携带Fluc与mCherry双报告基因的重组痘苗病毒WR株的构建及体外应用
作者:
基金项目:

国家重点研发计划(2023YFD1800405,2021YFA1201003,2022YFC2304100)


Construction and application in vitro of a recombinant vaccinia virus strain WR expressing dual reporters Fluc and mCherry
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】 构建同时表达双报告基因(荧光素酶Fluc和红色荧光蛋白mCherry)的重组痘苗病毒WR株。【方法】 采用CRISPR/Cas9技术构建针对WR株J2R区的gRNA CRISPR/Cas9质粒及表达Fluc和mCherry的质粒pJSE-Fluc/mCherry,插入至TK区构建重组痘苗病毒rWR-Fluc/mCherry。采用PCR与测序分析基因插入位置与序列的准确性;通过mCherry、Fluc活性、空斑形态鉴定重组病毒;重组病毒连续盲传12代,检测双报告基因及E3L表达分析重组病毒的遗传稳定性;检测重组病毒(rWR)与野生型病毒(WR)感染Vero和HeLa细胞后的细胞病变、TCID50、报告基因表达,分析病毒的复制动力学。采用空斑法、qPCR法、双报告基因活性检测,评价ST-246作为阳性药物的体外抗病毒药效。【结果】 体外鉴定结果显示,Fluc和mCherry准确插入WR株的TK区域,感染Vero细胞后可检测到mCherry荧光及Fluc酶活性,空斑形态与野生型病毒一致,连续盲传12代病毒滴度保持稳定,并且双报告基因活性及E3L表达均可稳定检出,表明重组病毒rWR-Fluc/mCherry构建成功且遗传稳定;重组病毒感染Vero和HeLa细胞后的细胞病变、TCID50滴定、双报告基因活性检测均表明,感染后48−72 h达到复制高峰,与WR的复制动力学一致。采用重组病毒rWR-Fluc/mCherry测得ST-246的EC50与WR野生型病毒一致,多个检测方法(病毒蚀斑、DNA拷贝数、双报告基因活性) EC50结果(2−7 nmol/L之间)间均具有良好的一致性(相关系数r均大于0.500 0,P<0.05)。【结论】 成功构建了可同时表达Fluc与mCherry双报告基因且遗传稳定的重组痘苗病毒rWR-Fluc/mCherry,可应用于抗病毒药物体外快捷筛选及药效分析。

    Abstract:

    [Objective] To construct a recombinant vaccinia virus strain WR that expresses dual reporters (luciferase Fluc and red fluorescent protein mCherry). [Methods] Firstly, the gRNA CRISPR/Cas9 plasmid targeting the J2R region of WR and the plasmid pJSE-Fluc/mCherry carrying the dual reporter genes were constructed. Then, the CRISPR/Cas9 gene editing tool was used to insert the dual reporter genes into the TK region, and thus the recombinant vaccinia virus strain rWR-Fluc/mCherry (rWR) was constructed. The location and sequence of insertion in rWR were analyzed by PCR and sequencing. The recombinant strain rWR was characterized by mCherry/Fluc activity and plaque assays. The recombinant strain rWR was subcultured for 12 passages, and the expression levels of the dual reporter genes and E3L were determined to reveal the genetic stability of the strain. To analyze the replication dynamics of the virus in Vero and HeLa cells, we determined the cytopathic effect (CPE), TCID50, and dual reporter expression of rWR and the wild type (WR) in the infected cells. Furthermore, we evaluated the inhibitory effects of ST-246 as a positive drug on both rWR and WR in vitro by the plaque assay, qPCR, and dual reporter activity measurement. [Results] Fluc and mCherry were accurately inserted into the TK region of WR. The Vero cells infected with rWR showed the activities of dual reporters and the plaque morphology consistent with that of WR. After 12 passages, the dual reporter activities and E3L expression were stably detected in rWR, which indicated that rWR was successfully constructed and genetically stable. The CPE, TCID50, and dual reporter activity in Vero and HeLa cells indicated that replication peaked 48–72 h post-infection with rWR, which was consistent with the replication dynamics of WR. The median effective concentration (EC50) of ST-246 against rWR was in agreement with that against WR, and the EC50 (2–7 nmol/L) obtained by the plaque assay, qPCR, and dual reporter activity measurement showed good consistency (r>0.500 0 and P<0.05). [Conclusion] A recombinant vaccinia virus strain rWR simultaneously expressing Fluc and mCherry was successfully constructed, and it was genetically stable. This strain might be used as an in vitro system for rapid screening and characterization of anti-orthopoxvirus drugs with simple operation.

    参考文献
    [1] de CLERCQ E, JIANG YK, LI GD. Therapeutic strategies for human poxvirus infections: monkeypox (mpox), smallpox, molluscipox, and orf[J]. Travel Medicine and Infectious Disease, 2023, 52: 102528.
    [2] DIVEN DG. An overview of poxviruses[J]. Journal of the American Academy of Dermatology, 2001, 44(1): 1-16.
    [3] KOŁODZIEJ M, JONIEC J, BARTOSZCZE M, GRYKO R, KOCIK J, KNAP J. Research on substances with activity against orthopoxviruses[J]. Annals of Agricultural and Environmental Medicine, 2013, 20(1): 1-7.
    [4] ESSBAUER S, PFEFFER M, WILHELM S, MEYER H. Zoonotic poxviruses[J]. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz, 2004, 47(7): 671-679.
    [5] HENDERSON DA. Smallpox virus destruction and the implications of a new vaccine[J]. Biosecurity and Bioterrorism, 2011, 9(2): 163-168.
    [6] WHO. 2022-24 Mpox (Monkeypox) Outbreak: Global Trends[EB/OL]. [2024-4-10]. https://worldhealthorg. shinyapps.io/mpx_global.
    [7] PARKER RF, BRONSON LH, GREEN RH. Further studies of the infectious unit of vaccinia[J]. The Journal of Experimental Medicine, 1941, 74(3): 263-281.
    [8] SMEE DF, BAILEY KW, SIDWELL RW. Treatment of lethal vaccinia virus respiratory infections in mice with cidofovir[J]. Antiviral Chemistry & Chemotherapy, 2001, 12(1): 71-76.
    [9] SMEE DF, BAILEY KW, WONG MH, SIDWELL RW. Effects of cidofovir on the pathogenesis of a lethal vaccinia virus respiratory infection in mice[J]. Antiviral Research, 2001, 52(1): 55-62.
    [10] ZEH HJ, DOWNS-CANNER S, MCCART JA, GUO ZS, RAO UNM, RAMALINGAM L, THORNE SH, JONES HL, KALINSKI P, WIECKOWSKI E, O’MALLEY ME, DANESHMAND M, HU K, BELL JC, HWANG TH, MOON A, BREITBACH CJ, KIRN DH, BARTLETT DL. First-in-man study of western reserve strain oncolytic vaccinia virus: safety, systemic spread, and antitumor activity[J]. Molecular Therapy, 2015, 23(1): 202-214.
    [11] HALANI S, LEONG D, WU PE. Tecovirimat for monkeypox[J]. CMAJ, 2022, 194(46): E1573.
    [12] HOY SM. Tecovirimat: first global approval[J]. Drugs, 2018, 78(13): 1377-1382.
    [13] WARNER BM, KLASSEN L, SLOAN A, DESCHAMBAULT Y, SOULE G, BANADYGA L, CAO JX, STRONG JE, KOBASA D, SAFRONETZ D. In vitro and in vivo efficacy of tecovirimat against a recently emerged 2022 monkeypox virus isolate[J]. Science Translational Medicine, 2022, 14(673): eade7646.
    [14] RUSSO AT, GROSENBACH DW, BRASEL TL, BAKER RO, CAWTHON AG, REYNOLDS E, BAILEY T, KUEHL PJ, SUGITA V, AGANS K, HRUBY DE. Effects of treatment delay on efficacy of tecovirimat following lethal aerosol monkeypox virus challenge in Cynomolgus macaques[J]. The Journal of Infectious Diseases, 2018, 218(9): 1490-1499.
    [15] CHIEM K, NOGALES A, LORENZO M, MORALES VASQUEZ D, XIANG Y, GUPTA YK, BLASCO R, deLa TORRE JC, MARTÍNEZ-SOBRIDO L. Identification of in vitro inhibitors of monkeypox replication[J]. Microbiology Spectrum, 2023, 11(4): e0474522.
    [16] ZHANG ZR, ZHANG HQ, LI XD, DENG CL, WANG Z, LI JQ, LI N, ZHANG QY, ZHANG HL, ZHANG B, YE HQ. Generation and characterization of Japanese encephalitis virus expressing GFP reporter gene for high throughput drug screening[J]. Antiviral Research, 2020, 182: 104884.
    [17] CHOE J, GUO HH, van den ENGH G. A dual-fluorescence reporter system for high-throughput clone characterization and selection by cell sorting[J]. Nucleic Acids Research, 2005, 33(5): e49.
    [18] OKOLI A, OKEKE MI, TRYLAND M, MOENS U. CRISPR/Cas9-advancing orthopoxvirus genome editing for vaccine and vector development[J]. Viruses, 2018, 10(1): 50.
    [19] 吴雅彬, 赵莉, 任皎, 袁航, 张鹏, 叶飞, 田厚文, 王文玲, 谭文杰. 基于CRISPR-Cas9的痘苗病毒高效重组体系的建立[J]. 中华实验和临床病毒学杂志, 2021, 35(2): 199-204. WU YB, ZHAO L, REN J, YUAN H, ZHANG P, YE F, TIAN HW, WANG WL, TAN WJ. CRISPR-Cas9 system for construction of highly efficient recombinant vaccinia virus[J]. Chinese Journal of Experimental and Clinical Virology, 2021, 35(2): 199-204(in Chinese).
    [20] WANG D, WANG XW, PENG XC, XIANG Y, SONG SB, WANG YY, CHEN L, XIN VW, LYU YN, JI JF, MA ZW, LI CB, XIN HW. CRISPR/Cas9 genome editing technology significantly accelerated herpes simplex virus research[J]. Cancer Gene Therapy, 2018, 25(5/6): 93-105.
    [21] CONCORDET JP, HAEUSSLER M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens[J]. Nucleic Acids Research, 2018, 46(W1): W242-W245.
    [22] THEVENIN T, LOBERT PE, HOBER D. Inactivation of an enterovirus by airborne disinfectants[J]. BMC Infectious Diseases, 2013, 13: 177.
    [23] HUO ST, CHEN YD, LU RJ, ZHANG ZX, ZHANG GQ, ZHAO L, DENG Y, WU CC, TAN WJ. Development of two multiplex real-time PCR assays for simultaneous detection and differentiation of monkeypox virus IIa, IIb, and I clades and the B.1 lineage[J]. Biosafety and Health, 2022, 4(6): 392-398.
    [24] GROSENBACH DW, HRUBY DE. Preliminary screening and in vitro confirmation of orthopoxvirus antivirals[J]. Methods in Molecular Biology, 2019, 2023: 143-155.
    [25] WANG ML, CAO RY, ZHANG LK, YANG XL, LIU J, XU MY, SHI ZL, HU ZH, ZHONG W, XIAO GF. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro[J]. Cell Research, 2020, 30(3): 269-271.
    [26] di GIOIA C, YUAN M, WANG YH. Vaccinia virus genome editing using CRISPR[J]. Methods in Molecular Biology, 2019, 2023: 109-117.
    [27] YUAN M, WEBB E, LEMOINE NR, WANG YH. CRISPR-Cas9 as a powerful tool for efficient creation of oncolytic viruses[J]. Viruses, 2016, 8(3): 72.
    [28] GOWRIPALAN A, SMITH S, STEFANOVIC T, TSCHARKE DC. Rapid poxvirus engineering using CRISPR/Cas9 as a selection tool[J]. Communications Biology, 2020, 3(1): 643.
    [29] 袁航, 任皎, 赵莉, 豆亚美, 田厚文, 王文玲, 谭文杰. 痘苗病毒天坛株F1L区高效重组方法的建立[J]. 病毒学报, 2022, 38(4): 791-798. YUAN H, REN J, ZHAO L, DOU YM, TIAN HW, WANG WL, TAN WJ. Establishment of an efficient recombinant method in the F1L region of Tiantan vaccinia virus[J]. Chinese Journal of Virology, 2022, 38(4): 791-798(in Chinese).
    [30] MACKETT M, SMITH GL, MOSS B. General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes[J]. Journal of Virology, 1984, 49(3): 857-864.
    [31] THORNE N, INGLESE J, AULD DS. Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology[J]. Chemistry & Biology, 2010, 17(6): 646-657.
    [32] SHANER NC, CAMPBELL RE, STEINBACH PA, GIEPMANS BNG, PALMER AE, TSIEN RY. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein[J]. Nature Biotechnology, 2004, 22(12): 1567-1572.
    [33] DRAYMAN N, KARIN O, MAYO A, DANON T, SHAPIRA L, RAFAEL D, ZIMMER A, BREN A, KOBILER O, ALON U. Dynamic proteomics of herpes simplex virus infection[J]. mBio, 2017, 8(6): e01612-17.
    [34] LIU SL, WANG ZG, XIE HY, LIU AN, LAMB DC, PANG DW. Single-virus tracking: from imaging methodologies to virological applications[J]. Chemical Reviews, 2020, 120(3): 1936-1979.
    [35] HUNG YP, LEE CC, LEE JC, CHIU CW, HSUEH PR, KO WC. A brief on new waves of monkeypox and vaccines and antiviral drugs for monkeypox[J]. Journal of Microbiology, Immunology and Infection, 2022, 55(5): 795-802.
    [36] JORDAN R, LEEDS JM, TYAVANAGIMATT S, HRUBY DE. Development of ST-246® for treatment of poxvirus infections[J]. Viruses, 2010, 2(11): 2409-2435.
    [37] PIRES MA, RODRIGUES NFS, de OLIVEIRA DB, de ASSIS FL, COSTA GB, KROON EG, MOTA BEF. In vitro susceptibility to ST-246 and Cidofovir corroborates the phylogenetic separation of Brazilian Vaccinia virus into two clades[J]. Antiviral Research, 2018, 152: 36-44.
    [38] FRENOIS-VEYRAT G, GALLARDO F, GORGÉ O, MARCHETEAU E, FERRARIS O, BAIDALIUK A, FAVIER AL, ENFROY C, HOLY X, LOURENCO J, KHOURY R, NOLENT F, GROSENBACH DW, HRUBY DE, FERRIER A, ISENI F, SIMON-LORIERE E, TOURNIER JN. Tecovirimat is effective against human monkeypox virus in vitro at nanomolar concentrations[J]. Nature Microbiology, 2022, 7(12): 1951-1955.
    引证文献
引用本文

孙洁伟,黄保英,王梦微,吴依依,楚巧鸿,霍恕婷,赵莉,翟德胜,邓瑶,赵营,谭文杰. 携带Fluc与mCherry双报告基因的重组痘苗病毒WR株的构建及体外应用[J]. 微生物学报, 2024, 64(12): 4789-4803

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-30
  • 在线发布日期: 2024-12-07
  • 出版日期: 2024-12-04
文章二维码