紫外突变型盐单胞菌株的基因突变位点与四氢嘧啶高产的分子变异机制
作者:
基金项目:

国家自然科学基金(32260019);青海中央引导地方科技发展资金项目(2024ZY015)


Mutation sites and high ectoine production mechanism of a Halomonas mutant induced by ultraviolet radiation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [8]
  • | | |
  • 文章评论
    摘要:

    利用紫外诱变获得的一株高产四氢嘧啶(ectoine)的突变型坎帕尼亚盐单胞菌(Halomonas campaniensis) G9-72,其突变位点、分子变异和高产四氢嘧啶的机制未知。【目的】 探讨野生型菌株XH26与突变菌株G9-72的突变位点与分子遗传变异机制,明确四氢嘧啶积聚量暴发的可能原因。【方法】 采用PacBio Sequel II平台进行全基因组测序,分析突变菌株的突变基因位点,结合氨基酸代谢通路分析突变基因与四氢嘧啶合成代谢的关联性,并进行RT-PCR验证。【结果】 全基因组测序结果显示野生菌株XH26的基因组4.11 Mb,编码基因3 927个。突变菌株G9-72的基因组存在35个突变位点,包括18个单核苷酸多态性突变、14个插入突变和3个缺失突变。代谢通路的关联分析显示:突变基因argFcoaBClivH分别编码鸟氨酸氨甲酰基转移酶(NCBI数据库蛋白ArgF相似度100.00%)、磷酸泛酰半胱氨酸脱羧酶(蛋白CoaBC相似度99.28%)和支链氨基酸ABC转运体渗透酶(与蛋白LivH相似度96.27%),分别参与延胡索酸、柠檬酸的合成以及增加支链氨基酸的吸收转运。上游代谢物的流量增加可能是突变菌株四氢嘧啶积聚量暴发的关键原因。RT-PCR验证四氢嘧啶代谢通路相关的20个基因,转录表达水平与预期分析相一致。【结论】 突变基因argFcoaBClivH的过表达增强四氢嘧啶合成的代谢流,与突变菌株四氢嘧啶积聚量的暴发有关,此为后续突变菌株酶分子的反应机制研究和发酵生产提供参考依据。

    Abstract:

    A mutant (G9-72) of Halomonas campaniensis exhibiting high ectoine production was obtained by ultraviolet (UV) mutagenesis. The mutation sites, molecular variations, and high ectoine production mechanism of this mutant remain unknown. [Objective] To investigate the mutation sites and genetic variations of G9-72 compared with the wild type strain XH26 and identify the potential causes of ectoine accumulation outbreak. [Methods] PacBio Sequel II was used for whole-genome sequencing, and the mutation sites in the genome of the mutant were identified based on the sequencing results. The amino acid metabolic pathways were analyzed to reveal the association between mutated genes and ectoine synthesis, and the results were verified by RT-PCR. [Results] The genome of strain XH26 was 4.11 Mb, encoding 3 927 genes. Compared with strain XH26, G9-72 showed 35 mutation sites, including 18 single nucleotide polymorphism mutations, 14 insertion mutations, and 3 deletion mutations. The mutated genes argF, coaBC, and livH, which encoded ornithine transcarbamylase (100.00% similarity with ArgF proteins in NCBI database), phosphopantothenoylcysteine decarboxylase (99.28% similarity with CoaBC proteins in NCBI database), and branched-chain amino acid ABC transporter permease (96.27% similarity with LivH proteins in NCBI database), were implicated in the synthesis of fumaric acid, citric acid and the absorption and transport of branched-chain amino acids, respectively. The increased flow of upstream metabolites may be the key reason for the sharply increased accumulation of ectoine in the mutant. RT-PCR verified 20 genes related to the ectoine metabolic pathway, and the transcriptional expression levels were consistent with the expected analysis. [Conclusion] The overexpression of genes argF, coaBC, and livH enhanced the anabolic flow of ectoine, which contributed to a significant increase in ectoine accumulation in the mutant. This finding provides a reference point for subsequent studies on the reaction mechanisms of enzymes in the mutant and the fermentation production.

    参考文献
    [1] BECKER J, WITTMANN C. Microbial production of extremolytes: high-value active ingredients for nutrition, health care, and well-being[J]. Current Opinion in Biotechnology, 2020, 65: 118-128.
    [2] 张欣, 刘静, 朱德锐. 天然产物Ectoine与Hydroxyectoine的生物工程及医学应用研究进展[J]. 天然产物研究与开发, 2017, 29(5): 882-887. ZHANG X, LIU J, ZHU DR. Review on bioengineering and biomedical applications of natural products ectoine and hydroxyectoine[J]. Natural Product Research and Development, 2017, 29(5): 882-887(in Chinese).
    [3] SCHWIBBERT K, MARIN-SANGUINO A, BAGYAN I, HEIDRICH G, LENTZEN G, SEITZ H, RAMPP M, SCHUSTER SC, KLENK HP, PFEIFFER F, OESTERHELT D, KUNTE HJ. A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581 T[J]. Environmental Microbiology, 2011, 13(8): 1973-1994.
    [4] 张鑫, 舒志万, 李永臻, 邢江娃, 王嵘, 沈国平, 朱德锐. 相容溶质ectoine的微生物合成研究进展[J]. 生物工程学报, 2022, 38(3): 868-881. ZHANG X, SHU ZW, LI YZ, XING JW, WANG R, SHEN GP, ZHU DR. Advances in the microbial production of the compatible solute ectoine: a review[J]. Chinese Journal of Biotechnology, 2022, 38(3): 868-881(in Chinese).
    [5] SAUER T, GALINSKI EA. Bacterial milking: a novel bioprocess for production of compatible solutes[J]. Biotechnology and Bioengineering, 1998, 57(3): 306-313.
    [6] 王冠凤, 石艳丽, 钱晓路, 董艳美, 陈晨, 栾贻宏, 郭学平. ectoine高产菌株的筛选及发酵条件的优化[J]. 食品与药品, 2019, 21(1): 49-56. WANG GF, SHI YL, QIAN XL, DONG YM, CHEN C, LUAN YH, GUO XP. Screening of ectoine high-productive strain and optimization of fermentation condition[J]. Food and Drug, 2019, 21(1): 49-56(in Chinese).
    [7] SCHIRALDI C, MARESCA C, CATAPANO A, GALINSKI EA, de ROSA M. High-yield cultivation of Marinococcus M52 for production and recovery of hydroxyectoine[J]. Research in Microbiology, 2006, 157(7): 693-699.
    [8] CHEN J, LIU PF, CHU XH, CHEN JW, ZHANG HW, ROWLEY DC, WANG H. Metabolic pathway construction and optimization of Escherichia coli for high-level ectoine production[J]. Current Microbiology, 2020, 77(8): 1412-1418.
    [9] MA H, ZHAO YQ, HUANG WZ, ZHANG LZ, WU FQ, YE JW, CHEN GQ. Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine[J]. Nature Communications, 2020, 11(1): 3313.
    [10] 田磊, 张芳, 沈国平, 高翔, 龙启福, 朱德锐. Ectoine高产菌株Halomonas sp. XH26的鉴定及紫外诱变选育[J]. 生物学杂志, 2020, 37(4): 31-35. TIAN L, ZHANG F, SHEN GP, GAO X, LONG QF, ZHU DR. Identification of high-yielding strain Halomonas sp. XH26 for producing ectoine and UV mutagenesis breeding[J]. Journal of Biology, 2020, 37(4): 31-35(in Chinese).
    [11] WANG ZB, LI YZ, GAO X, XING JW, WANG R, ZHU DR, SHEN GP. Comparative genomic analysis of Halomonas campaniensis wild-type and ultraviolet radiation-mutated strains reveal genomic differences associated with increased ectoine production[J]. International Microbiology, 2023, 26(4): 1009-1020.
    [12] BOSE JL. Chemical and UV mutagenesis[M]//BOSE JL. Methods in Molecular Biology. New York: Springer New York, 2014: 111-115.
    [13] ZHANG X, ZHANG XF, LI HP, WANG LY, ZHANG C, XING XH, BAO CY. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool[J]. Applied Microbiology and Biotechnology, 2014, 98(12): 5387-5396.
    [14] 孟甜, 李玉锋. 现代工业微生物育种技术研究进展[J]. 生命科学仪器, 2009, 7(12): 3-6. MENG T, LI YF. The investigative development of breeding technology in industrial microorganisms[J]. Life Science Instruments, 2009, 7(12): 3-6(in Chinese).
    [15] 李艳青, 戴剑漉, 蒋忠科, 罗辉, 孙承航. 常压室温等离子体-紫外复合诱变选育新硫肽类抗生素166A高产菌株[J]. 中国抗生素杂志, 2022, 47(5): 514-520. LI YQ, DAI JL, JIANG ZK, LUO H, SUN CH. Breeding of new thiopeptide antibiotic 166A high-yield producing strain by MPMS composite mutagenesis with plasma and UV[J]. Chinese Journal of Antibiotics, 2022, 47(5): 514-520(in Chinese).
    [16] 曹恩华. UVA的辐射效应及其分子机理[J]. 激光生物学, 1994(4): 529-534. CAO EH. Radiation effects of ultraviolet and its molecular mechanism[J]. Acta Laser Biology Sinica, 1994, (4): 529-534(in Chinese).
    [17] 王付转, 梁秋霞, 李宗伟, 王雁萍, 吴健. 诱变和筛选方法在微生物育种中的应用[J]. 洛阳师范学院学报, 2002, 21(2): 95-99. WANG FZ, LIANG QX, LI ZW, WANG YP, WU J. Applications of mutation and screening in microbiology breeding[J]. Journal of Luoyang Normal University, 2002, 21(2): 95-99(in Chinese).
    [18] RODRÍGUEZ-CALZADA T, QIAN MJ, STRID Å, NEUGART S, SCHREINER M, TORRES-PACHECO I, GUEVARA-GONZÁLEZ RG. Effect of UV-B radiation on morphology, phenolic compound production, gene expression, and subsequent drought stress responses in chili pepper (Capsicum annuum L.)[J]. Plant Physiology and Biochemistry, 2019, 134: 94-102.
    [19] QIAN MJ, ROSENQVIST E, PRINSEN E, PESCHECK F, FLYGARE AM, KALBINA I, JANSEN MAK, STRID Å. Downsizing in plants-UV light induces pronounced morphological changes in the absence of stress[J]. Plant Physiology, 2021, 187(1): 378-395.
    [20] LO CC, BONNER CA, XIE G, D’SOUZA M, JENSEN RA. Cohesion group approach for evolutionary analysis of aspartokinase, an enzyme that feeds a branched network of many biochemical pathways[J]. Microbiology and Molecular Biology Reviews, 2009, 73(4): 594-651.
    [21] RESHETNIKOV AS, KHMELENINA VN, MUSTAKHIMOV II, TROTSENKO YA. Genes and enzymes of ectoine biosynthesis in Halotolerant Methanotrophs[J]. Methods in Enzymology, 2011, 495: 15-30.
    [22] 高红亮, 丛威, 欧阳藩. 体外培养的哺乳动物细胞的葡萄糖和谷氨酰胺代谢[J]. 生物技术通报, 2000(2): 17-22. GAO HL, CONG W, OUYANG F. Glucose and glutamine metabolism in cultured mammalian cells[J]. Biotechnology Bulletin, 2000(2): 17-22(in Chinese).
    [23] SHU ZW, ZHANG X, WANG R, XING JW, LI YZ, ZHU DR, SHEN GP. Metabolic engineering of Halomonas campaniensis strain XH26 to remove competing pathways to enhance ectoine production[J]. Scientific Reports, 2023, 13(1): 9732.
    [24] PETERKOFSKY B, GILVARG C. N-succinyl-l-diaminopimelic-glutamic transaminase[J]. Journal of Biological Chemistry, 1961, 236(5): 1432-1438.
    [25] SIMMS SA, VOIGE WH, GILVARG C. Purification and characterization of succinyl-CoA: tetrahydrodipicolinate N-succinyltransferase from Escherichia coli[J]. Journal of Biological Chemistry, 1984, 259(5): 2734-2741.
    [26] 王永宝, 陈爱民, 孙杰, 王彦章. TRAP转运体: 一种新的依赖于胞外溶质结合受体的转运系统[J]. 生命的化学, 2009, 29(6): 789-793. WANG YB, CHEN AM, SUN J, WANG YZ. TRAP transporter-a novel extracytoplasmic solute receptor-dependent transporter[J]. Chemistry of Life, 2009, 29(6): 789-793(in Chinese).
    [27] 陈福暖, 黄瑜, 蔡佳, 王忠良, 简纪常, 王蓓. ABC转运蛋白结构及其在细菌致病性中的研究进展[J]. 生物技术通报, 2022, 38(6): 43-52. CHEN FN, HUANG Y, CAI J, WANG ZL, JIAN JC, WANG B. Structure of ABC transporter and research progress of it in bacterial pathogenicity[J]. Biotechnology Bulletin, 2022, 38(6): 43-52(in Chinese).
    [28] 赵学明, 王靖宇, 陈涛, 陈洵, 班睿, 马红武. 后基因组时代的代谢工程: 机遇与挑战[J]. 生物加工过程, 2004, 2(2): 1-7. ZHAO XM, WANG JY, CHEN T, CHEN X, BAN R, MA HW. Metabolic engineering in the post genomic era: opportunities and challenges[J]. Chinese Journal of Bioprocess Engineering, 2004, 2(2): 1-7(in Chinese).
    [29] ZHANG SY, FANG Y, ZHU LF, LI HD, WANG Z, LI Y, WANG XY. Metabolic engineering of Escherichia coli for efficient ectoine production[J]. Systems Microbiology and Biomanufacturing, 2021, 1(4): 444-458.
    [30] XU SQ, ZHANG B, CHEN WH, YE K, SHEN J, LIU PF, WU JQ, WANG H, CHU XH. Highly efficient production of ectoine via an optimized combination of precursor metabolic modules in Escherichia coli BL21[J]. Bioresource Technology, 2023, 390: 129803.
    [31] ZHAO Q, LI SN, LV PW, SUN SM, MA CQ, XU P, SU HJ, YANG CY. High ectoine production by an engineered Halomonas hydrothermalis Y2 in a reduced salinity medium[J]. Microbial Cell Factories, 2019, 18(1): 184.
    [32] 张鑫. 转录组学分析盐单胞菌Ectoine合成通路的关联基因与CRISPR/Cas9系统敲除合成分流基因hom[D]. 西宁: 青海大学硕士学位论文, 2022. ZHANG X. Transcriptome analysis of related genes of Ectoine synthesis pathway in Halomonas salina and knock-out of synthetic shunt gene hom by CRISPR/Cas9 system[D]. Xining: Master’s Thesis of Qinghai University, 2022(in Chinese).
    [33] HE YZ, GONG J, YU HY, TAO Y, ZHANG S, DONG ZY. High production of ectoine from aspartate and glycerol by use of whole-cell biocatalysis in recombinant Escherichia coli[J]. Microbial Cell Factories, 2015, 14: 55.
    [34] 王晟, 王泽琛, 陈威华, 陈珂, 彭向达, 欧发芬, 郑良振, 孙瑨原, 沈涛, 赵国屏. 基于人工智能和计算生物学的合成生物学元件设计[J]. 合成生物学, 2023, 4(3): 422-443. WANG S, WANG ZC, CHEN WH, CHEN K, PENG XD, OU FF, ZHENG LZ, SUN JY, SHEN T, ZHAO GP. Design of synthetic biology components based on artificial intelligence and computational biology[J]. Synthetic Biology Journal, 2023, 4(3): 422-443(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

薛彬娟,韩睿,乔丽娟,李永臻,邢江娃,王嵘,沈国平,朱德锐. 紫外突变型盐单胞菌株的基因突变位点与四氢嘧啶高产的分子变异机制[J]. 微生物学报, 2024, 64(12): 4902-4917

复制
分享
文章指标
  • 点击次数:107
  • 下载次数: 402
  • HTML阅读次数: 492
  • 引用次数: 0
历史
  • 收稿日期:2024-07-24
  • 在线发布日期: 2024-12-07
  • 出版日期: 2024-12-04
文章二维码