气候变化下的流域饮用水微生物风险来源与评估
作者:
基金项目:

国家重点研发计划(2022YFC3204703);国家自然科学基金(42277104)


Origins and assessments of microbiological risks to drinking water in watershed under climate change
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [80]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    全球气候变暖背景下,极端天气事件如持续高温、暴雨和干旱频发,进而通过增加陆源输入或改变微生物的生存条件,直接或间接地增加饮用水系统及水源地水体中的病原微生物风险,对饮用水生物安全构成威胁。因此,饮用水生物安全问题亟待深入研究和关注。得益于病原微生物检测技术和风险评估模型的不断发展与优化,我们能够更全面地理解并评估气候变化背景下的流域饮用水微生物风险。本文旨在探讨极端气候条件下流域饮用水微生物风险的来源,并系统地归纳和分析了不同类型的微生物污染及其引发的健康风险。特别强调了高通量定量微生物风险检测方法和风险评估模型在饮用水病原微生物管控中的重要性。最后,本文提出了未来在气候变化背景下对流域饮用水病原微生物进行有效管控的研究思路和方向,为相关领域的研究提供了理论基础和实践指导。

    Abstract:

    In the context of global warming, the rising frequency of extreme weather events, including high temperatures, rainstorms, and droughts, will directly or indirectly increase the risks of pathogenic microorganisms entering drinking water systems and source waters. This is attributable to an increase in terrestrial inputs or alterations to the conditions that facilitate microbial survival and growth. It is therefore imperative to give priority to the issue of drinking water biosafety. The development of novel pathogen detection methods and risk assessment models enables a more comprehensive understanding and assessment of the microbiological risks associated with drinking water in watersheds under climate change. This review outlines the sources of microbiological risks associated with drinking water in watersheds experiencing extreme climatic conditions and summarizes various microbial contaminations and their risks to human health. Furthermore, it emphasizes the significance of high-throughput quantitative microbial risk detection methods and assessment models in the control of microbiological risks to drinking water. Finally, it provides novel insights into the effective management and control of pathogenic microorganisms in drinking water under climate change.

    参考文献
    [1] HU YR, JIN L, ZHAO Y, JIANG L, YAO SJ, ZHOU W, LIN KF, CUI CZ. Annual trends and health risks of antibiotics and antibiotic resistance genes in a drinking water source in East China[J]. Science of the Total Environment, 2021, 791: 148152.
    [2] XIAO XY, FU JJ, YU X. Impacts of extreme weather on microbiological risks of drinking water in coastal cities: a review[J]. Current Pollution Reports, 2023, 9(2): 259-271.
    [3] HALES S. Climate change, extreme rainfall events, drinking water and enteric disease[J]. Reviews on Environmental Health, 2019, 34(1): 1-3.
    [4] EL-FADEL M, GHANIMEH S, MAROUN R, ALAMEDDINE I. Climate change and temperature rise: Implications on food-and water-borne diseases[J]. Science of the Total Environment, 2012, 437: 15-21.
    [5] MAJEDUL ISLAM MM, IQBAL MS, D’SOUZA N, ISLAM MA. A review on present and future microbial surface water quality worldwide[J]. Environmental Nanotechnology, Monitoring & Management, 2021, 16: 100523.
    [6] Sterk A, Schijven J, De Roda Husman AM, De Nijs T. Effect of climate change on runoff of Campylobacter and Cryptosporidium from land to surface water[J]. Water Research, 2016, 95: 90-102.
    [7] WANG XH, WANG X, CAO JP. Environmental factors associated with Cryptosporidium and Giardia[J]. Pathogens, 2023, 12(3): 420.
    [8] HONG HC, QIU JW, LIANG Y. Environmental factors influencing the distribution of total and fecal coliform bacteria in six water storage reservoirs in the Pearl River Delta Region, China[J]. Journal of Environmental Sciences, 2010, 22(5): 663-668.
    [9] HALEY BJ, COLE DJ, LIPP EK. Distribution, diversity, and seasonality of waterborne salmonellae in a rural watershed[J]. Applied and Environmental Microbiology, 2009, 75(5): 1248-1255.
    [10] WOLFF E, van VLIET MTH. Impact of the 2018 drought on pharmaceutical concentrations and general water quality of the Rhine and Meuse rivers[J]. Science of the Total Environment, 2021, 778: 146182.
    [11] MISHRA A, ALNAHIT A, CAMPBELL B. Impact of land uses, drought, flood, wildfire, and cascading events on water quality and microbial communities: a review and analysis[J]. Journal of Hydrology, 2021, 596: 125707.
    [12] WU M, WANG HM, WANG WQ, SONG YY, MA LY, LU XL, WANG N, LIU CY. The impact of heavy rain event on groundwater microbial communities in Xikuangshan, Hunan Province, P.R. China[J]. Journal of Hydrology, 2021, 595: 125674.
    [13] TANG W, LIU YS, LI QY, CHEN L, LI Q, LI P, XIA SJ. The impact of extreme weather events on bacterial communities and opportunistic pathogens in a drinking water treatment plant[J]. Water, 2021, 14(1): 54.
    [14] ZHU KH, REN HW, LU Y. Potential Biorisks of Cryptosporidium spp. and Giardia spp. from Reclaimed Water and Countermeasures[J]. Current Pollution Reports, 2022, 8(4): 456-476.
    [15] STOCKER MD, PACHEPSKY YA, HILL RL, MARTINEZ G. Escherichia coli export from manured fields depends on the time between the start of rainfall and runoff initiation[J]. Journal of Environmental Quality, 2018, 47(5): 1293-1297.
    [16] MEYERS MA, DURSO LM, GILLEY JE, WALDRIP HM, CASTLEBERRY L, MILLMIER-SCHMIDT A. Antibiotic resistance gene profile changes in cropland soil after manure application and rainfall[J]. Journal of Environmental Quality, 2020, 49(3): 754-761.
    [17] Pachepsky Y, Shelton DR, McLain JET, PATEL J, MANDRELL R. Irrigation waters as a source of pathogenic microorganisms in produce: a review[J]. Advances in agronomy, 2011, 113: 75-141.
    [18] DÍAZ FJ, O'GEEN AT, DAHLGREN RA. Agricultural pollutant removal by constructed wetlands: implications for water management and design[J]. Agricultural Water Management, 2012, 104: 171-183.
    [19] PHAM DUC P, NGUYEN-VIET H, HATTENDORF J, ZINSSTAG J, DAC CAM P, ODERMATT P. Risk factors for Entamoeba histolytica infection in an agricultural community in Hanam Province, Vietnam[J]. Parasites & Vectors, 2011, 4: 102.
    [20] Olds HT, Corsi SR, Dila DK, Halmo KM, Bootsma MJ, McLellan SL. High levels of sewage contamination released from urban areas after storm events: a quantitative survey with sewage specific bacterial indicators[J]. PLoS Medicine, 2018, 15(7): e1002614.
    [21] MTETWA HN, AMOAH ID, KUMARI S, BUX F, REDDY P. The source and fate of Mycobacterium tuberculosis complex in wastewater and possible routes of transmission[J]. BMC Public Health, 2022, 22(1): 145.
    [22] LARSSON C, ANDERSSON Y, ALLESTAM G, LINDQVIST A, NENONEN N, BERGSTEDT O. Epidemiology and estimated costs of a large waterborne outbreak of norovirus infection in Sweden[J]. Epidemiology and Infection, 2014, 142(3): 592-600.
    [23] FEDERIGI I, SALVADORI R, LAURETANI G, LEONE A, LIPPI S, MARVULLI F, PAGANI A, VERANI M, CARDUCCI A. Wastewater treatment plants performance for reuse: evaluation of bacterial and viral risks[J]. Water, 2024, 16(10): 1399.
    [24] PAYMENT P, BERTE A, PRÉVOST M, MÉNARD B, BARBEAU B. Occurrence of pathogenic microorganisms in the Saint Lawrence River (Canada) and comparison of health risks for populations using it as their source of drinking water[J]. Canadian Journal of Microbiology, 2000, 46(6): 565-576.
    [25] SHIH YJ, CHEN JS, CHEN YJ, YANG PY, KUO YJ, CHEN TH, HSU BM. Impact of heavy precipitation events on pathogen occurrence in estuarine areas of the Puzi River in Taiwan[J]. PLoS One, 2021, 16(8): e0256266.
    [26] SENHORST HAJ, ZWOLSMAN JJG. Climate change and effects on water quality: a first impression[J]. Water Science and Technology, 2005, 51(5): 53-59.
    [27] GOLOMAZOU E, MAMEDOVA S, ESLAHI AV, KARANIS P. Cryptosporidium and agriculture: a review[J]. Science of the Total Environment, 2024, 916: 170057.
    [28] Delpla I, Jung AV, Baures E, CLEMENT M, THOMAS O. Impacts of climate change on surface water quality in relation to drinking water production[J]. Environment international, 2009, 35(8): 1225-1233.
    [29] PARKINSON AJ, BUTLER JC. Potential impacts of climate change on infectious diseases in the Arctic[J]. International Journal of Circumpolar Health, 2005, 64(5): 478-486.
    [30] Pascual M, Bouma MJ, Dobson AP. Cholera and climate: revisiting the quantitative evidence[J]. Microbes and Infection, 2002, 4(2): 237-245.
    [31] HONDA JR, VIRDI R, CHAN ED. Global environmental nontuberculous mycobacteria and their contemporaneous man-made and natural niches[J]. Frontiers in Microbiology, 2018, 9: 2029.
    [32] ZHANG WW, WANG JY, FAN JF, GAO DL, JU HY. Effects of rainfall on microbial water quality on Qingdao No. 1 Bathing Beach, China[J]. Marine Pollution Bulletin, 2013, 66(1/2): 185-190.
    [33] ZWART JA, SEBESTYEN SD, SOLOMON CT, JONES SE. The Influence of hydrologic residence time on lake carbon cycling dynamics following extreme precipitation events[J]. Ecosystems, 2017, 20(5): 1000-1014.
    [34] TRYLAND I, MYRMEL M, ØSTENSVIK Ø, WENNBERG AC, ROBERTSON LJ. Impact of rainfall on the hygienic quality of blue mussels and water in urban areas in the Inner Oslofjord, Norway[J]. Marine Pollution Bulletin, 2014, 85(1): 42-49.
    [35] Cavicchioli R, Ripple WJ, Timmis KN, Azam F, BAKKEN LR, BAYLIS M, BEHRENFELD MJ, Boetius A, BOYD PW, CLASSEN AT, CROWTHER TW, DANOVARO R, FOREMAN CM, Huisman J, Hutchins DA, Jansson JK, Karl DM, Koskella B, Mark Welch DB, Martiny JBH, et al. Scientists’ warning to humanity: microorganisms and climate change[J]. Nature Reviews Microbiology, 2019, 17(9): 569-586.
    [36] LAWLER DM, PETTS GE, FOSTER IDL, HARPER S. Turbidity dynamics during spring storm events in an urban headwater river system: the Upper Tame, West Midlands, UK[J]. Science of the Total Environment, 2006, 360(1/2/3): 109-126.
    [37] JEZNACH LC, HAGEMANN M, PARK MH, TOBIASON JE. Proactive modeling of water quality impacts of extreme precipitation events in a drinking water reservoir[J]. Journal of Environmental Management, 2017, 201: 241-251.
    [38] BEATTIE RE, HRISTOVA KR. Manure derived nutrients alter microbial community composition and increase the presence of potential pathogens in freshwater sediment[J]. Journal of Applied Microbiology, 2022, 132(1): 747-757.
    [39] FANG TT, CUI QJ, HUANG Y, DONG PY, WANG H, LIU WT, YE QH. Distribution comparison and risk assessment of free-floating and particle-attached bacterial pathogens in urban recreational water: implications for water quality management[J]. Science of the Total Environment, 2018, 613: 428-438.
    [40] GRIEBLER C, BRIELMANN H, HABERER CM, KASCHUBA S, KELLERMANN C, STUMPP C, HEGLER F, KUNTZ D, WALKER-HERTKORN S, LUEDERS T. Potential impacts of geothermal energy use and storage of heat on groundwater quality, biodiversity, and ecosystem processes[J]. Environmental Earth Sciences, 2016, 75(20): 1391.
    [41] RETTER A, KARWAUTZ C, GRIEBLER C. Groundwater microbial communities in times of climate change[J]. Current Issues in Molecular Biology, 2021, 41: 509-538.
    [42] CHAPRA SC, BOEHLERT B, FANT C, BIERMAN VJ Jr, HENDERSON J, MILLS D, MAS DML, RENNELS L, JANTARASAMI L, MARTINICH J, STRZEPEK KM, PAERL HW. Climate change impacts on harmful algal blooms in U.S. freshwaters: a screening-level assessment[J]. Environmental Science & Technology, 2017, 51(16): 8933-8943.
    [43] AGUDELO-VERA C, AVVEDIMENTO S, BOXALL J, CREACO E, de KATER H, Di NARDO A, DJUKIC A, DOUTERELO I, FISH KE, IGLESIAS REY PL, JACIMOVIC N, JACOBS HE, KAPELAN Z, MARTINEZ SOLANO J, MONTOYA PACHONGO C, PILLER O, QUINTILIANI C, RUČKA J, TUHOVČÁK L, BLOKKER M. Drinking water temperature around the globe: understanding, policies, challenges and opportunities[J]. Water, 2020, 12(4): 1049.
    [44] ZHENG SK, LI JG, YE CS, XIAN XX, FENG MB, YU X. Microbiological risks increased by ammonia-oxidizing bacteria under global warming: the neglected issue in chloraminated drinking water distribution system[J]. Science of the Total Environment, 2023, 874: 162353.
    [45] LI CJ, SYLVESTRE É, FERNANDEZ-CASSI X, JULIAN TR, KOHN T. Waterborne virus transport and the associated risks in a large lake[J]. Water Research, 2023, 229: 119437.
    [46] Boussettine R, Hassou N, Bessi H, ENNAJI MM. Emerging and reemerging viral pathogens[M]. Amsterdam: Academic Press, 2020: 907-932(in Netherlands).
    [47] SHI X. The safety of drinking water in China: current status and future prospects[J]. China CDC weekly, 2020, 2(13): 210-215.
    [48] JEAN JS, GUO HR, CHEN SH, LIU CC, CHANG WT, YANG YJ, HUANG MC. The association between rainfall rate and occurrence of an enterovirus epidemic due to a contaminated well[J]. Journal of Applied Microbiology, 2006, 101(6): 1224-1231.
    [49] le GUYADER FS, le SAUX JC, AMBERT-BALAY K, KROL J, SERAIS O, PARNAUDEAU S, GIRAUDON H, DELMAS G, POMMEPUY M, POTHIER P, ATMAR RL. Aichi virus, norovirus, astrovirus, enterovirus, and rotavirus involved in clinical cases from a French oyster-related gastroenteritis outbreak[J]. Journal of Clinical Microbiology, 2008, 46(12): 4011-4017.
    [50] NELSON EJ, HARRIS JB, MORRIS JG Jr, CALDERWOOD SB, CAMILLI A. Cholera transmission: the host, pathogen and bacteriophage dynamic[J]. Nature Reviews Microbiology, 2009, 7(10): 693-702.
    [51] PANDEY PK, KASS PH, SOUPIR ML, BISWAS S, SINGH VP. Contamination of water resources by pathogenic bacteria[J]. AMB Express, 2014, 4: 51.
    [52] RIDDLE MS, GUTIERREZ RL, VERDU EF, PORTER CK. The chronic gastrointestinal consequences associated with Campylobacter[J]. Current Gastroenterology Reports, 2012, 14(5): 395-405.
    [53] SONEJA S, JIANG CS, ROMEO UPPERMAN C, MURTUGUDDE R, MITCHELL CS, BLYTHE D, SAPKOTA AR, SAPKOTA A. Extreme precipitation events and increased risk of campylobacteriosis in Maryland, U.S.A[J]. Environmental Research, 2016, 149: 216-221.
    [54] POWERS JE, MUREITHI M, MBOYA J, CAMPOLO J, SWARTHOUT JM, PAJKA J, NULL C, PICKERING AJ. Effects of high temperature and heavy precipitation on drinking water quality and child hand contamination levels in rural Kenya[J]. Environmental Science & Technology, 2023, 57(17): 6975-6988.
    [55] HINES JZ, JAGGER MA, JEANNE TL, WEST N, WINQUIST A, ROBINSON BF, LEMAN RF, HEDBERG K. Heavy precipitation as a risk factor for shigellosis among homeless persons during an outbreak—Oregon, 2015–2016[J]. Journal of Infection, 2018, 76(3): 280-285.
    [56] LEE D, CHANG HH, SARNAT SE, LEVY K. Precipitation and salmonellosis incidence in Georgia, USA: interactions between extreme rainfall events and antecedent rainfall conditions[J]. Environmental Health Perspectives, 2019, 127(9): 97005.
    [57] KUHN KG, NYGÅRD KM, GUZMAN-HERRADOR B, SUNDE LS, RIMHANEN-FINNE R, TRÖNNBERG L, JEPSEN MR, RUUHELA R, WONG WK, ETHELBERG S. Campylobacter infections expected to increase due to climate change in Northern Europe[J]. Scientific Reports, 2020, 10(1): 13874.
    [58] FITZGERALD C. Campylobacter[J]. Clinics in Laboratory Medicine, 2015, 35(2): 289-298.
    [59] QADRI F, KHAN AI, FARUQUE ASG, BEGUM YA, CHOWDHURY F, NAIR GB, SALAM MA, SACK DA, SVENNERHOLM AM. Enterotoxigenic Escherichia coli and Vibrio cholerae diarrhea, Bangladesh, 2004[J]. Emerging Infectious Diseases, 2005, 11(7): 1104-1107.
    [60] KUHN KG, FALKENHORST G, EMBORG HD, CEPER T, TORPDAHL M, KROGFELT KA, ETHELBERG S, MØLBAK K. Epidemiological and serological investigation of a waterborne Campylobacter jejuni outbreak in a Danish town[J]. Epidemiology and Infection, 2017, 145(4): 701-709.
    [61] Hemphill A, Müller N, Müller J. Comparative pathobiology of the intestinal protozoan parasites Giardia lamblia, Entamoeba histolytica, and Cryptosporidium parvum[J]. Pathogens, 2019, 8(3): 116.
    [62] BOURLI P, ESLAHI AV, TZORAKI O, KARANIS P. Waterborne transmission of protozoan parasites: a review of worldwide outbreaks-an update 2017–2022[J]. Journal of Water and Health, 2023, 21(10): 1421-1447.
    [63] MA JY, LI MY, QI ZZ, FU M, SUN TF, ELSHEIKHA HM, CONG W. Waterborne protozoan outbreaks: an update on the global, regional, and national prevalence from 2017 to 2020 and sources of contamination[J]. Science of the Total Environment, 2022, 806: 150562.
    [64] COFFEY R, BENHAM B, KROMETIS LA, WOLFE ML, CUMMINS E. Assessing the effects of climate change on waterborne microorganisms: implications for EU and U.S. water policy[J]. Human and Ecological Risk Assessment, 2014, 20(3): 724-742.
    [65] BOXALL ABA, HARDY A, BEULKE S, BOUCARD T, BURGIN L, FALLOON PD, HAYGARTH PM, HUTCHINSON T, KOVATS RS, LEONARDI G, LEVY LS, NICHOLS G, PARSONS SA, POTTS L, STONE D, TOPP E, TURLEY DB, WALSH K, WELLINGTON EMH, WILLIAMS RJ. Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture[J]. Environmental Health Perspectives, 2009, 117(4): 508-514.
    [66] DARAEI H, OLIVERI CONTI G, SAHLABADI F, THAI VN, GHOLIPOUR S, TURKI H, FAKHRI Y, FERRANTE M, MORADI A, MOUSAVI KHANEGHAH A. Prevalence of Cryptosporidium spp. in water: a global systematic review and meta-analysis[J]. Environmental Science and Pollution Research International, 2021, 28(8): 9498-9507.
    [67] GERTLER M, DÜRR M, RENNER P, POPPERT S, ASKAR M, BREIDENBACH J, FRANK C, PREUßEL K, SCHIELKE A, WERBER D, CHALMERS R, ROBINSON G, FEUERPFEIL I, TANNICH E, GRÖGER C, STARK K, WILKING H. Outbreak of Cryptosporidium hominis following river flooding in the city of Halle (Saale), Germany, August 2013[J]. BMC Infectious Diseases, 2015, 15: 88.
    [68] HOWE AD, FORSTER S, MORTON S, MARSHALL R, OSBORN KS, WRIGHT P, HUNTER PR. Cryptosporidium oocysts in a water supply associated with a cryptosporidiosis outbreak[J]. Emerging Infectious Diseases, 2002, 8(6): 619-624.
    [69] IKIROMA IA, POLLOCK KG. Influence of weather and climate on cryptosporidiosis: a review[J]. Zoonoses and Public Health, 2021, 68(4): 285-298.
    [70] SOUZA NR, METCALF JS. Cyanobacterial toxins and their effects on human and animal health[M]//Handbook of Algal Science, Technology and Medicine. Amsterdam: Elsevier, 2020: 561-574.
    [71] LAWTON LA, ROBERTSON PKJ, CORNISH BJPA, MARR IL, JASPARS M. Processes influencing surface interaction and photocatalytic destruction of Microcystins on titanium dioxide photocatalysts[J]. Journal of Catalysis, 2003, 213(1): 109-113.
    [72] 夏江, 施之新. 武汉市饮用水中浮游藻类的调查[J]. 环境与健康杂志, 2005(4): 287-288. XIA J, SHI Zx. Survey on algae in drinking water in Wuhan[J]. Journal of Environment and Health, 2005, 22(4): 287-288
    [73] Pip E, Allegro E. Nearshore fluctuations in water chemistry, microcystins and coliform bacteria during the ice-free season in Lake Winnipeg, Manitoba, Canada[J]. Ecohydrology & Hydrobiology, 2010, 10(1): 35-43.
    [74] PHAM LT, TRAN YTH, TRAN TT, BUI HM, LE LT, DAO ST, NGUYEN DT. Ecological and human health risk assessments of cyanotoxins and heavy metals in a drinking water supply reservoir[J]. Journal of Water and Health, 2023, 21(8): 1004-1016.
    [75] 俞顺章, 赵宁, 资晓林, 陈刚, 董传辉, 连民, 刘颖, 穆丽娜. 饮水中微囊藻毒素与我国原发性肝癌关系的研究[J]. 中华肿瘤杂志, 2001, 23(2): 96-99. YU SZ, ZHAO N, ZI XL, CHEN G, DONG CH, LIAN M, LIU Y, MU LN. The relationship cyanotoxin (microcystin, MC) in pond-ditch water and primary liver cancer in China[J]. Chinese Journal of Oncology, 2001, 23(2): 96-99(in Chinese).
    [76] LI D, LIU SL, YANG Y, GUO L, LYU BY, YANG RJ, ZHANG XX, WANG YL, YANG F, CHEN QB. Metal-algae interaction contributes to the water environment heterogeneity in an urbanized river[J]. Ecological Indicators, 2022, 139: 108875.
    [77] 张胜花, 常军军, 孙珮石. 水体藻类磷代谢及藻体磷矿化研究进展[J]. 生态环境学报, 2013, 22(7): 1250-1254. ZHANG SH, CHANG JJ, SUN PS. Phosphorus cycle of algae during its growth and death process: phosphorus uptake and release[J]. Ecology and Environmental Sciences, 2013, 22(7): 1250-1254(in Chinese).
    [78] 李飞鹏, 陈蒙蒙, 贾玉宝, 张海平, 陈玲. 气象因素对封闭浅水湖泊浮游藻类生长和分布影响[J]. 水生态学杂志, 2019, 40(5): 55-62. LI FP, CHEN MM, JIA YB, ZHANG HP, CHEN L. Effects of meteorological factors on growth and distribution of phytoplankton in an enclosed shallow lake[J]. Journal of Hydroecology, 2019, 40(5): 55-62(in Chinese).
    [79] Reichwaldt ES, Ghadouani A. Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: between simplistic scenarios and complex dynamics[J]. Water Research, 2012, 46(5): 1372-1393.
    [80] LI B, ZHANG T. Mass flows and removal of antibiotics in two municipal wastewater treatment plants[J]. Chemosphere, 2011, 83(9): 1284-1289.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王洁,王尚,李曈,张昱,邓晔. 气候变化下的流域饮用水微生物风险来源与评估[J]. 微生物学报, 2024, 64(12): 4624-4640

复制
分享
文章指标
  • 点击次数:258
  • 下载次数: 304
  • HTML阅读次数: 522
  • 引用次数: 0
历史
  • 收稿日期:2024-07-28
  • 在线发布日期: 2024-12-07
  • 出版日期: 2024-12-04
文章二维码