两座亚热带水库真核浮游生物群落变化与构建机制
作者:
基金项目:

国家重点研发计划(2023YFC3304300);国家自然科学基金(92251306,32361133557)


Community dynamics and assembly mechanisms of eukaryotic plankton in two subtropical reservoirs
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】 真核浮游生物是水库生态系统的关键组分,在食物网中发挥承上启下的生态作用。本研究以两座亚热带深水水库(石兜水库和汀溪水库)为研究区,探究水库不同粒径范围(0.2–200μm、0.2–3 μm和3–200 μm)真核浮游生物群落的构建机制。【方法】 2015−2018年,对两座水库进行连续4年的季节采样,基于18S rRNA基因的V9可变区扩增测序和多元统计方法,研究水库不同粒径范围的真核浮游生物群落动态变化特征。【结果】 总体上,两座水库总真核浮游生物(0.2–200μm)与微型真核浮游生物(3–200 μm)优势门类变化的相关性较强,与微微型真核浮游生物(0.2–3μm)优势门类变化的相关性较弱。物种更替是驱动两座水库真核浮游生物群落时间动态变化的主要因素;2016年和2017年石兜水库更替物种总序列数均高于汀溪水库,而2018年则相反。与汀溪水库相比,石兜水库微微型真核浮游生物群落构建受确定性过程的影响比例更大。蓝藻叶绿素a浓度与汀溪水库真核浮游生物群落相关性较弱且不显著,而与石兜水库真核浮游生物群落显著相关,其中与石兜水库微微型真核浮游生物群落相关性最高。【结论】 微微型真核浮游生物群落比微型真核浮游生物群落更容易受蓝藻生物量影响;微型真核浮游生物群落变化一定程度上决定着总真核浮游生物群落的动态变化。全球变化背景下,应对不同粒径范围真核浮游生物进行监测,深入分析群落结构和功能变化,从而更好地保障水库生态健康和水质安全。

    Abstract:

    [Objective] Eukaryotic plankton are key components of a freshwater ecosystem, playing an important role in the food web. This study aims to explore the community dynamics and assembly mechanisms of three differently size-fractionated eukaryotic plankton communities (0.2–200, 0.2–3, and 3–200 μm) in two deep subtropical reservoirs (Shidou Reservoir and Tingxi Reservoir) in Xiamen. [Methods] From 2015 to 2018, samples were collected from both reservoirs in four seasons. The V9 region of eukaryotic 18S rRNA gene was amplified and sequenced to investigate the dynamic changes of eukaryotic plankton communities in the reservoirs. [Results] Overall, the temporal dynamics of dominant phyla of total eukaryotic plankton (0.2–200 μm) showed a strong correlation with that of micro-eukaryotic plankton (3–200 μm) and a weak correlation with that of pico-eukaryotic plankton (0.2–3 μm). Turnover was the main factor driving the temporal dynamics of eukaryotic plankton community composition in the two reservoirs. The proportions of the total number of sequences of the turnover species were higher in Shidou Reservoir than in Tingxi Reservoir in 2016 and 2017, while the opposite pattern was observed in 2018. Deterministic processes played a stronger role in the pico-eukaryotic plankton community assembly in Shidou Reservoir than in Tingxi Reservoir. The concentration of cyanobacterial chlorophyll a was weakly correlated with the eukaryotic plankton community in Tingxi Reservoir, while it was significantly correlated with the eukaryotic plankton community (especially the pico-eukaryotic plankton community) in Shidou Reservoir. [Conclusion] The pico-eukaryotic plankton community was more sensitive to cyanobacterial biomass than the micro-eukaryotic plankton community. The dynamics of the micro-eukaryotic plankton community largely determined the dynamics of the total eukaryotic plankton community. In the context of global changes, efforts should be made to monitor differently size-fractionated eukaryotic plankton and analyze the dynamics of community structure and functions for better understanding and protection of the reservoir ecosystem health and water quality.

    参考文献
    [1] CARON DA, ALEXANDER H, ALLEN AE, ARCHIBALD JM, ARMBRUST EV, BACHY C, BELL CJ, BHARTI A, DYHRMAN ST, GUIDA SM, HEIDELBERG KB, KAYE JZ, METZNER J, SMITH SR, WORDEN AZ. Probing the evolution, ecology and physiology of marine protists using transcriptomics[J]. Nature Reviews Microbiology, 2017, 15(1): 6-20.
    [2] LIU LM, CHEN HH, LIU M, YANG JR, XIAO P, WILKINSON DM, YANG J. Response of the eukaryotic plankton community to the cyanobacterial biomass cycle over 6 years in two subtropical reservoirs[J]. The ISME Journal, 2019, 13(9): 2196-2208.
    [3] HUTCHINSON GE, LÖFFLER H. The thermal classification of lakes[J]. Proceedings of the National Academy of Sciences of the United States of America, 1956, 42(2): 84-86.
    [4] 王丽娜, 陈辉煌, 刘乐冕, 余正, 杨军. 亚热带分层水库固氮微生物时空分布格局[J]. 生态学报, 2016, 36(18): 5827-5837. WANG LN, CHEN HH, LIU LM, YU Z, YANG J. Spatiotemporal patterns of diazotrophic microorganisms in a subtropical stratified reservoir[J]. Acta Ecologica Sinica, 2016, 36(18): 5827-5837(in Chinese).
    [5] ZHANG YL, DENG JM, QIN BQ, ZHU GW, ZHANG YJ, JEPPESEN E, TONG YD. Importance and vulnerability of lakes and reservoirs supporting drinking water in China[J]. Fundamental Research, 2023, 3(2): 265-273.
    [6] 韩博平. 中国水库生态学研究的回顾与展望[J]. 湖泊科学, 2010, 22(2): 151-160. HAN BP. Reservoir ecology and limnology in China: a retrospective comment[J]. Journal of Lake Sciences, 2010, 22(2): 151-160(in Chinese).
    [7] HUISMAN J, CODD GA, PAERL HW, IBELINGS BW, VERSPAGEN JMH, VISSER PM. Cyanobacterial blooms[J]. Nature Reviews Microbiology, 2018, 16(8): 471-483.
    [8] MOLONEY CL, FIELD JG. General allometric equations for rates of nutrient uptake, ingestion, and respiration in plankton organisms[J]. Limnology and Oceanography, 1989, 34(7): 1290-1299.
    [9] LITCHMAN E, OHMAN MD, KIØRBOE T. Trait-based approaches to zooplankton communities[J]. Journal of Plankton Research, 2013, 35(3): 473-484.
    [10] de VARGAS C, AUDIC S, HENRY N, DECELLE J, MAHÉ F, LOGARES R, LARA E, BERNEY C, le BESCOT N, PROBERT I, CARMICHAEL M, POULAIN J, ROMAC S, COLIN S, AURY JM, BITTNER L, CHAFFRON S, DUNTHORN M, ENGELEN S, FLEGONTOVA O, et al. Eukaryotic plankton diversity in the sunlit ocean[J]. Science, 2015, 348(6237): 1261605.
    [11] MA GL, LOGARES R, XUE YY, YANG J. Does filter pore size introduce bias in DNA sequence-based plankton community studies?[J]. Frontiers in Microbiology, 2022, 13: 969799.
    [12] LI TC, LIU GL, YUAN HT, CHEN JW, LIN X, LI HF, YU LY, WANG C, LI L, ZHUANG YY, LIN SJ. Eukaryotic plankton community assembly and influencing factors between continental shelf and slope sites in the northern South China Sea[J]. Environmental Research, 2023, 216: 114584.
    [13] POWELL JR, KARUNARATNE S, CAMPBELL CD, YAO HY, ROBINSON L, SINGH BK. Deterministic processes vary during community assembly for ecologically dissimilar taxa[J]. Nature Communications, 2015, 6: 8444.
    [14] ZHOU JZ, NING DL. Stochastic community assembly: does it matter in microbial ecology?[J]. Microbiology and Molecular Biology Reviews, 2017, 81(4): e00002-17.
    [15] CHEN WD, REN KX, ISABWE A, CHEN HH, LIU M, YANG J. Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons[J]. Microbiome, 2019, 7(1): 138.
    [16] CHASE JM. Stochastic community assembly causes higher biodiversity in more productive environments[J]. Science, 2010, 328(5984): 1388-1391.
    [17] MO YY, PENG F, GAO XF, XIAO P, LOGARES R, JEPPESEN E, REN KX, XUE YY, YANG J. Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir[J]. Microbiome, 2021, 9(1): 128.
    [18] XUE YY, CHEN HH, YANG JR, LIU M, HUANG BQ, YANG J. Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom[J]. The ISME Journal, 2018, 12(9): 2263-2277.
    [19] YANG JR, LV H, ISABWE A, LIU LM, YU XQ, CHEN HH, YANG J. Disturbance-induced phytoplankton regime shifts and recovery of cyanobacteria dominance in two subtropical reservoirs[J]. Water Research, 2017, 120: 52-63.
    [20] GAO XF, WANG WP, NDAYISHIMIYE JC, GOVAERT L, CHEN HH, JEPPESEN E, XUE YY, YU XQ, YANG J. Invasive and toxic cyanobacteria regulate allochthonous resource use and community niche width of reservoir zooplankton[J]. Freshwater Biology, 2022, 67(8): 1344-1356.
    [21] ABDULLAH ALM, WANG WP, JIN L, CHEN HH, XUE YY, JEPPESEN E, MAJANEVA M, XU HL, YANG J. Planktonic ciliate community driven by environmental variables and cyanobacterial blooms: a 9-year study in two subtropical reservoirs[J]. Science of the Total Environment, 2023, 858: 159866.
    [22] YANG J, YU XQ, LIU LM, ZHANG WJ, GUO PY. Algae community and trophic state of subtropical reservoirs in southeast Fujian, China[J]. Environmental Science and Pollution Research, 2012, 19(5): 1432-1442.
    [23] GAO XF, CHEN HH, GOVAERT L, WANG WP, YANG J. Responses of zooplankton body size and community trophic structure to temperature change in a subtropical reservoir[J]. Ecology and Evolution, 2019, 9(22): 12544-12555.
    [24] GAO XF, CHEN HH, GU BH, JEPPESEN E, XUE YY, YANG J. Particulate organic matter as causative factor to eutrophication of subtropical deep freshwater: role of typhoon (tropical cyclone) in the nutrient cycling[J]. Water Research, 2021, 188: 116470.
    [25] ROGNES T, FLOURI T, NICHOLS B, QUINCE C, MAHÉ F. VSEARCH: a versatile open source tool for metagenomics[J]. PeerJ, 2016, 4: e2584.
    [26] SCHLOSS PD, WESTCOTT SL, RYABIN T, HALL JR, HARTMANN M, HOLLISTER EB, LESNIEWSKI RA, OAKLEY BB, PARKS DH, ROBINSON CJ, SAHL JW, STRES B, THALLINGER GG, van HORN DJ, WEBER CF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541.
    [27] EDGAR RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing[J]. bioRxiv, 2016, 081257.
    [28] GUILLOU L, BACHAR D, AUDIC S, BASS D, BERNEY C, BITTNER L, BOUTTE C, BURGAUD G, de VARGAS C, DECELLE J, del CAMPO J, DOLAN JR, DUNTHORN M, EDVARDSEN B, HOLZMANN M, KOOISTRA WHCF, LARA E, le BESCOT N, LOGARES R, MAHÉ F, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy[J]. Nucleic Acids Research, 2013, 41: D597-D604.
    [29] BASELGA A. Partitioning the turnover and nestedness components of beta diversity[J]. Global Ecology and Biogeography, 2010, 19(1): 134-143.
    [30] SLOAN WT, LUNN M, WOODCOCK S, HEAD IM, NEE S, CURTIS TP. Quantifying the roles of immigration and chance in shaping prokaryote community structure[J]. Environmental Microbiology, 2006, 8(4): 732-740.
    [31] NING DL, DENG Y, TIEDJE JM, ZHOU JZ. A general framework for quantitatively assessing ecological stochasticity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(34): 16892-16898.
    [32] REN KX, XUE YY, RØNN R, LIU LM, CHEN HH, RENSING C, YANG J. Dynamics and determinants of amoeba community, occurrence and abundance in subtropical reservoirs and rivers[J]. Water Research, 2018, 146: 177-186.
    [33] WANG WP, REN KX, CHEN HH, GAO XF, RØNN R, YANG J. Seven-year dynamics of testate amoeba communities driven more by stochastic than deterministic processes in two subtropical reservoirs[J]. Water Research, 2020, 185: 116232.
    [34] SIMON M, LÓPEZ-GARCÍA P, DESCHAMPS P, MOREIRA D, RESTOUX G, BERTOLINO P, JARDILLIER L. Marked seasonality and high spatial variability of protist communities in shallow freshwater systems[J]. The ISME Journal, 2015, 9(9): 1941-1953.
    [35] XUE YY, LIU M, CHEN HH, JEPPESEN E, ZHANG HT, REN KX, YANG J. Microbial hierarchical correlations and their contributions to carbon-nitrogen cycling following a reservoir cyanobacterial bloom[J]. Ecological Indicators, 2022, 143: 109401.
    [36] YANG J, LV H, YANG J, LIU LM, YU XQ, CHEN HH. Decline in water level boosts cyanobacteria dominance in subtropical reservoirs[J]. Science of the Total Environment, 2016, 557: 445-452.
    [37] AGASILD H, PANKSEP K, TÕNNO I, BLANK K, KÕIV T, FREIBERG R, LAUGASTE R, JONES RI, NÕGES P, NÕGES T. Role of potentially toxic cyanobacteria in crustacean zooplankton diet in a eutrophic lake[J]. Harmful Algae, 2019, 89: 101688.
    [38] MAJOR Y, KIFLE D, NIEDRIST GH, SOMMARUGA R. An isotopic analysis of the phytoplankton–zooplankton link in a highly eutrophic tropical reservoir dominated by cyanobacteria[J]. Journal of Plankton Research, 2017, 39(2): 220-231.
    [39] XUE YY, ABDULLAH AM, CHEN HH, XIAO P, ZHANG HT, JEPPESEN E, YANG J. Relic DNA obscures DNA-based profiling of multiple microbial taxonomic groups in a river-reservoir ecosystem[J]. Molecular Ecology, 2023, 32(17): 4940-4952.
    [40] 张琦, 陈宇琛, 林育青, 陈求稳, 张建云, 丁珏, 马宏海. 澜沧江梯级水库浮游植物群落结构特征及其关键驱动因子[J]. 湖泊科学, 2023, 35(2): 530-540. ZHANG Q, CHEN YC, LIN YQ, CHEN QW, ZHANG JY, DING J, MA HH. Characteristic of phytoplankton community structure and its driving factors along the cascade reservoirs in the Lancang River[J]. Journal of Lake Sciences, 2023, 35(2): 530-540(in Chinese).
    [41] CHASE JM, MYERS JA. Disentangling the importance of ecological niches from stochastic processes across scales[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2011, 366(1576): 2351-2363.
    引证文献
引用本文

张宏腾,马国琳,金磊,于佳立,薛媛媛,陈辉煌,杨军. 两座亚热带水库真核浮游生物群落变化与构建机制[J]. 微生物学报, 2024, 64(12): 4641-4655

复制
分享
文章指标
  • 点击次数:173
  • 下载次数: 363
  • HTML阅读次数: 548
  • 引用次数: 0
历史
  • 收稿日期:2024-08-01
  • 在线发布日期: 2024-12-07
  • 出版日期: 2024-12-04
文章二维码