宁夏引黄灌区稻蟹共作对土壤微生物群落结构及理化因子的影响
作者:
基金项目:

国家重点研发计划(2021YFD1900603-03);宁夏高等学校一流学科建设(水利工程)项目(NXYLXK2021A03)


Rice-crab co-culture influences microbial community structure and physicochemical indicators of soil in the Yellow River irrigation area of Ningxia
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    【目的】 探究宁夏引黄灌区稻蟹共作对土壤理化指标和微生物群落结构的影响,旨在为西北引黄灌溉地区推广稻蟹养殖提供一定的理论依据。【方法】 基于土壤理化指标测定和16S rRNA基因扩增子高通量测序技术,对单一水稻种植(CK)与环沟引入蟹形成的稻蟹共作(EG)土壤理化指标和微生物群落结构进行分析。【结果】 在理化指标上,4−8月EG显著提高了土壤pH、总氮和有机质含量,降低全盐含量。总氮、有效磷和有机质含量在6月和7月EG明显高于CK。在微生物群落结构特征上:EG可以明显改变土壤中细菌群落的物种多样性与丰度,其中4月和8月可以提高细菌群落的物种多样性与丰度。与CK相比,EG在4−8月门水平相对丰度排名前20的细菌累积相对丰度都高于CK,CK和EG在4−8月的最优菌门均为变形菌门(Proteobacteria)。在属水平上,EG提高了土壤细菌中假单胞菌属(Pseudomonas)的相对丰度,同时也会降低硫杆菌属(Thiobacillus)和鬃毛甲烷菌属(Methanosaeta)的相对丰度。通过比较细菌群落结构发现,引入蟹后的EG对细菌群落结构组成的影响远大于采样月的影响。相关性分析表明,TN是影响土壤细菌相对丰度的主要因子,且具有显著性差异(P<0.05)。【结论】 与传统水稻单作(CK)相比,采样稻蟹共作(EG)增强了土壤肥力,提高了土壤中变形菌门和假单胞菌属的相对丰度,有助于提高土壤的肥力和营养循环效率,以及清洁土壤和水体中的污染物。

    Abstract:

    [Objective] To explore the effects of rice-crab co-culture on physicochemical indicators and microbial community structure of soil in the Yellow River irrigation area of Ningxia and thus provide a theoretical basis for promoting rice-crab farming in the Yellow River irrigation area in northwest China. [Methods] The physicochemical indicators of soil were measured, and high-throughput sequencing of 16S rRNA gene amplicons was employed to reveal the microbial community structure in the fields with only rice planting (CK) and rice-crab co-culture (EG) by introduction of crabs into the ditches around rice plots. [Results] EG had higher soil pH, total nitrogen (TN), and soil organic matter (SOM) and lower total salt content than CK from April to August. The TN, available phosphorus (AP), and SOM in EG were significantly higher than those in CK in June and July. In terms of microbial community structure characteristics, EG significantly altered the bacterial community structure in soil, increasing the bacterial diversity and abundance in April, and August. EG had higher cumulative relative abundance of the top 20 bacterial phyla than CK from April to August. The dominant phylum of both CK and EG from April to August was Proteobacteria. At the genus level, EG increased the relative abundance of Pseudomonas and decreased the relative abundance of Thiobacillus and Methanosaeta. The comparison showed that EG had stronger effect on the bacterial community structure than the sampling month. Correlation analysis shows that TN is the main factor affecting the relative abundance of soil bacteria, and it is significant (P<0.05). [Conclusion] Compared with traditional rice monoculture (CK), sampling rice crab intercropping (EG) enhances soil fertility, increases the relative abundance of Proteobacteria and Pseudomonas in the soil, and helps improve soil fertility and nutrient cycling efficiency, as well as clean up pollutants in soil and water bodies.

    参考文献
    [1] 任妮, 戴红君, 张琤琤, 陆学文. 我国克氏原螯虾产业调查分析与发展对策建议[J]. 江苏农业科学, 2021, 49(19): 241-246. REN N, DAI HJ, ZHANG CC, LU XW. Investigation and analysis of China’s crayfish industry and suggestions for development[J]. Jiangsu Agricultural Sciences, 2021, 49(19): 241-246(in Chinese).
    [2] 曹凑贵, 蔡明历. 稻田种养生态农业模式与技术[M]. 北京: 科学出版社, 2017. CAO CG, CAI ML. Ecological Agriculture Model and Technology of Paddy Planting and Raising[M]. Beijing: Science Press, 2017(in Chinese).
    [3] 蔡晨, 李谷, 朱建强, 彭亮, 李继福, 吴启侠. 稻虾轮作模式下江汉平原土壤理化性状特征研究[J]. 土壤学报, 2019, 56(1): 217-226. CAI C, LI G, ZHU JQ, PENG L, LI JF, WU QX. Effects of rice-crawfish rotation on soil physicochemical properties in Jianghan Plain[J]. Acta Pedologica Sinica, 2019, 56(1): 217-226(in Chinese).
    [4] EDWARDS J, JOHNSON C, SANTOS-MEDELLÍN C, LURIE E, PODISHETTY NK, BHATNAGAR S, EISEN JA, SUNDARESAN V. Structure, variation, and assembly of the root-associated microbiomes of rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): E911-E920.
    [5] LI FB, FENG JF, ZHOU XY, XU CC, HAISSAM JIJAKLI M, ZHANG WJ, FANG FP. Impact of rice-fish/shrimp co-culture on the N2O emission and NH3 volatilization in intensive aquaculture ponds[J]. Science of the Total Environment, 2019, 655: 284-291.
    [6] LIANG B, YANG XY, MURPHY DV, HE XH, ZHOU JB. Fate of 15N-labeled fertilizer in soils under dryland agriculture after 19 years of different fertilizations[J]. Biology and Fertility of Soils, 2013, 49(8): 977-986.
    [7] BASHIR MA, WANG HY, SUN WT, ZHAI LM, ZHANG XS, WANG N, REHIM A, RAZA QUA, LIU HB. The implementation of rice-crab co-culture system to ensure cleaner rice and farm production[J]. Journal of Cleaner Production, 2021, 316: 128284.
    [8] 黄明蔚, 刘敏, 陆敏, 侯立军, 欧冬妮, 林啸. 稻麦轮作农田系统中氮素渗漏流失的研究[J]. 环境科学学报, 2007, 27(4): 629-636. HUANG MW, LIU M, LU M, HOU LJ, OU DN, LIN X. Study on the nitrogen leaching in the paddy-wheat rotation agroecosystem[J]. Acta Scientiae Circumstantiae, 2007, 27(4): 629-636(in Chinese).
    [9] 张怡彬, 徐洋, 王洪媛, 王绍蓬, 翟丽梅, 刘宏斌. 稻蟹共生系统温室气体排放特征及其影响因素[J]. 农业资源与环境学报, 2022, 39(5): 931-939. ZHANG YB, XU Y, WANG HY, WANG SP, ZHAI LM, LIU HB. Greenhouse gas emission characteristics and influencing factors of rice-crab symbiosis system[J]. Journal of Agricultural Resources and Environment, 2022, 39(5): 931-939(in Chinese).
    [10] 顾芸, 李奎, 陈立婧, 沈玺钦, 石伟, 管卫兵. 宁夏稻蟹共生耦合系统浮游植物的群落结构[J]. 上海海洋大学学报, 2022, 31(2): 411-420. GU Y, LI K, CHEN LJ, SHEN XQ, SHI W, GUAN WB. Phytoplankton community structure of rice-crab culture of integrated system in Ningxia[J]. Journal of Shanghai Ocean University, 2022, 31(2): 411-420(in Chinese).
    [11] 刘金雨, 张瑞, 罗亮, 王世会, 郭坤, 白庆利, 徐伟, 赵志刚. 不同稻蟹共作模式下寒区稻田土壤微生物的高通量测序研究[J]. 水产学杂志, 2023, 36(5): 118-124, 130. LIU JY, ZHANG R, LUO L, WANG SH, GUO K, BAI QL, XU W, ZHAO ZG. High-throughput sequencing of soil microorganisms in paddy fields under different rice crab co-cropping models in cold region[J]. Chinese Journal of Fisheries, 2023, 36(5): 118-124, 130(in Chinese).
    [12] 陈奇, 王妹, 蔡新华. ETS微生物菌肥对养蟹稻田水环境及稻蟹产量的影响[J]. 渔业现代化, 2017, 44(2): 20-24. CHEN Q, WANG M, CAI XH. Effects of ETS microbial fertilizer on water environment and total yield of rice-crab fields[J]. Fishery Modernization, 2017, 44(2): 20-24(in Chinese).
    [13] ZHAO RZ, ZHANG WJ, ZHAO ZF, QIU XC. Determinants and assembly mechanism of bacterial community structure in Ningxia section of the Yellow River[J]. Microorganisms, 2023, 11(2): 496.
    [14] 刘晶晶, 李金花, 季燕, 靳三玲, 王旭, 刁兆岩, 关潇. 辉河湿地河岸带土壤微生物群落组成与土壤理化关系[J]. 草地学报, 2023, 31(5): 1393-1405. LIU JJ, LI JH, JI Y, JIN SL, WANG X, DIAO ZY, GUAN X. Relationship between soil microbial community composition and soil physicochemical properties in riparian zone of Huihe wetland[J]. Acta Agrestia Sinica, 2023, 31(5): 1393-1405(in Chinese).
    [15] 田爽, 吴双, 李欣, 廖国燕, 杜云婷, 陈光. 基于16S rDNA高通量测序探讨肠道菌群对疟原虫感染小鼠的保护性作用[J]. 中国人兽共患病学报, 2023, 39(2): 99-106. TIAN S, WU S, LI X, LIAO GY, DU YT, CHEN G. Investigation of protective research of gut microbiome on Plasmodium infection mice by 16S rDNA high-throughput sequencing[J]. Chinese Journal of Zoonoses, 2023, 39(2): 99-106(in Chinese).
    [16] 何中声, 谷新光, 江蓝, 徐道炜, 刘金福, 李文周, 陈文伟. 戴云山南坡不同海拔森林土壤优势细菌群落特征及影响因素[J]. 北京林业大学学报, 2022, 44(7): 107-116. HE ZS, GU XG, JIANG L, XU DW, LIU JF, LI WZ, CHEN WW. Characteristics and its influencing factors of forest soil dominant bacterial community in different elevations on the southern slope of Daiyun Mountain, Fujian Province of Eastern China[J]. Journal of Beijing Forestry University, 2022, 44(7): 107-116(in Chinese).
    [17] 王东伟, 陈永进, 周彦锋, 张敏莹, 俞振飞. 淮河中游种质资源保护区浮游植物功能群演替特征及其驱动因子[J]. 生态学杂志, 2023, 42(11): 2646-2654. WANG DW, CHEN YJ, ZHOU YF, ZHANG MY, YU ZF. Succession characteristics and driving factors of phytoplankton functional groups in the germplasm resources reserve of middle reaches of Huaihe River[J]. Chinese Journal of Ecology, 2023, 42(11): 2646-2654(in Chinese).
    [18] 朱秀秀, 彭成林, 佀国涵, 沙爱华, 袁家富, 赵书军, 徐大兵. 稻虾共作模式对稻田土壤细菌群落结构与多样性的影响[J]. 土壤通报, 2021, 52(5): 1121-1128. ZHU XX, PENG CL, SI GH, SHA AH, YUAN JF, ZHAO SJ, XU DB. Effect of rice-crayfish integrated system on soil bacterial community structure and diversity in paddy field[J]. Chinese Journal of Soil Science, 2021, 52(5): 1121-1128(in Chinese).
    [19] 徐涛, 刘方平, 倪才英, 谢亨旺, 苏甜, 梁举, 李娜, 田威. 稻鳖共生体系中不同施肥类型对水稻产量和品质的影响[J]. 江苏农业科学, 2021, 49(14): 61-65. XU T, LIU FP, NI CY, XIE HW, SU T, LIANG J, LI N, TIAN W. Effect of different culture densities on rice yield and quality in co-cultivation of rice and turtle[J]. Jiangsu Agricultural Sciences, 2021, 49(14): 61-65(in Chinese).
    [20] 赖政, 肖力婷, 赖胜, 杨慧林, 倪才英, 阳文静, 简敏菲. 稻虾种养新模式对稻田土壤肥力和微生物群落结构的影响[J]. 土壤学报, 2023, 60(6): 1788-1798. LAI Z, XIAO LT, LAI S, YANG HL, NI CY, YANG WJ, JIAN MF. Effects of a new rice-shrimp farming model on soil fertility and microbial community structure in paddy field[J]. Acta Pedologica Sinica, 2023, 60(6): 1788-1798(in Chinese).
    [21] 罗衡, 赵良杰, 李丰, 郭海松, 沈竑, 刘其根. 养殖鳖的引入对稻田土壤细菌群落结构的影响[J]. 水产学报, 2018, 42(5): 720-732. LUO H, ZHAO LJ, LI F, GUO HS, SHEN H, LIU QG. Effects of the introduction of cultured turtle on soil bacterial community structure in paddy field[J]. Journal of Fisheries of China, 2018, 42(5): 720-732(in Chinese).
    [22] 胡敏, 向永生, 鲁剑巍. 石灰用量对酸性土壤pH值及有效养分含量的影响[J]. 中国土壤与肥料, 2017(4): 72-77. HU M, XIANG YS, LU JW. Effects of lime application rates on soil pH and available nutrient content in acidic soils[J]. Soil and Fertilizer Sciences in China, 2017(4): 72-77(in Chinese).
    [23] 郝柳柳, 代梨梨, 彭亮, 陈思媛, 陶玲, 李谷, 张辉. 稻虾种养系统水稻根际土壤活性有机碳、微生物群落结构及其相互关系[J]. 浙江农业学报, 2023, 35(12): 2901-2913. HAO LL, DAI LL, PENG L, CHEN SY, TAO L, LI G, ZHANG H. Active organic carbon, microbial community structure and their relationship in rice rhizosphere soil of rice-crayfish co-culture systems[J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2901-2913(in Chinese).
    [24] 徐瑞蔓, 李茜, 孙宇, 陈迪, 赵洪颜, 袁旭峰, 朴仁哲. 食用菌菌糠堆肥化发酵特性及腐熟进程[J]. 中国农业大学学报, 2022, 27(3): 181-193. XU RM, LI X, SUN Y, CHEN D, ZHAO HY, YUAN XF, PIAO RZ. Fermentation characteristics and decay process of edible fungi and bran composting[J]. Journal of China Agricultural University, 2022, 27(3): 181-193(in Chinese).
    [25] 牛漾聃, 袁瑞强. 调水和季节变化对河流沉积物古菌群落的影响[J]. 中国环境科学, 2020, 40(3): 1294-1304. NIU YD, YUAN RQ. Effects of water diversion and seasonal change on Archaea community in river sediments[J]. China Environmental Science, 2020, 40(3): 1294-1304(in Chinese).
    [26] 李雨桐, 杨杉, 张艺, 范例, 刘坤, 张晟. 不同地区土壤古菌群落对重金属污染的响应[J]. 环境科学, 2021, 42(9): 4481-4488. LI YT, YANG S, ZHANG Y, FAN L, LIU K, ZHANG S. Response of soil archaeal community to heavy metal pollution in different typical regions[J]. Environmental Science, 2021, 42(9): 4481-4488(in Chinese).
    [27] 殷婷婷, 温洪宇, 袁振亚, 王秀颖, 王国振. 青海湖与中国内陆盐湖古菌群落组成的比较[J]. 微生物学报, 2017, 57(10): 1471-1480. YIN TT, WEN HY, YUAN ZY, WANG XY, WANG GZ. Comparison of archaeal community composition between Qinghai Lake and other salt lakes in China[J]. Acta Microbiologica Sinica, 2017, 57(10): 1471-1480(in Chinese).
    [28] 陈文轩, 李茜, 王珍, 孙兆军. 中国农田土壤重金属空间分布特征及污染评价[J]. 环境科学, 2020, 41(6): 2822-2833. CHEN WX, LI Q, WANG Z, SUN ZJ. Spatial distribution characteristics and pollution evaluation of heavy metals in arable land soil of China[J]. Environmental Science, 2020, 41(6): 2822-2833(in Chinese).
    [29] ZHU HZ, ZHANG ZF, ZHOU N, JIANG CY, WANG BJ, CAI L, LIU SJ. Diversity, distribution and co-occurrence patterns of bacterial communities in a Karst cave system[J]. Frontiers in Microbiology, 2019, 10: 1726.
    [30] GU YF, WANG YY, LU SE, XIANG QJ, YU XM, ZHAO K, ZOU LK, CHEN Q, TU SH, ZHANG XP. Long-term fertilization structures bacterial and archaeal communities along soil depth gradient in a paddy soil[J]. Frontiers in Microbiology, 2017, 8: 1516.
    [31] 赵翔刚, 罗衡, 刘其根, 赵良杰, 蔡林荣, 戴亮亮, 张真. 稻田养殖沙塘鳢对稻田水体及底泥微生物群落结构及多样性的影响[J]. 淡水渔业, 2017, 47(4): 8-14. ZHAO XG, LUO H, LIU QG, ZHAO LJ, CAI LR, DAI LL, ZHANG Z. Influence of the cultured Odontobutis obscurus to the microbial community structure and diversity in rice-fish system[J]. Freshwater Fisheries, 2017, 47(4): 8-14(in Chinese).
    [32] 王蓉, 朱杰, 金涛, 刘章勇. 稻虾共作模式下稻田土壤氨氧化微生物丰度和群落结构的特征[J]. 植物营养与肥料学报, 2019, 25(11): 1887-1899. WANG R, ZHU J, JIN T, LIU ZY. Characteristics of ammonia oxidation microbial abundance and community structure in paddy soils of rice-crayfish symbiosis farming system[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1887-1899(in Chinese).
    [33] 谭华, 靳旭妹, 蔡明明, 陈慧敏, 陈嘉轩, 龙明秀. 生草对关中地区有机猕猴桃园土壤理化性质及细菌群落的影响[J]. 草地学报, 2024, 32(3): 667-676. TAN H, JIN XM, CAI MM, CHEN HM, CHEN JX, LONG MX. Effects of cover crops on soil physical and chemical properties and bacterial communities in organic kiwifruit orchards in Guanzhong area of China[J]. Acta Agrestia Sinica, 2024, 32(3): 667-676(in Chinese).
    [34] 徐可, 陆嘉惠, 李新, 张迦得, 罗加粉, 郑雪荣. 不同盐渍化生境野生乌拉尔甘草土壤细菌群落结构及功能预测分析[J]. 微生物学报, 2024, 64(5): 1550-1566. XU K, LU JH, LI X, ZHANG JD, LUO JF, ZHENG XR. Composition and functions of soil bacterial communities of wild Glycyrrhiza uralensis Fisch. in habitats with different degrees of salinization[J]. Acta Microbiologica Sinica, 2024, 64(5): 1550-1566(in Chinese).
    [35] CHAUDHRY V, REHMAN A, MISHRA A, CHAUHAN PS, NAUTIYAL CS. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments[J]. Microbial Ecology, 2012, 64(2): 450-460.
    [36] 赵立君, 刘云根, 王妍, 赵蓉,任伟,徐鸣洲. 典型高原湖滨带底泥细菌群落结构及多样性特征[J]. 微生物学通报, 2020, 47(2): 401-410. ZHAO LJ, LIU YG, WANG Y, ZHAO R, REN W, XU MZ. Bacterial community structure and diversity of sediments in a typical plateau lakeshore[J]. Microbiology China, 2020, 47(2): 401-410(in Chinese).
    [37] 王鹏, 陈波, 张华. 基于高通量测序的鄱阳湖典型湿地土壤细菌群落特征分析[J]. 生态学报, 2017, 37(5): 1650-1658. WANG P, CHEN B, ZHANG H. High throughput sequencing analysis of bacterial communities in soils of a typical Poyang Lake wetland[J]. Acta Ecologica Sinica, 2017, 37(5): 1650-1658(in Chinese).
    [38] 杜蕾, 李畅游, 李文宝, 史小红, 杨旭, 刘晶晶. 夏季达里诺尔湖浮游细菌群落表、底层结构特征及其关键驱动因子[J]. 生态科学, 2021, 40(6): 13-20. DU L, LI CY, LI WB, SHI XH, YANG X, LIU JJ. Surface and bottom characteristics of bacterioplankton community in summer Dali-nor Lake and its key driving factors[J]. Ecological Science, 2021, 40(6): 13-20(in Chinese).
    相似文献
    引证文献
引用本文

徐程,倪成,邱小琮,王凯,袁金龙. 宁夏引黄灌区稻蟹共作对土壤微生物群落结构及理化因子的影响[J]. 微生物学报, 2024, 64(12): 4817-4832

复制
分享
文章指标
  • 点击次数:100
  • 下载次数: 282
  • HTML阅读次数: 357
  • 引用次数: 0
历史
  • 收稿日期:2024-06-30
  • 在线发布日期: 2024-12-07
  • 出版日期: 2024-12-04
文章二维码