子测定;通过细菌、古菌16S rRNA基因高通量测序和PICRUSt2预测探究原核生物群落组成及其固碳功能,同时通过固碳基因cbbLcbbM高通量测序分析固碳微生物群落组成。【结果】 变形菌门(Proteobacteria,24.74%)、放线菌门(Actinobacteria,17.55%)和厚壁菌门(Firmicutes,11.43%)为优势细菌;泉古菌门(Crenarchaeota,63.26%)、热原体门(Thermoplasmatota,18.29%)和盐杆菌门(Halobacterota,11.31%)为主要优势古菌。此外,变形菌门(Proteobacteria,13.14%)、蓝藻门(Cyanobacteria,1.70%)和放线菌门(Actinobacteria,0.76%)是cbbL型固碳微生物的优势门;变形菌门(Proteobacteria,3.52%)、放线菌门(Actinobacteria,0.03%)和芽单胞菌门(Gemmatimonadota,0.02%)是cbbM型固碳微生物的优势门。其中,细菌群落结构的主要驱动因素是温度(temperature, T)、浊度(turbidity, Turb)、化学需氧量(chemical oxygen demand, COD)和总氨氮(total ammonia nitrogen, TAN),但环境因子对古菌及固碳微生物的影响较弱。在细菌固碳途径中,还原柠檬酸循环(rTCA)、二羧酸/4-羟基丁酸循环(DC/4HB)、3-羟基丙酸双循环(3HP)和卡尔文循环(CBB)的丰度较高,且小浪底上游3-羟基丙酸/4-羟基丁酸循环(3HP/4HB)丰度显著高于下游。在古菌群落固碳途径中,rTCA、DC/4HB和不完全还原柠檬酸循环(incomplete rTCA)的丰度较高,且小浪底下游还原乙酰辅酶A途径(WL)丰度显著高于库区。浊度是影响细菌3HP和incomplete rTCA途径丰度的关键因素;温度、溶解氧(dissolved oxygen, DO)、浊度、COD和总磷(total phosphorus, TP)则是影响古菌固碳途径丰度的主要因素。【结论】 本研究揭示了旱季小浪底库区上、下游原核生物及其固碳功能群的环境驱动因素,结果有助于加深理解旱季黄河微生物驱动的碳固定过程及其环境驱动机制。

    Abstract:

    [Objective] To explore the environmental drivers of prokaryotic microbial communities and carbon-fixing microbial groups in the upper and lower reaches of the Xiaolangdi Reservoir of the Yellow River during the dry season. [Methods] Water and surface sediment samples were collected from the upper and lower reaches of Xiaolangdi Reservoir during the dry season (November, 2020), and the physiochemical factors were measured. The composition of prokaryotic microbial communities and their carbon fixation functions were investigated by high-throughput sequencing of bacterial and archaeal 16S rRNA genes and PICRUSt2 prediction. The composition of carbon-fixing microbial groups was analyzed by high-throughput sequencing of cbbL and cbbM. [Results] Proteobacteria (24.74%), Actinobacteria (17.55%), and Firmicutes (11.43%) were the dominant bacterial phyla. Crenarchaeota (63.26%), Thermoplasmatota (18.29%), and Halobacterota (11.31%) were the dominant archaea. Proteobacteria (13.14%), Cyanobacteria (1.70%), and Actinobacteria (0.76%) were the dominant phyla of cbbL-carrying carbon-fixing microorganisms. Proteobacteria (3.52%), Actinobacteria (0.03%), and Gemmatimonadota (0.02%) were the dominant phyla of cbbM-carrying carbon-fixing microorganisms. The main environmental drivers of the bacterial community structure were temperature (T), turbidity, chemical oxygen demand (COD), and total ammonia nitrogen, which, however, had mild influences on archaea and carbon-fixing microbial groups. In bacteria, the relative abundance of the reductive tricarboxylic acid cycle (rTCA), the dicarboxylate-hydroxybutyrate cycle (DC/4HB), the 3-hydroxypropionate bi-cycle (3HP), and the Calvin-Benson-Bassham (CBB) were higher than that of other detected carbon fixation pathways. Notably, the relative abundance of the hydroxypropionate-hydroxybutylate cycle (3HP/4HB) in the upper reaches was significantly higher than that in the lower reaches. In archaea, the relative abundance of carbon fixation pathways such as rTCA, DC/4HB, and incomplete rTCA was higher, and the abundance of the Wood-Ljungdahl pathway (WL) in the lower reaches was markedly higher than that in the upper reaches of the Xiaolangdi Reservoir. Turbidity was a key factor affecting the abundance of the bacterial 3HP and incomplete rTCA, while temperature, dissolved oxygen, turbidity, COD, and total phosphorus were the main factors affecting the abundance of carbon fixation pathways in archaea. [Conclusion] This study revealed the environmental drivers of prokaryotic microbial communities and carbon-fixing microbial groups in the upper and lower reaches of the Xiaolangdi Reservoir during the dry season. The results contribute to a deeper understanding of the microbial carbon fixation process and the environmental driving mechanisms in the Yellow River during the dry season.

    参考文献
    [1] LIU Y, GUO WN, WEI CH, HUANG HJ, NAN FR, LIU XD, LIU Q, LV JP, FENG J, XIE SL. Rainfall-induced changes in aquatic microbial communities and stability of dissolved organic matter: insight from a Fen River analysis[J]. Environmental Research, 2024, 246: 118107.
    [2] WANG YQ, HATT JK, TSEMENTZI D, RODRIGUEZ-R LM, RUIZ-PÉREZ CA, WEIGAND MR, KIZER H, MARESCA G, KRISHNAN R, PORETSKY R, SPAIN JC, KONSTANTINIDIS KT. Quantifying the importance of the rare biosphere for microbial community response to organic pollutants in a freshwater ecosystem[J]. Applied and Environmental Microbiology, 2017, 83(8): e03321-16.
    [3] 刘洋荧, 王尚, 厉舒祯, 邓晔. 基于功能基因的微生物碳循环分子生态学研究进展[J]. 微生物学通报, 2017, 44(7): 1676-1689. LIU YY, WANG S, LI SZ, DENG Y. Advances in molecular ecology on microbial functional genes of carbon cycle[J]. Microbiology China, 2017, 44(7): 1676-1689(in Chinese).
    [4] LEWIS W. Global primary production of lakes: 19th baldi memorial lecture[J]. Inland Waters, 2011, 1(1): 1-28.
    [5] LLIRÓS M, ALONSO-SÁEZ L, GICH F, PLASENCIA A, AUGUET O, CASAMAYOR EO, BORREGO CM. Active bacteria and archaea cells fixing bicarbonate in the dark along the water column of a stratified eutrophic lagoon[J]. FEMS Microbiology Ecology, 2011, 77(2): 370-384.
    [6] CASAMAYOR EO, GARCÍA-CANTIZANO J, PEDRÓS-ALIÓ C. Carbon dioxide fixation in the dark by photosynthetic bacteria in sulfide-rich stratified lakes with oxic-anoxic interfaces[J]. Limnology and Oceanography, 2008, 53(4): 1193-1203.
    [7] SPIRIDONOVA EM, BERG IA, KOLGANOVA TV, IVANOVSKIĬ RN, KUZNETSOV BB, TUROVA TP. An oligonucleotide primer system for amplification of the ribulose-1,5-bisphosphate carboxylase/oxygenase genes of bacteria of various taxonomic groups[J]. Mikrobiologiia, 2004, 73(3): 377-387.
    [8] LI N, WANG BR, HUANG YM, HUANG Q, JIAO F, AN SS. Response of cbbL-harboring microorganisms to precipitation changes in a naturally-restored grassland[J]. Science of the Total Environment, 2022, 838: 156191.
    [9] ZHANG N, CHEN KL, WANG XY, JI W, YANG ZW, WANG X, LI JM. Response mechanism of cbbM carbon sequestration microbial community characteristics in different wetland types in Qinghai Lake[J]. Biology, 2024, 13(5): 333.
    [10] XIA N, XIA XH, LIU T, HU LJ, ZHU BT, ZHANG XT, DONG JW. Characteristics of bacterial community in the water and surface sediment of the Yellow River, China, the largest turbid river in the world[J]. Journal of Soils and Sediments, 2014, 14(11): 1894-1904.
    [11] 王亮. 黄河干流碳输运及人类活动对其影响[D]. 青岛: 中国海洋大学博士学位论文, 2014. WANG L. Carbon transport in the main stream of the Yellow River and the influence of human activities on it[D]. Qingdao: Doctoral Dissertation of Ocean University of China, 2014(in Chinese).
    [12] WANG HJ, WU X, BI NS, LI S, YUAN P, WANG AM, SYVITSKI JPM, SAITO Y, YANG ZS, LIU SM, NITTROUER J. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): a review[J]. Global and Planetary Change, 2017, 157: 93-113.
    [13] HOU CY, YI YJ, SONG J, ZHOU Y. Effect of water-sediment regulation operation on sediment grain size and nutrient content in the lower Yellow River[J]. Journal of Cleaner Production, 2021, 279: 123533.
    [14] ZHAO QH, HONG ZD, JING YR, LU MW, GENG ZH, QIU PW, WANG P, LU XL, DING SY. Spatial and temporal changes in nutrients associated with dam regulation of the Yellow River[J]. CATENA, 2022, 217: 106425.
    [15] 洪铨. 水沙调控对黄河中下游底栖动物和微生物群落结构的影响[D]. 烟台: 烟台大学硕士学位论文, 2024. HONG Q. Effects of water and sediment regulation on benthos and microbial community structure in the middle and lower reaches of the Yellow River[D]. Yantai: Master’s Thesis of Yantai University, 2024(in Chinese).
    [16] 王焓屹, 王瑞菲, 钟玮, 孔强, 马启龙, 宗可金, 赵聪聪, 王倩. 黄河三角洲湿地土壤中功能微生物群落的结构特征和影响因素研究进展[J]. 湿地科学, 2022, 20(1): 111-118. WANG HY, WANG RF, ZHONG W, KONG Q, MA QL, ZONG KJ, ZHAO CC, WANG Q. Advance in structural characteristics and influence factors of functional microbial communities in the soils of the wetlands in the Yellow River Delta[J]. Wetland Science, 2022, 20(1): 111-118(in Chinese).
    [17] 王北辰. 青藏高原北部湖泊沉积物固碳微生物群落结构与固碳功能及其环境影响因素研究[D]. 武汉: 中国地质大学硕士学位论文, 2019. WANG BC. Study on community structure and carbon sequestration function of carbon sequestration microorganisms in lake sediments in northern Qinghai-Xizang Plateau and their environmental influencing factors[D]. Wuhan: Master’s Thesis of China University of Geosciences, 2019(in Chinese).
    [18] KAN JJ, PECK EK, ZGLESZEWSKI L, PEIPOCH M, INAMDAR S. Mill dams impact microbiome structure and depth distribution in riparian sediments[J]. Frontiers in Microbiology, 2023, 14: 1161043.
    [19] WANG X, WANG PF, WANG C, CHEN J, HU B, YUAN QS, DU CG, XING XL. Cascade damming impacts on microbial mediated nitrogen cycling in rivers[J]. Science of the Total Environment, 2023, 903: 166533.
    [20] ZHANG YM, GUI ZW, GAO XF, ZHANG JX, GAO YN, ZHANG M, YANG GK, ZHANG XD, CHANG XL, GAN ZX, MENG XL, LI XJ, JIANG HC. Microbial communities and their influencing factors in the sediment of upper and mid-lower reaches of the Yellow River[J/OL]. [2024-11-21]. http://kns.cnki.net/ kcms/detail/42.1788.P.20240116.1142.012.html.
    [21] KLINDWORTH A, PRUESSE E, SCHWEER T, PEPLIES J, QUAST C, HORN M, GLÖCKNER FO. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies[J]. Nucleic Acids Research, 2013, 41(1): e1.
    [22] PIRES ACC, CLEARY DFR, ALMEIDA A, CUNHA A, DEALTRY S, MENDONÇA-HAGLER LCS, SMALLA K, GOMES NCM. Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples[J]. Applied and Environmental Microbiology, 2012, 78(16): 5520-5528.
    [23] UCHINO Y, YOKOTA A. “Green-like” and “Red-like” RubisCO cbbL genes in Rhodobacter azotoformans[J]. Molecular Biology and Evolution, 2003, 20(5): 821-830.
    [24] ALFREIDER A, VOGT C, HOFFMANN D, BABEL W. Diversity of ribulose-1,5-bisphosphate carboxylase/ oxygenase large-subunit genes from groundwater and aquifer microorganisms[J]. Microbial Ecology, 2003, 45(4): 317-328.
    [25] MAGOČ T, SALZBERG SL. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963.
    [26] EDGAR RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998.
    [27] STACKEBRANDT E, GOEBEL BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology[J]. International Journal of Systematic and Evolutionary Microbiology, 1994, 44(4): 846-849.
    [28] WANG Q, GARRITY GM, TIEDJE JM, COLE JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16): 5261-5267.
    [29] SCHLOSS PD, WESTCOTT SL, RYABIN T, HALL JR, HARTMANN M, HOLLISTER EB, LESNIEWSKI RA, OAKLEY BB, PARKS DH, ROBINSON CJ, SAHL JW, STRES B, THALLINGER GG, van HORN DJ, WEBER CF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541.
    [30] DOUGLAS GM, MAFFEI VJ, ZANEVELD JR, YURGEL SN, BROWN JR, TAYLOR CM, HUTTENHOWER C, LANGILLE MGI. PICRUSt2 for prediction of metagenome functions[J]. Nature Biotechnology, 2020, 38(6): 685-688.
    [31] KANEHISA M, GOTO S. KEGG: Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 2000, 28(1): 27-30.
    [32] PARKS DH, TYSON GW, HUGENHOLTZ P, BEIKO RG. STAMP: statistical analysis of taxonomic and functional profiles[J]. Bioinformatics, 2014, 30(21): 3123-3124.
    [33] MARTINS G, TERADA A, RIBEIRO DC, CORRAL AM, BRITO AG, SMETS BF, NOGUEIRA R. Structure and activity of lacustrine sediment bacteria involved in nutrient and iron cycles[J]. FEMS Microbiology Ecology, 2011, 77(3): 666-679.
    [34] 孙贺. 黄河干流全河段浮游与附着细菌群落的生物地理分布及驱动因素分析[D]. 西安: 西安理工大学硕士学位论文, 2021. SUN H. Biogeographic distribution and driving factors of planktonic and adherent bacterial communities in the whole reach of the main stream of the Yellow River[D]. Xi’an: Master’s Thesis of Xi’an University of Technology, 2021(in Chinese).
    [35] 万永鹏. 黄河流域宁夏段浮游细菌群落结构及其影响因子研究[D]. 银川: 宁夏大学硕士学位论文, 2023. WAN YP. Study on community structure of planktonic bacteria and its influencing factors in Ningxia section of the yellow river basin[D]. Yinchuan: Master’s Thesis of Ningxia University, 2023(in Chinese).
    [36] 王晓丽, 其勒格尔. 黄河内蒙古段表层沉积物细菌多样性及群落结构类型[J]. 生态学报, 2020, 40(2): 578-589. WANG XL, Qilegeer. Bacterial diversity and community structure in surface sediments of Yellow River from Inner Mongolia section[J]. Acta Ecologica Sinica, 2020, 40(2): 578-589(in Chinese).
    [37] HOU LF, ZHOU Q, WU QP, GU QH, SUN M, ZHANG JM. Spatiotemporal changes in bacterial community and microbial activity in a full-scale drinking water treatment plant[J]. Science of the Total Environment, 2018, 625: 449-459.
    [38] YAKIMOV MM, CONO VL, SMEDILE F, DeLUCA TH, JUÁREZ S, CIORDIA S, FERNÁNDEZ M, ALBAR JP, FERRER M, GOLYSHIN PN, GIULIANO L. Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea)[J]. The ISME Journal, 2011, 5(6): 945-961.
    [39] KEMNITZ D, KOLB S, CONRAD R. Phenotypic characterization of rice cluster III archaea without prior isolation by applying quantitative polymerase chain reaction to an enrichment culture[J]. Environmental Microbiology, 2005, 7(4): 553-565.
    [40] LEININGER S, URICH T, SCHLOTER M, SCHWARK L, QI J, NICOL GW, PROSSER JI, SCHUSTER SC, SCHLEPER C. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442(7104): 806-809.
    [41] 王燕, 吴佳鹏, 洪义国. 深海微生物硝化作用驱动的化能自养固碳过程与机制研究进展[J]. 自然杂志, 2016, 38(2): 109-115. WANG Y, WU JP, HONG YG. Microbial nitrification coupled to the hemoautotrophic carbon fixation in the deep ocean[J]. Chinese Journal of Nature, 2016, 38(2): 109-115(in Chinese).
    [42] 唐千, 薛校风, 王惠, 邢鹏. 湖泊生态系统产甲烷与甲烷氧化微生物研究进展[J]. 湖泊科学, 2018, 30(3): 597-610. TANG Q, XUE XF, WANG H, XING P. New knowledge of methanogens and methanotrophs in lake ecosystems[J]. Journal of Lake Sciences, 2018, 30(3): 597-610(in Chinese).
    [43] HÜGLER M, SIEVERT SM. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean[J]. Annual Review of Marine Science, 2011, 3: 261-289.
    [44] 李海云. 水源水库真菌种群结构及其好氧脱氮特性研究[D]. 西安: 西安建筑科技大学硕士学位论文, 2023. LI HY. Study on fungal population structure and aerobic denitrification characteristics in Shuiyuan Reservoir[D]. Xi’an: Master’s Thesis of Xi’an University of Architecture and Technology, 2023(in Chinese).
    [45] 马曼立. 水源水库放线菌多样性、产嗅特征与灭活机制[D]. 西安: 西安建筑科技大学硕士学位论文, 2022. MA ML. Diversity, olfactory characteristics and inactivation mechanism of actinomycetes in Shuiyuan reservoir[D]. Xi’an: Master’s Thesis of Xi’an University of Architecture and Technology, 2022(in Chinese).
    [46] CHENG ZB, ZHANG FH, GALE WJ, WANG WC, SANG W, YANG HC. Effects of reclamation years on composition and diversity of soil bacterial communities in Northwest China[J]. Canadian Journal of Microbiology, 2018, 64(1): 28-40.
    [47] ZHANG BL, WU XK, ZHANG W, CHEN XM, ZHANG GS, AI X, SUN LK, ZHANG BG, LIU GX, CHEN T, DYSON P. Diversity and succession of Actinobacteria in the forelands of the Tianshan glacier, China[J]. Geomicrobiology Journal, 2016, 33(8): 716-723.
    [48] 周磊, 李育森, 黄仙德, 施军, 陈伟源, 韩耀全, 匡天旭, 何安尤. 洪潮江水库浮游细菌群落空间分布及其与环境因子的关系[J]. 微生物学报, 2020, 60(10): 2253-2264. ZHOU L, LI YS, HUANG XD, SHI J, CHEN WY, HAN YQ, KUANG TX, HE AY. Spatial distribution of bacterioplankton community in Hongchaojiang Reservoir and its relationship with environmental factors[J]. Acta Microbiologica Sinica, 2020, 60(10): 2253-2264(in Chinese).
    [49] LONG XE, YAO HY, WANG J, HUANG Y, SINGH BK, ZHU YG. Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils[J]. Environmental Science & Technology, 2015, 49(12): 7152-7160.
    [50] 彭文涛. 典型农田土壤细菌时空演变规律与碳固定细菌剖面分布研究[D]. 南京: 南京农业大学博士学位论文, 2016. PENG WT. Temporal and spatial evolution of soil bacteria and profile distribution of carbon-fixing bacteria in typical farmland[D]. Nanjing: Doctoral Dissertation of Nanjing Agricultural University, 2016(in Chinese).
    [51] 王文静. 渤海表层沉积物中碳循环关键过程微生物驱动机制[D]. 大连: 大连海洋大学硕士学位论文, 2024. WANG WJ. Microbial-driven mechanisms of key processes of carbon cycling in surface sediments of the Bohai Sea[D]. Dalian: Master’s Thesis of Dalian Ocean University, 2024(in Chinese).
    [52] HUANG LN, de WEVER H, DIELS L. Diverse and distinct bacterial communities induced biofilm fouling in membrane bioreactors operated under different conditions[J]. Environmental Science & Technology, 2008, 42(22): 8360-8366.
    [53] BUCHANAN BB, SIREVÅG R, FUCHS G, IVANOVSKY RN, IGARASHI Y, ISHII M, TABITA FR, BERG IA. The arnon-Buchanan cycle: a retrospective, 1966-2016[J]. Photosynthesis Research, 2017, 134(2): 117-131.
    [54] JONES S. Five ways to cycle carbon[J]. Nature Reviews Microbiology, 2008, 6(2): 95.
    [55] SUN WM, SUN XX, LI BQ, XU R, YOUNG LY, DONG YR, ZHANG MM, KONG TL, XIAO EZ, WANG Q. Bacterial response to sharp geochemical gradients caused by acid mine drainage intrusion in a terrace: relevance of C, N, and S cycling and metal resistance[J]. Environment International, 2020, 138: 105601.
    [56] 宋吉雪, 明红霞, 石婷婷, 苏洁, 陈泉睿, 金媛, 樊景凤. 辽河口沉积物中参与主要生物地化循环的微生物功能基因分析[J]. 海洋与湖沼, 2021, 52(4): 904-916. SONG JX, MING HX, SHI TT, SU J, CHEN QR, JIN Y, FAN JF. Analysis of microbial functional genes involved in major biogeochmical cycles in sediments of Liaohe river estuary[J]. Oceanologia et Limnologia Sinica, 2021, 52(4): 904-916(in Chinese).
    [57] XAVIER JC, PREINER M, MARTIN WF. Something special about CO-dependent CO2 fixation[J]. The FEBS Journal, 2018, 285(22): 4181-4195.
    [58] 康卫华. 会仙岩溶湿地土壤固碳微生物菌群及固碳能力研究[D]. 武汉: 华中科技大学硕士学位论文, 2023. KANG WH. Study on microbial flora and carbon fixation ability of soil in Huixian Karst wetland[D]. Wuhan: Master’s Thesis of Huazhong University of Science and Technology, 2023(in Chinese).
    [59] JIANG QY, JING HM, JIANG QL, ZHANG Y. Insights into carbon-fixation pathways through metagonomics in the sediments of deep-sea cold seeps[J]. Marine Pollution Bulletin, 2022, 176: 113458.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

桂泽威,吴壮惠,赵博,杨国坤,常绪路,高肖飞,孟晓林,张艳敏. 黄河小浪底库区旱季上游和下游原核生物群落与固碳功能微生物群的环境驱动因素[J]. 微生物学报, 2024, 64(12): 4607-4623

复制
分享
文章指标
  • 点击次数:107
  • 下载次数: 211
  • HTML阅读次数: 330
  • 引用次数: 0
历史
  • 收稿日期:2024-11-02
  • 在线发布日期: 2024-12-07
  • 出版日期: 2024-12-04
文章二维码