柴达木盆地河流与湖泊水体微生物群落结构及共现网络模式差异
作者:
基金项目:

青海省自然科学基金(2024-ZJ-955)


Differences of microbial community structures and co-occurrence networks in rivers and lakes in the Qaidam Basin
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [55]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】 河流与湖泊是重要且紧密联系的水生生态系统,其中微生物是河流与湖泊生态系统中重要的有机组分并参与介导水体各类物质的转化和能量流动,探究河流与湖泊水体细菌和真菌群落特征及其共现网络模式的差异是深入理解柴达木盆地水生生态系统生物地球化学循环的关键。【方法】 基于高通量测序技术利用统计分析,选取柴达木盆地典型河湖(4个湖泊和6条河流)为研究对象,解析河流与湖泊水体的细菌和真菌群落的多样性、群落结构、驱动因素和共现网络的差异性。【结果】 河流水体细菌和真菌的丰度和多样性指数均高于湖泊水体(Wilcoxon,P<0.01)。河流与湖泊水体的细菌群落的最优势菌门均为变形菌门(Proteobacteria,河流占比:6.0%−63.0%;湖泊占比:8.0%−61.0%),河流与湖泊的真菌群落最优势物种不同,河流为子囊菌门(Ascomycota):0.5%−75.0%、湖泊为未分类菌门(unclassified_k_Fungi):3.0%−87.0%。河流与湖泊水体的细菌和真菌群落结构差异显著(细菌:R=0.599,P=0.001;真菌:R=0.435,P=0.001)。海拔(altitude, Alt)、叶绿素a (chlorophyll a, Chl-a)和总氮(total nitrogen, TN)是不同水体的细菌群落结构的显著驱动因子;而溶解氧(dissolved oxygen, DO)、酸碱度(potential of hydrogen potential of hydrogen, pH)和温度(temperature, Temp)是不同水体真菌群落结构的显著驱动因子。细菌和真菌群落在不同生境中稳定性差异较大:河流细菌群落比湖泊细菌群落中更稳定,而湖泊真菌群落比河流真菌群落更稳定。【结论】 柴达木盆地河流与湖泊水体的细菌和真菌群落特征存在较明显差异,表现出一定的空间异质性。本研究可为深入研究柴达木盆地河湖水生生态系统微生物群落特征的差异和联系提供数据支撑,并为该区域水资源保护和管理提供一定理论依据。

    Abstract:

    [Objective] Rivers and lakes are important and closely linked aquatic ecosystems, in which microorganisms are important organic components and participate in the transformation of various substances and energy flow. Comparing the bacterial and fungal communities and their co-occurrence networks between rivers and lakes is the key to a deeper understanding of the biogeochemical cycling in aquatic ecosystems of the Qaidam Basin. [Methods] We analyzed the diversity, structures, driving factors, and co-occurrence networks of bacterial and fungal communities in six rivers and four lakes of the Qaidam Basin by next-generation sequencing and statistical analysis methods. [Results] The abundance and diversity of bacteria and fungi in rivers were higher than those in lakes (Wilcoxon, P<0.01). The most dominant bacterial phylum was Proteobacteria in both rivers and lakes (rivers: 6.0%–63.0%; lakes: 8.0%–61.0%), while the most dominant fungal phylum varied between rivers and lakes, being Ascomycota (0.5%–75.0%) in rivers and unclassified_k_Fungi (3.0%–87.0%) in lakes. The structures of bacterial and fungal communities differed between rivers and lakes (bacteria: R=0.599, P=0.001; fungi: R=0.435, P=0.001). Altitude (Alt), chlorophyll a (Chl-a), and total nitrogen (TN) were significant factors shaping bacterial community structures, while dissolved oxygen (DO), pH, and temperature (Temp) were significant drivers shaping fungal community structures in different aquatic ecosystems. The stability of bacterial and fungal communities varied significantly between habitats. Specifically, bacterial communities were more stable in rivers than in lakes, while fungal communities were more stable in lakes than in rivers. [Conclusion] The bacterial and fungal communities varied between rivers and lakes in the Qaidam Basin, demonstrating spatial heterogeneity. This study can provide data support for the in-depth study of the differences and connections of the microbial community characteristics between rivers and lakes in the Qaidam Basin. Moreover, it lays a theoretical foundation for the protection and management of water resources in this region.

    参考文献
    [1] SCHINDLER DE, SCHEUERELL MD. Habitat coupling in lake ecosystems[J]. Oikos, 2002, 98(2): 177-189.
    [2] 穆光熠. 河流水体CDOM光学特性及其对生态环境要素的响应[D]. 长春: 东北师范大学博士学位论文, 2019. MU GY. Optical properties of riverine CDOM and their response to key eco-enviromental factors[D]. Changchun: Doctoral Dissertation of Northeast Normal University, 2019(in Chinese).
    [3] 刘扬. 基于流域水循环的微生物驱动氮素迁移转化机理研究: 以青海湖流域为例[D]. 上海: 华东师范大学博士学位论文, 2019. LIU Y. Study on mechanism of microbial-driven nitrogen migration and transformation based on watershed water cycle: taking Qinghai Lake Basin as an example[D]. Shanghai: Doctoral Dissertation of East China Normal University, 2019(in Chinese).
    [4] 章文诗. 青藏高原东南部森林河流高硝态氮浓度的驱动机制研究[D]. 拉萨: 西藏大学硕士学位论文, 2023. ZHANG WS. Mechanisms driving the high nitrate concentrations in a forest river on the southeastern Qinghai-Tibet Plateau [D]. Lasa: Master’s Thesis of Tibet University, 2023(in Chinese).
    [5] HONGCHEN J, HAILIANG D, BINGSONG Y, XINQIN L, YILIANG L, SHANSHAN J, CHUANLUN LZ. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan Plateau[J]. Environmental Microbiology, 2007, 9(10): 2603-2621.
    [6] 黄建蓉. 盐度对青藏高原湖泊微生物群落结构与功能稳定性的影响[D]. 武汉: 中国地质大学博士学位论文, 2021. HUANG JR. The influence of salinity on the microbial community structure and functional stability in Qinghai-Tibetan lakes[D]. Wuhan: Doctoral Dissertation of China University of Geosciences, 2021(in Chinese).
    [7] HAIHAN Z, YUE W, SHENGNAN C, ZHENFANG Z, JI F, ZHOUHUI Z, KUANYU L, JINGYU J. Water bacterial and fungal community compositions associated with urban lakes, Xi’an, China[J]. International Journal of Environmental Research and Public Health, 2018, 15(3): 469.
    [8] YAQIONG W, GUOYUAN B. Diversity of prokaryotic microorganisms in alkaline saline soil of the Qarhan Salt Lake area in the Qinghai-Tibet Plateau[J]. Scientific Reports, 2022, 12(1): 3365.
    [9] 王丹丹, 黄跃飞, 杨海娇. 青藏高原东北部湖泊细菌群落结构特征季节性差异及驱动机制[J]. 湖泊科学, 2023, 35(1): 267-278. WANG DD, HUANG YF, YANG HJ. Seasonal differences of lake bacterial community structures and their driving mechanisms in the northeastern of the Qinghai-Tibet Plateau[J]. Lake Sciences. 2023, 35(1): 267-278(in Chinese).
    [10] 王丹丹, 黄跃飞, 杨海娇. 青藏高原湖泊沉积物与水体细菌群落共发生网络和群落构建过程差异解析[J]. 湖泊科学. 2023, 35(3): 959-971. WANG DD, HUANG YF, YANG HJ. Differences of bacterial community co-occurrence network and assembly processes between sediment and water in lakes on the Qinghai-Tibet Plateau[J]. Lake Sciences. 2023, 35(3): 959-971(in Chinese).
    [11] MIKHAILOV IS, ZAKHAROVA YR, BUKIN YS, GALACHYANTS YP, PETROVA DP, SAKIRKO MV, LIKHOSHWAY YV. Co-occurrence networks among bacteria and microbial eukaryotes of lake baikal during a spring phytoplankton bloom[J]. Microbial Ecology, 2019, 77(1): 96-109.
    [12] ZHANG L, ZHONG MM, LI XC, LU WX, LI J. River bacterial community structure and co-occurrence patterns under the influence of different domestic sewage types[J]. Journal of Environmental Management, 2020, 266: 110590.
    [13] XU HY, FU BQ, LEI JQ, KANG H, WANG J, HUANG XH, ZHU F. Soil microbial communities and their co-occurrence networks in response to long-term Pb-Zn contaminated soil in Southern China[J]. Environmental Science and Pollution Research International, 2023, 30(10): 26687-26702.
    [14] CHEN J, WANG PF, WANG C, WANG X, MIAO LZ, LIU S, YUAN QS, SUN SH. Fungal community demonstrates stronger dispersal limitation and less network connectivity than bacterial community in sediments along a large river[J]. Environmental Microbiology, 2020, 22(3): 832-849.
    [15] ZHAO BH, JIAO CC, WANG SR, ZHAO DY, JIANG CL, ZENG J, WU QL. Contrasting assembly mechanisms explain the biogeographic patterns of benthic bacterial and fungal communities on the Tibetan Plateau[J]. Environmental Research, 2022, 214: 113836.
    [16] 生态环境部. 地表水环境质量标准: GB 3838—2002[S]. 北京: 中国环境科学出版社, 2002. Ministry of Ecology and Environment. Environmental Quality Standards for Surface Water: GB3838—2002[S]. Beijing: China Environmental Science Press, 2002(in Chinese).
    [17] 生态环境部. 水质氨氮的测定纳氏试剂分光光度法[S]. 北京: 中国环境科学出版社, 2009. Ministry of Ecology and Environment. Determination of Ammonia Nitrogen in Water by Nessler’s Reagent Spectrophotometric Method[S]. Beijing: China Environmental Science Press, 2009(in Chinese).
    [18] 中华人民共和国水利部. 水质硝酸盐氮的测定紫外分光光度法[S]. 北京: 中国环境科学出版社, 2007. Ministry of Water Resources of the People's Republic of China. Determination of Nitrate Nitrogen in Water by Ultraviolet Spectrophotometric Method[S]. Beijing: China Environmental Science Press, 2007(in Chinese).
    [19] 中华人民共和国水利部. 水质叶绿素的测定分光光度法[S]. 北京: 中国水利水电出版社, 2012. Ministry of Water Resources of the People’s Republic of China. Determination of Chlorophyll in Water by Spectrophotometric Method[S]. Beijing: China Water & Power Press, 2012(in Chinese).
    [20] CAPORASO JG, KUCZYNSKI J, STOMBAUGH J, BITTINGER K, BUSHMAN FD, COSTELLO EK, FIERER N, PEÑA AG, GOODRICH JK, GORDON JI, HUTTLEY GA, KELLEY ST, KNIGHTS D, KOENIG JE, LEY RE, LOZUPONE CA, MCDONALD D, MUEGGE BD, PIRRUNG M, REEDER J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336.
    [21] 蒙俊杰, 刘双羽, 邱小琮, 周瑞娟. 银川市典型湖泊沉积物细菌群落结构及其对重金属的响应关系[J]. 环境科学, 2024, 45(5): 2727-2740. MENG JJ, LIU SY, QIU X, ZHOU RJ. Bacterial community structure of typical lake sediments in Yinchuan City and its response to heavy metals[J]. Environmental Science, 2024, 45(5): 2727-2740(in Chinese).
    [22] ZENG J, JIAO CC, ZHAO DY, XU HM, HUANG R, CAO XY, YU ZB, WU QL. Patterns and assembly processes of planktonic and sedimentary bacterial community differ along a trophic gradient in freshwater lakes[J]. Ecological Indicators, 2019, 106: 105491.
    [23] BASTIAN M, HEYMANN S, JACOMY M. Gephi: an open source software for exploring and manipulating networks[J]. Proceedings of the International AAAI Conference on Web and Social Media, 2009, 3(1): 361-362.
    [24] ZHANG WL, GU JF, LI Y, LIN L, WANG PF, WANG C, QIAN B, WANG HL, NIU LH, WANG LF, ZHANG HJ, GAO Y, ZHU MJ, FANG SQ. New insights into sediment transport in interconnected river-lake systems through tracing microorganisms[J]. Environmental Science & Technology, 2019, 53(8): 4099-4108.
    [25] 李二阳, 马雪莉, 吕杰, 马媛, 吕光辉. 新疆天山北坡不同盐湖微生物菌群结构及其影响因子[J]. 生态学报, 2021, 41(18): 7212-7225. LI EY, MA XL, LÜ J, MA Y, LÜ GH. Microbial community structure and its influencing factors of different salt lakes on the northern slope of Tianshan Mountains, Xinjiang[J]. Acta Ecologica Sinica, 2021, 41(18): 7212-7225(in Chinese).
    [26] CARNEIRO FM, NABOUT JC, VIEIRA LCG, ROLAND F, BINI LM. Determinants of chlorophyll-a concentration in tropical reservoirs[J]. Hydrobiologia, 2014, 740(1): 89-99.
    [27] 罗宜富, 李磊, 李秋华, 焦树林, 李红梅, 陈峰峰. 阿哈水库叶绿素a时空分布特征及其与藻类、环境因子的关系[J]. 环境科学, 2017, 38(10): 4151-4159. LUO YF, LI L, LI QH, JIAO SL, LI HM, CHEN FF. Spatial and temporal distribution of chlorophyll a and its relationship to algae and environmental factors in Aha Reservoir[J]. Environmental Sciences, 2017, 38(10): 4151-4159(in Chinese).
    [28] HUANG JJ, LU CH, QIAN XM, HUANG YJ, ZHENG ZH, SHEN YM. Effect of salinity on the growth, biological activity and secondary metabolites of some marine fungi[J]. Acta Oceanologica Sinica, 2011, 30(3): 118-123.
    [29] VELEZ P. Impact of salinity stress on growth and development of aquatic fungi[M]//Soil Biology. Cham: Springer International Publishing, 2019: 155-168.
    [30] ZHANG L, ZHAO F, LI XC, LU WX. Contribution of influent rivers affected by different types of pollution???椠潴杨敥漠杣牨慡灮桧祥?愠湯摦?瑢桥敮?摨物楣瘠業湩杣?景慢捩瑡潬爠獣?慭晭晵敮捩瑴楹渠杳?晲潵牣整獵瑲?猠潩楮氠?戠慬捡瑲敧牥椠慬?楫湥?慊湝?愠牅楣摯?慯牸敩慣孯?嵯??匠捡楮敤渠捅敮?潩晲?瑮桭敥?呴潡瑬愠汓??湥癴楹爬漠渲洰攲渰琬??代?????????????????? 王博雯, 汤祥明, 高光, 余多慰, 李琳琳, 赛·巴雅尔图. 博斯腾湖细菌丰度时空分布及其与环境因子的关系[J]. 生态学报, 2014, 34(7): 1812-1821. WANG BW, TANG XM, GAO G, YU DW, LI LL, SAI BYET. Spatiotemporal dynamics of bacterial abundance and related environmental parameters in Lake Bosten[J]. Ecological Frontiers, 2014, 34(7): 1812-1821(in Chinese).
    [32] 唐婧, 徐小蓉, 商传禹, 牛晓娟, 张习敏, 乙引. 南明河城区河段细菌多样性与环境因子的关系[J]. 微生物学报, 2015, 55(8): 1050-1059. TANG J, XU XR, SHANG CY, NIU XJ, ZHANG XM, YI Y. Association of bacterial diversity in city area of Nanming river with environmental factors[J]. Acta Microbiologica Sinica, 2015, 55(8): 1050-1059(in Chinese).
    [33] HOUSER JN, RICHARDSON WB. Nitrogen and phosphorus in the Upper Mississippi River[J]. Hydrobiology, 2010(640): 71-78.
    [34] GAO Y, WANG CC, ZHANG WG, DI PP, YI N, CHEN CR. Vertical and horizontal assemblage patterns of bacterial communities in a eutrophic river receiving domestic wastewater in southeast China[J]. Environmental Pollution, 2017, 230: 469-478.
    [35] MO YY, PENG F, GAO XF, XIAO P, LOGARES R, JEPPESEN E, REN KX, XUE YY, YANG J. Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir[J]. Microbiome, 2021, 9(1): 128.
    [36] IBEKWE AM, MA JC, MURINDA SE. Bacterial community composition and structure in an Urban River impacted by different pollutant sources[J]. Science of the Total Environment, 2016, 566: 1176-1185.
    [37] ZHANG L, FANG WK, LI XC, GAO G, JIANG JH. Linking bacterial community shifts with changes in the dissolved organic matter pool in a eutrophic lake[J]. Science of the Total Environment, 2020, 719: 137387.
    [38] CLARA R, JUAN PN, PAUL AG. Terrestrial origin of bacterial communities in complex boreal freshwater networks[J]. Ecology Letters, 2015, 18(11): 1198-1206.
    [39] 王革林, 于鲁冀, 王莉, 范鹏宇, 刘萌硕, 黎亚辉, 古立坤. 生态修复河流微生物群落组成及影响因素研究[J]. 环境工程技术学报, 2023, 13(4): 1562-1572. WANG GL, YU LJ, WANG L, FAN PY, LIU MS, LI YH, GU LK. Study on the composition and influencing factors of microbial community in ecological restoration rivers[J]. Journal of Environmental Engineering Technology, 2023, 13(4): 1562-1572(in Chinese).
    [40] ZHANG QQ, JIAN SL, LI KM, WU ZB, GUAN HT, HAO JW, WANG SY, LIN YY, WANG GJ, LI AH. Community structure of bacterioplankton and its relationship with environmental factors in the upper reaches of the Heihe River in Qinghai Plateau[J]. Environmental Microbiology, 2021, 23(2): 1210-1221.
    [41] LIU ZH, HUANG SB, SUN GP, XU ZC, XU MY. Phylogenetic diversity, composition and distribution of bacterioplankton community in the Dongjiang River, China[J]. FEMS Microbiology Ecology, 2012, 80(1): 30-44.
    [42] KIRCHMAN DL. The ecology of Cytophaga-Flavobacteria in aquatic environments[J]. FEMS Microbiology Ecology, 2002, 39(2): 91-100.
    [43] TANG XM, XIE GJ, SHAO KQ, TIAN W, GAO G, QIN BQ. Aquatic bacterial diversity, community composition and assembly in the semi-arid Inner Mongolia Plateau: combined effects of salinity and nutrient levels[J]. Microorganisms, 2021, 9(2): 208.
    [44] METCALF JL, CARTER DO, KNIGHT R. Microbiology of death[J]. Current Biology, 2016, 26(13): R561-R563.
    [45] 张玲豫, 齐雅柯, 焦健, 李朝周. 河西走廊沙地芦苇(Phragmites australis)根际土壤微生物群落多样性[J]. 中国沙漠, 2021, 41(6): 1-9. ZHANG LY, QI YK, JIAO J, LI CZ. Microbial community diversity of reed rhizosphere soil in different sandy land habitats of Hexi Corridor, Gansu, China[J]. Journal of Desert Research, 2021, 41(6): 1-9(in Chinese).
    [46] GUO QX, YAN LJ, KORPELAINEN H, NIINEMETS Ü, LI CY. Plant-plant interactions and N fertilization shape soil bacterial and fungal communities[J]. Soil Biology and Biochemistry, 2019, 128: 127-138.
    [47] JIA T, GUO TY, YAO YS, WANG RH, CHAI BF. Seasonal microbial community characteristic and its driving factors in a copper tailings dam in the Chinese Loess Plateau[J]. Frontiers in Microbiology, 2020, 11: 1574.
    [48] 周子振. 混合充氧对分层水库水质改善及微生物种群结构调控研究[D]. 西安: 西安建筑科技大学博士学位论文, 2017. ZHOU ZZ. Study of water quality improvement and microbial community structure regulation of a stratified reservoir by mixing and oxygenation[D]. Xian: Doctoral Dissertation of Xi’an University of Architecture and Technology, 2017(in Chinese).
    [49] 孙小溪. 青藏高原湖泊微生物介导的氮移除过程及其环境效应[D]. 武汉: 中国地质大学博士学位论文, 2022. SUN XX. Microbially mediated nitrogen removal process and its environmental effect in the Qing-Tibetan lakes[D]. Wuhan: Doctoral Dissertation of China University of Geosciences, 2022(in Chinese).
    [50] REN Z, ZHANG C, LI X, MA K, CUI BS. Abundant and rare bacterial taxa structuring differently in sediment and water in thermokarst lakes in the Yellow River source area, Qinghai-Tibet Plateau[J]. Frontiers in Microbiology, 2022, 13: 774514.
    [51] REN Z, ZHANG C, LI X, MA K, ZHANG Z, FENG KX, CUI BS. Bacterial communities present distinct co-occurrence networks in sediment and water of the thermokarst lakes in the Yellow River source area[J]. Frontiers in Microbiology, 2021, 12: 716732.
    [52] LINDH MV, LEFÉBURE R, DEGERMAN R, LUNDIN D, ANDERSSON A, PINHASSI J. Consequences of increased terrestrial dissolved organic matter and temperature on bacterioplankton community composition during a Baltic Sea mesocosm experiment[J]. Ambio, 2015, 44(Suppl 3): 402-412.
    [53] KASANA RC, PANDEY CB. Exiguobacterium: an overview of a versatile genus with potential in industry and agriculture[J]. Critical Reviews in Biotechnology, 2018, 38(1): 141-156.
    [54] WANG Y, HU X, SUN Y, WANG C. Influence of the cold bottom water on taxonomic and functional composition and complexity of microbial communities in the southern Yellow Sea during the summer[J]. Science of The Total Environment. 2021, 759: 143496.
    [55] WANG DD, HUANG YF, ZHANG S, LIU SF, WANG T, YANG HJ. Differences in bacterial diversity, composition, and community networks in lake water across three distinct regions on the Qinghai-Tibet Plateau[J]. Frontiers in Environmental Science, 2022, 10: 1033160.
    [56] ZENG QC, AN SS, LIU Y, WANG HL, WANG Y
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

贾海超,王丹丹,黄跃飞,殷恒芝,苏子淇,李伯荣,高印轩,夏中帅,孙继瑶. 柴达木盆地河流与湖泊水体微生物群落结构及共现网络模式差异[J]. 微生物学报, 2024, 64(12): 4918-4935

复制
分享
文章指标
  • 点击次数:103
  • 下载次数: 209
  • HTML阅读次数: 314
  • 引用次数: 0
历史
  • 收稿日期:2024-07-01
  • 在线发布日期: 2024-12-07
  • 出版日期: 2024-12-04
文章二维码