酿酒酵母高级醇代谢的转录调控研究进展
作者:
基金项目:

昌吉州科技支撑产业高质量发展专项(2022Z03);宁夏回族自治区重点研发计划(2023BCF01027);国家现代农业产业技术体系项目(CARS-29-jg-03);合阳葡萄试验示范站共建专项(2023WNXNZX-2)


Transcriptional regulation of higher alcohol metabolism in Saccharomyces cerevisiae
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [53]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    高级醇是酿酒酵母在葡萄酒酿造过程中产生的主要代谢副产物,其代谢受到多层次调控体系的精细调节。酿酒酵母高级醇代谢途径中的酶系及其编码基因已基本明确,但酿酒酵母高级醇代谢的转录调控机制仍不清晰。本文在总结酵母高级醇代谢途径及其代谢调控策略的基础上,重点综述了参与酵母高级醇代谢调控的转录因子Aro80p、GATA和Leu3p及其作用机制。旨在为系统理解酵母高级醇代谢转录调控机制,以及选育高级醇产量适中的酵母菌种提供理论参考。

    Abstract:

    Higher alcohols, major metabolic byproducts produced by Saccharomyces cerevisiae during winemaking, are intricately regulated by a multilevel system. While the enzymatic machinery and their encoding genes involved in the metabolic pathways of higher alcohols in S. cerevisiae have been largely elucidated, the transcriptional regulation underlying this process remains poorly understood. This paper, building upon a summary of the metabolic pathways and regulatory strategies of higher alcohols metabolism in yeast, focuses on the transcription factors Aro80p, GATA and Leu3p implicated in the regulation of higher alcohols metabolism in yeast and their mechanisms of action. The review aims to give theoretical insights into a comprehensive understanding of the transcriptional regulation of higher alcohols metabolism in yeast and facilitate the breeding of yeast strains with moderate production of higher alcohols.

    参考文献
    [1] GONEN LD, TAVOR T, SPIEGEL U. Adapting and thriving: global warming and the wine industry[J]. SAGE Open, 2024, 14(1): 21582440241227750.
    [2] QIN YN, XU HT, SUN JS, CHENG XY, LEI J, LIAN WJ, HAN C, HUANG WT, ZHANG MW, CHEN Y. Succession of microbiota and its influence on the dynamics of volatile compounds in the semi-artificial inoculation fermentation of mulberry wine[J]. Food Chemistry: X, 2024, 21: 101223.
    [3] LIANG LH, MA YW, JIANG ZZ, SAM FE, PENG S, LI M, WANG J. Dynamic analysis of microbial communities and flavor properties in Merlot wines produced from inoculation and spontaneous fermentation[J]. Food Research International, 2023, 164: 112379.
    [4] 孙细珍, 杜佳炜, 黄盼, 张帆, 刘源才. 现代工艺和传统工艺酿造小曲清香型白酒感官表征及风味成分分析[J]. 食品科学, 2021, 42(6): 282-290. SUN XZ, DU JW, HUANG P, ZHANG F, LIU YC. Analysis of sensory characteristics and flavor components in light-flavor Chinese liquor (Baijiu) made with Xiaoqu starter by modern and traditional technologies[J]. Food Science, 2021, 42(6): 282-290(in Chinese).
    [5] 王震, 叶宏, 朱婷婷, 黄明泉, 魏金旺, 吴继红, 张璟琳. 清香型白酒风味成分的研究进展[J]. 食品科学, 2022, 43(7): 232-244. WANG Z, YE H, ZHU TT, HUANG MQ, WEI JW, WU JH, ZHANG JL. Progress in research on the flavor components of light-flavor Baijiu[J]. Food Science, 2022, 43(7): 232-244(in Chinese).
    [6] 尹子迎, 关军锋, 赵江丽, 刘金龙, 赵国群. 水果发酵酒质量评价体系研究进展[J]. 食品与机械, 2023, 39(1): 234-240. YIN ZY, GUAN JF, ZHAO JL, LIU JL, ZHAO GQ. Research progress on quality evaluation system of fruit fermented wine[J]. Food & Machinery, 2023, 39(1): 234-240(in Chinese).
    [7] HUANG D, ZHONG Y, LIU YL, SONG YY, ZHAO XX, QIN Y. Reducing higher alcohols by integrating indigenous Saccharomyces cerevisiae, nitrogen compensation, and chaptalization methods during fermentation of kiwifruit wine[J]. LWT-Food Science and Technology, 2023, 184: 115059.
    [8] JOSHI VK, KUMAR V. Influence of different sugar sources, nitrogen sources and inocula on the quality characteristics of apple tea wine[J]. Journal of the Institute of Brewing, 2017, 123(2): 268-276.
    [9] 廉苇佳, 雷静, 韩琛, 刘志刚, 苏含明, 阿依加马丽·加帕尔, 陈雅. 低产高级醇桑葚酒发酵工艺优化[J]. 江西农业学报, 2023, 35(5): 89-96. LIAN WJ, LEI J, HAN C, LIU ZG, SU HM, AYIJIAMALI·J, CHEN Y. Optimization of fermentation process for low-yield and higher-alcohol mulberry wine[J]. Acta Agriculturae Jiangxi, 2023, 35(5): 89-96(in Chinese).
    [10] WANG YP, SUN ZG, ZHANG CY, ZHANG QZ, GUO XW, XIAO DG. Comparative transcriptome analysis reveals the key regulatory genes for higher alcohol formation by yeast at different α-amino nitrogen concentrations[J]. Food Microbiology, 2021, 95: 103713.
    [11] 王倩, 冯文倩, 王雅楠, 宋育阳, 刘延琳, 秦义. 本土酿酒酵母发酵进程中异戊醇的合成代谢[J]. 中国食品学报, 2022, 22(6): 95-105. WANG Q, FENG WQ, WANG YN, SONG YY, LIU YL, QIN Y. The synthetic metabolism of isoamyl alcohol in the fermentation process of native Saccharomyces cerevisiae[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(6): 95-105(in Chinese).
    [12] 孙中贯, 刘琳, 王亚平, 王雪山, 肖冬光. 酿酒酵母高级醇代谢研究进展[J]. 生物工程学报, 2021, 37(2): 429-447. SUN ZG, LIU L, WANG YP, WANG XS, XIAO DG. Higher alcohols metabolism by Saccharomyces cerevisiae: a mini review[J]. Chinese Journal of Biotechnology, 2021, 37(2): 429-447(in Chinese).
    [13] CUI DY, LIU L, ZHANG XY, LIN LC, LI X, CHENG T, WEI CH, ZHANG Y, ZHOU Z, LI W, ZHANG CY. Using transcriptomics to reveal the molecular mechanism of higher alcohol metabolism in Saccharomyces cerevisiae[J]. Food Bioscience, 2023, 51: 102227.
    [14] MAURYA R, GOHIL N, NIXON S, KUMAR N, NORONHA SB, DHALI D, TRABELSI H, ALZAHRANI KJ, RESHAMWALA SMS, AWASTHI MK, RAMAKRISHNA S, SINGH V. Rewiring of metabolic pathways in yeasts for sustainable production of biofuels[J]. Bioresource Technology, 2023, 372: 128668.
    [15] AVALOS JL, FINK GR, STEPHANOPOULOS G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols[J]. Nature Biotechnology, 2013, 31(4): 335-341.
    [16] YAN TS, WANG ZX, ZHOU HY, HE JJ, ZHOU SS. Effects of four critical gene deletions in Saccharomyces cerevisiae on fusel alcohols during red wine fermentation[J]. Fermentation, 2023, 9(4): 379.
    [17] WANG YP, WEI XQ, GUO XW, XIAO DG. Effect of the deletion of genes related to amino acid metabolism on the production of higher alcohols by Saccharomyces cerevisiae[J]. BioMed Research International, 2020, 2020: 6802512.
    [18] ZHENG N, JIANG S, HE YH, CHEN YF, ZHANG CY, GUO XW, MA LJ, XIAO DG. Production of low-alcohol Huangjiu with improved acidity and reduced levels of higher alcohols by fermentation with scarless ALD6 overexpression yeast[J]. Food Chemistry, 2020, 321: 126691.
    [19] ZHANG JW, ZHANG CY, DAI LH, DONG J, LIU YL, GUO XW, XIAO DG. Effects of overexpression of the alcohol acetyltransferase-encoding gene ATF1 and disruption of the esterase-encoding gene IAH1 on the flavour profiles of Chinese yellow rice wine[J]. International Journal of Food Science & Technology, 2012, 47(12): 2590-2596.
    [20] MÁR M, NITSENKO K, HEIDARSSON PO. Multifunctional intrinsically disordered regions in transcription factors[J]. Chemistry, 2023, 29(21): e202203369.
    [21] HAHN S, YOUNG ET. Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators[J]. Genetics, 2011, 189(3): 705-736.
    [22] TAPIA SM, PÉREZ-TORRADO R, ADAM AC, MACÍAS LG, BARRIO E, QUEROL A. Functional divergence in the proteins encoded by ARO80 from S. uvarum, S. kudriavzevii and S. cerevisiae explain differences in the aroma production during wine fermentation[J]. Microbial Biotechnology, 2022, 15(8): 2281-2291.
    [23] NISHIMURA A, ISOGAI S, MURAKAMI N, HOTTA N, KOTAKA A, MATSUMURA K, HATA Y, ISHIDA H, TAKAGI H. Isolation and analysis of a sake yeast mutant with phenylalanine accumulation[J]. Journal of Industrial Microbiology & Biotechnology, 2022, 49(3): kuab085.
    [24] MAGASANIK B, KAISER CA. Nitrogen regulation in Saccharomyces cerevisiae[J]. Gene, 2002, 290(1/2): 1-18.
    [25] GONZÁLEZ J, LÓPEZ G, ARGUETA S, ESCALERA-FANJUL X, EL HAFIDI M, CAMPERO-BASALDUA C, STRAUSS J, RIEGO-RUIZ L, GONZÁLEZ A. Diversification of transcriptional regulation determines subfunctionalization of paralogous branched chain aminotransferases in the yeast Saccharomyces cerevisiae[J]. Genetics, 2017, 207(3): 975-991.
    [26] YUAN JF, MISHRA P, CHING CB. Engineering the leucine biosynthetic pathway for isoamyl alcohol overproduction in Saccharomyces cerevisiae[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(1): 107-117.
    [27] FRIDEN P, SCHIMMEL P. LEU3 of Saccharomyces cerevisiae activates multiple genes for branched-chain amino acid biosynthesis by binding to a common decanucleotide core sequence[J]. Molecular and Cellular Biology, 1988, 8(7): 2690-2697.
    [28] ZHANG YF, CORTEZ JD, HAMMER SK, CARRASCO-LÓPEZ C, GARCÍA ECHAURI SÁ, WIGGINS JB, WANG W, AVALOS JL. Biosensor for branched-chain amino acid metabolism in yeast and applications in isobutanol and isopentanol production[J]. Nature Communications, 2022, 13(1): 270.
    [29] 陈先锐, 王肇悦, 何秀萍. 酵母菌合成2-苯乙醇的研究进展[J]. 生物工程学报, 2016, 32(9): 1151-1163. CHEN XR, WANG ZY, HE XP. Advances in biosynthesis of 2-phenylethanol by yeasts[J]. Chinese Journal of Biotechnology, 2016, 32(9): 1151-1163(in Chinese).
    [30] DEED RC, HOU RY, KINZURIK MI, GARDNER RC, FEDRIZZI B. The role of yeast ARO8, ARO9 and ARO10 genes in the biosynthesis of 3-(methylthio)-1-propanol from l-methionine during fermentation in synthetic grape medium[J]. FEMS Yeast Research, 2019. DOI: 10.1093/femsyr/foy109.
    [31] LEE K, HAHN JS. Interplay of Aro80 and GATA activators in regulation of genes for catabolism of aromatic amino acids in Saccharomyces cerevisiae[J]. Molecular Microbiology, 2013, 88(6): 1120-1134.
    [32] RAVASIO D, WENDLAND J, WALTHER A. Major contribution of the Ehrlich pathway for 2-phenylethanol/rose flavor production in Ashbya gossypii[J]. FEMS Yeast Research, 2014, 14(6): 833-844.
    [33] RISINGER AL, KAISER CA. Different ubiquitin signals act at the Golgi and plasma membrane to direct GAP1 trafficking[J]. Molecular Biology of the Cell, 2008, 19(7): 2962-2972.
    [34] RUBIO-TEXEIRA M, KAISER CA. Amino acids regulate retrieval of the yeast general amino acid permease from the vacuolar targeting pathway[J]. Molecular Biology of the Cell, 2006, 17(7): 3031-3050.
    [35] 史莹华, 许梓荣. GATA转录因子研究进展[J]. 生物学通报, 2005, 40(3): 1-2. SHI YH, XU ZR. Recent advances in GATA transcription factor[J]. Bulletin of Biology, 2005, 40(3): 1-2(in Chinese).
    [36] GEORIS I, FELLER A, VIERENDEELS F, DUBOIS E. The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repression-sensitive gene activation[J]. Molecular and Cellular Biology, 2009, 29(13): 3803-3815.
    [37] CARDILLO SB, LEVI CE, BERMÚDEZ MORETTI M, CORREA GARCÍA S. Interplay between the transcription factors acting on the GATA-and GABA-responsive elements of Saccharomyces cerevisiae UGA promoters[J]. Microbiology, 2012, 158(Pt 4): 925-935.
    [38] WANG ZY, BAI XJ, GUO XN, HE XP. Regulation of crucial enzymes and transcription factors on 2-phenylethanol biosynthesis via Ehrlich pathway in Saccharomyces cerevisiae[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(1): 129-139.
    [39] HAMMER, SK. Metabolic engineering of Saccharomyces cerevisiae for enhanced production of branched-chain higher alcohols[D]. Princeton: Doctoral Dissertation of Princeton University, 2020.
    [40] WEI TY, JIAO ZH, HU JJ, LOU HH, CHEN QH. Chinese yellow rice wine processing with reduced ethyl carbamate formation by deleting transcriptional regulator Dal80p in Saccharomyces cerevisiae[J]. Molecules, 2020, 25(16): 3580.
    [41] TURNER SA, MA QX, OLA M, MARTINEZ de SAN VICENTE K, BUTLER G. Dal81 regulates expression of arginine metabolism genes in Candida parapsilosis[J]. mSphere, 2018, 3(2): e00028-18.
    [42] GEORIS I, RONSMANS A, VIERENDEELS F, DUBOIS E. Differing SAGA module requirements for NCR-sensitive gene transcription in yeast[J]. Yeast, 2024, 41(4): 207-221.
    [43] SCHERENS B, FELLER A, VIERENDEELS F, MESSENGUY F, DUBOIS E. Identification of direct and indirect targets of the Gln3 and Gat1 activators by transcriptional profiling in response to nitrogen availability in the short and long term[J]. FEMS Yeast Research, 2006, 6(5): 777-791.
    [44] GEORIS I, FAYYAD-KAZAN M, ZAREMBA E, VIERENDEELS F, ROOVERS M, DUBOIS E. Glutamine transport as a possible regulator of nitrogen catabolite repression in Saccharomyces cerevisiae[J]. Yeast, 2022, 39(9): 493-507.
    [45] AJIT K, THOMAS DB, RAJENDRA R, TERRANCE GC. Differing responses of Gat1 and Gln3 phosphorylation and localization to rapamycin and methionine sulfoximine treatment in Saccharomyces cerevisiae[J]. FEMS Yeast Research, 6(2): 218-229.
    [46] COOPER TG. Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots[J]. FEMS Microbiology Reviews, 2002, 26(3): 223-238.
    [47] STEYER JT, TODD RB. Branched-chain amino acid biosynthesis in fungi[J]. Essays in Biochemistry, 2023, 67(5): 865-876.
    [48] FITZGERALD MX, ROJAS JR, KIM JM, KOHLHAW GB, MARMORSTEIN R. Structure of a Leu3-DNA complex: recognition of everted CGG half-sites by a Zn2Cys6 binuclear cluster protein[J]. Structure, 2006, 14(4): 725-735.
    [49] LIU X, LEE CK, GRANEK JA, CLARKE ND, LIEB JD. Whole-genome comparison of Leu3 binding in vitro and in vivo reveals the importance of nucleosome occupancy in target site selection[J]. Genome Research, 2006, 16(12): 1517-1528.
    [50] COLÓN M, HERNÁNDEZ F, LÓPEZ K, QUEZADA H, GONZÁLEZ J, LÓPEZ G, ARANDA C, GONZÁLEZ A. Saccharomyces cerevisiae Bat1 and Bat2 aminotransferases have functionally diverged from the ancestral-like Kluyveromyces lactis orthologous enzyme[J]. PLoS One, 2011, 6(1): e16099.
    [51] LÓPEZ G, QUEZADA H, DUHNE M, GONZÁLEZ J, LEZAMA M, EL-HAFIDI M, COLÓN M, MARTÍNEZ deLa ESCALERA X, FLORES-VILLEGAS MC, SCAZZOCCHIO C, DeLUNA A, GONZÁLEZ A. Diversification of paralogous α-isopropylmalate synthases by modulation of feedback control and hetero-oligomerization in Saccharomyces cerevisiae[J]. Eukaryotic Cell, 2015, 14(6): 564-577.
    [52] ROLLERO S, MOURET JR, BLOEM A, SANCHEZ I, ORTIZ-JULIEN A, SABLAYROLLES JM, DEQUIN S, CAMARASA C. Quantitative 13C-isotope labelling-based analysis to elucidate the influence of environmental parameters on the production of fermentative aromas during wine fermentation[J]. Microbial Biotechnology, 2017, 10(6): 1649-1662.
    [53] MONTEIRO PT, OLIVEIRA J, PAIS P, ANTUNES M, PALMA M, CAVALHEIRO M, GALOCHA M, GODINHO CP, MARTINS LC, BOURBON N, MOTA MN, RIBEIRO RA, VIANA R, SÁ-CORREIA I, TEIXEIRA MC. YEASTRACT+: a portal for cross-species comparative genomics of transcription regulation in yeasts[J]. Nucleic Acids Research, 2020, 48(D1): D642-D649.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈璐,刘延琳,秦义. 酿酒酵母高级醇代谢的转录调控研究进展[J]. 微生物学报, 2024, 64(12): 4669-4680

复制
分享
文章指标
  • 点击次数:192
  • 下载次数: 324
  • HTML阅读次数: 312
  • 引用次数: 0
历史
  • 收稿日期:2024-05-16
  • 在线发布日期: 2024-12-07
  • 出版日期: 2024-12-04
文章二维码