玉米大斑病菌bZIP基因家族鉴定及HT-毒素诱导过程中的表达
作者:
基金项目:

国家自然科学基金(22078171);中央引导地方科技发展资金(246Z3610G,236Z6507G);唐山师范学院科学研究基金(2024PT06)


The bZIP gene family in Setosphaeria turcica: identification and expression analysis during HT-toxin induction process
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】碱性亮氨酸拉链(basic leucine zipper,bZIP)蛋白是真核生物中最大且最保守的转录因子之一,参与许多植物病原真菌的生长发育和致病过程。本文旨在对玉米大斑病菌(Setosphaeria turcica) bZIP转录因子进行全基因组鉴定,并探讨它们在HT-毒素诱导过程中的表达规律。【方法】从玉米大斑病菌基因组数据库中筛选鉴定bZIP家族成员,分析其理化性质、保守结构域、亚细胞定位、顺式作用元件、系统进化关系和蛋白质互作网络,利用RNA-seq数据库分析bZIP家族成员在HT-毒素诱导过程中的表达情况。【结果】从玉米大斑病菌基因组筛选到14个bZIP家族成员(StbZIP1−14),其理化性质差异较大,编码氨基酸226−613个,相对分子量25.24−66.30 kDa,等电点4.66−10.36;亚细胞定位均为细胞核,含有非生物因素胁迫、激素诱导、细胞周期调控和增强子、核心启动子等660个顺式作用响应元件。与11个其他重要植物病原真菌的系统进化分析结果表明,StbZIPs可分为10个类群(groups),与互隔交链孢霉(Alternaria alternata)的AabZIPs存在明显的共线性关系。分析StbZIPs在HT-毒素诱导过程中的表达情况,发现StbZIP1StbZIP5StbZIP7StbZIP10StbZIP11与HT-毒素诱导显著相关,其中StbZIP5表达量最高并在HT-毒素诱导21 d和28 d时显著上调。分析了StbZIPs的蛋白质互作网络,提供了3条以StbZIP5为中心的StbZIPs互作途径。【结论】玉米大斑病菌bZIP转录因子家族成员具有显著的理化性质和结构差异、广泛的遗传多样性和显著的功能分化,并在HT-毒素诱导过程中发挥重要的转录调控作用。

    Abstract:

    [Objective] The basic leucine zipper (bZIP) factors are a group of large and conserved transcription factors in eukaryotes, and they are involved in the growth, development, and infection of pathogenic fungi in plants. This study aims to identify the bZIP transcription factors in the whole genome of Setosphaeria turcica and explore their functions during HT-toxin induction. [Methods] The members of the bZIP family were screened and identified from the genome database of Setosphaeria turcica, and their physicochemical properties, conserved domains, subcellular localization, cis-acting elements, phylogenetic relationship, and protein-protein interaction network were analyzed. The RNA-seq database was used to analyze the expression of bZIP family members during pathogen infection and HT-toxin induction. [Results]Fourteen bZIP family members (StbZIP1–14) were screened from the genome of Setosphaeria turcica, with significant differences in physical and chemical properties. These factors had the lengths of 226–613 aa, relative molecular weights of 25.24–66.30 kDa, isoelectric points of 4.66–10.36, and the subcellular localization in the nucleus. These factors carried 660 cis-acting elements involved in abiotic stress, hormone induction, cell cycle regulation, enhancers, and core promoters. The phylogenetic analysis with 11 other major pathogenic fungi in plants indicated that StbZIPs were clustered into 10 groups and had a clear co-linear relationship with AabZIPs of Alternaria alternata. The expression levels of StbZIP1, StbZIP5, StbZIP7, StbZIP10, and StbZIP11were significantly correlated with HT-toxin induction, among which StbZIP5 had the highest expression level and demonstrated upregulated expression after 21 days and 28 days of HT-toxin induction. The protein-protein interaction network of StbZIPs predicted three StbZIPs interaction pathways centered on StbZIP5. [Conclusion] The members of the bZIP family of Setosphaeria turcica have significant physicochemical and structural differences, extensive genetic diversity, and significant functional differentiation, playing an important role in transcriptional regulation during HT-toxin induction.

    参考文献
    [1] STOLZ ML, McCORMICK C. The bZIP proteins of oncogenic viruses[J]. Viruses, 2020, 12(7): 757.
    [2] GUO ZL, DZINYELA R, YANG LM, HWARARI D. bZIP transcription factors: structure, modification, abiotic stress responses and application in plant improvement[J]. Plants, 2024, 13(15): 2058.
    [3] GAI YP, LI L, LIU B, MA HJ, CHEN YN, ZHENG F, SUN XP, WANG MS, JIAO C, LI HY. Distinct and essential roles of bZIP transcription factors in the stress response and pathogenesis in Alternaria alternata[J]. Microbiological Research, 2022, 256: 126915.
    [4] YIN WB, REINKE AW, SZILÁGYI M, EMRI T, CHIANG YM, KEATING AE, PÓCSI I, WANG CCC, KELLER NP. bZIP transcription factors affecting secondary metabolism, sexual development and stress responses in Aspergillus nidulans[J]. Microbiology, 2013, 159(Pt 1): 77-88.
    [5] XIAO P, SHIN KS, WANG TH, YU JH. Aspergillus fumigatus flbB encodes two basic leucine zipper domain (bZIP) proteins required for proper asexual development and gliotoxin production[J]. Eukaryotic Cell, 2010, 9(11): 1711-1723.
    [6] LEI YF, LIU GD, YAO GS, LI ZH, QIN YQ, QU YB. A novel bZIP transcription factor ClrC positively regulates multiple stress responses, conidiation and cellulase expression in Penicillium oxalicum[J]. Research in Microbiology, 2016, 167(5): 424-435.
    [7] GUO M, CHEN Y, DU Y, DONG YH, GUO W, ZHAI S, ZHANG HF, DONG SM, ZHANG ZG, WANG YC, WANG P, ZHENG XB. The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae[J]. PLoS Pathogens, 2011, 7(2): e1001302.
    [8] ZHAO KH, LIU LM, HUANG SW. Genome-wide identification and functional analysis of the bZIP transcription factor family in rice bakanae disease pathogen, Fusarium fujikuroi[J]. International Journal of Molecular Sciences, 2022, 23(12): 6658.
    [9] DONG JG, FAN YS, GUI XM, AN XL, MA JF, DONG ZP. Geographic distribution and genetic analysis of physiological races of Setosphaeria turcica in Northern China[J]. American Journal of Agricultural and Biological Sciences, 2008, 3(1): 389-398.
    [10] ZHANG LH, DONG JG, WANG CH, LI ZP. Purification and structural analysis of a selective toxin fraction produced by the plant pathogen Setosphaeria turcica[J]. Agricultural Sciences in China, 2007, 6(4): 452-457.
    [11] WATHANEEYAWECH S, SIRITHUNYA P, SMITAMANA P. Study of the host range of northern corn leaf blight disease and effect of Exserohilum turcicum toxin on sweet corn[J]. Journal of Agricultural Technology, 2015, 11(4): 953-963.
    [12] 范永山, 谷守芹, 董金皋, 董娜. MAPK途径对玉米大斑病菌HT-毒素产生和生物学活性的调控作用[J]. 中国农业科学, 2008, 41(1): 86-92. FAN YS, GU SQ, DONG JG, DONG N. Regulation of MAPK signal pathway on the production and biological activity of HT-toxin in Setosphaeria turcica[J]. Scientia Agricultura Sinica, 2008, 41(1): 86-92(in Chinese).
    [13] GONG XD, FENG SZ, ZHAO J, TANG C, TIAN L, FAN YS, CAO ZY, HAO ZM, JIA H, ZANG JP, ZHANG YF, HAN JM, GU SQ, DONG JG. StPBS2, a MAPK kinase gene, is involved in determining hyphal morphology, cell wall development, hypertonic stress reaction as well as the production of secondary metabolites in Northern Corn Leaf Blight pathogen Setosphaeria turcica[J]. Microbiological Research, 2017, 201: 30-38.
    [14] LI P, GONG XD, JIA H, FAN YS, ZHANG YF, CAO ZY, HAO ZM, HAN JM, GU SQ, DONG JG. MAP kinase gene STK1 is required for hyphal, conidial, and appressorial development, toxin biosynthesis, pathogenicity, and hypertonic stress response in the plant pathogenic fungus Setosphaeria turcica[J]. Journal of Integrative Agriculture, 2016, 15(12): 2786-2794.
    [15] LI P, GU SQ, SHEN S, DONG JG, WU M, WANG MJ, YANG Y, ZHANG CZ, FAN YS, HAN JM. STK1, a MAP kinase gene from Setosphaeria turcica, confers preferable tolerance to sodium salt stress[J]. African Journal of Microbiology Research, 2013, 6(40): 6830-6837.
    [16] 张淑红, 高凤菊, 武秋颖, 张运峰, 范永山. 玉米大斑病菌HST生物合成基因簇的结构和表达分析[J]. 西北农林科技大学学报(自然科学版), 2022, 50(7): 84-91. ZHANG SH, GAO FJ, WU QY, ZHANG YF, FAN YS. Structure and expression analysis of HST synthetic gene Cluster 397.3 in Setosphaeria turcica[J]. Journal of Northwest A&F University (Natural Science Edition), 2022, 50(7): 84-91(in Chinese).
    [17] 张淑红, 张运峰, 范永山. STK1基因对山梨醇高渗胁迫下玉米大斑病菌菌丝生长和发育的调控[J]. 西北农林科技大学学报(自然科学版), 2018, 46(7): 80-86. ZHANG SH, ZHANG YF, FAN YS. Regulation of mycelium growth and development of Setosphaeria turcica by STK1 gene under sorbitol hypertonic stress[J]. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(7): 80-86(in Chinese).
    [18] 张运峰, 张淑红, 武秋颖, 范永山. STK1对玉米大斑病菌附着胞发育过程中糖原和脂肪积累的影响[J]. 中国农业科学, 2017, 50(15): 2928-2935. ZHANG YF, ZHANG SH, WU QY, FAN YS. Effects of STK1 on glycogen and lipid accumulation during the appressorium development of Setosphaeria turcica[J]. Scientia Agricultura Sinica, 2017, 50(15): 2928-2935(in Chinese).
    [19] OHM RA, FEAU N, HENRISSAT B, SCHOCH CL, HORWITZ BA, BARRY KW, CONDON BJ, COPELAND AC, DHILLON B, GLASER F, HESSE CN, KOSTI I, LaBUTTI K, LINDQUIST EA, LUCAS S, SALAMOV AA, BRADSHAW RE, CIUFFETTI L, HAMELIN RC, KEMA GHJ, et al. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi[J]. PLoS Pathogens, 2012, 8(12): e1003037.
    [20] CONDON BJ, LENG YQ, WU DL, BUSHLEY KE, OHM RA, OTILLAR R, MARTIN J, SCHACKWITZ W, GRIMWOOD J, MohdZAINUDIN N, XUE CS, WANG R, MANNING VA, DHILLON B, TU ZJ, STEFFENSON BJ, SALAMOV A, SUN H, LOWRY S, LaBUTTI K, et al. Comparative genome structure, secondary metabolite, and effector coding capacity across Cochliobolus pathogens[J]. PLoS Genetics, 2013, 9(1): e1003233.
    [21] CHEN CJ, CHEN H, ZHANG Y, THOMAS HR, FRANK MH, HE YH, XIA R. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.
    [22] DEAN R, van KAN JAL, PRETORIUS ZA, HAMMOND-KOSACK KE, Di PIETRO A, SPANU PD, RUDD JJ, DICKMAN M, KAHMANN R, ELLIS J, FOSTER GD. The Top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(4): 414-430.
    [23] DRÖGE-LASER W, SNOEK BL, SNEL B, WEISTE C. The Arabidopsis bZIP transcription factor family: an update[J]. Current Opinion in Plant Biology, 2018, 45: 36-49.
    [24] WEI KF, CHEN J, WANG YM, CHEN YH, CHEN SX, LIN YN, PAN S, ZHONG XJ, XIE DX. Genome-wide analysis of bZIP-encoding genes in maize[J]. DNA Research, 2012, 19(6): 463-476.
    [25] LI YY, MENG D, LI MJ, CHENG LL. Genome-wide identification and expression analysis of the bZIP gene family in apple (Malus domestica)[J]. Tree Genetics & Genomes, 2016, 12(4): 82.
    [26] LIANG Y, XIA JQ, JIANG YS, BAO YZ, CHEN HC, WANG DJ, ZHANG D, YU J, CANG J. Genome-wide identification and analysis of bZIP gene family and resistance of TaABI5 (TabZIP96) under freezing stress in wheat (Triticum aestivum)[J]. International Journal of Molecular Sciences, 2022, 23(4): 2351.
    [27] ZHANG PL, LIU J, JIA N, WANG M, LU Y, WANG DS, ZHANG JZ, ZHANG HE, WANG X. Genome-wide identification and characterization of the bZIP gene family and their function in starch accumulation in Chinese chestnut (Castanea mollissima Blume)[J]. Frontiers in Plant Science, 2023, 14: 1166717.
    [28] RYU T, JUNG J, LEE S, NAM HJ, HONG SW, YOO JW, LEE DK, LEE D. bZIPDB: a database of regulatory information for human bZIP transcription factors[J]. BMC Genomics, 2007, 8: 136.
    [29] FASSLER J, LANDSMAN D, ACHARYA A, MOLL JR, BONOVICH M, VINSON C. B-ZIP proteins encoded by the Drosophila genome: evaluation of potential dimerization partners[J]. Genome Research, 2002, 12(8): 1190-1200.
    [30] ZHENG ZF, AIHEMAITI Y, LIU JQ, AFRIDI MI, YANG SM, ZHANG XM, XU YF, CHEN CH, TU HJ. The bZIP transcription factor ZIP-11 is required for the innate immune regulation in Caenorhabditis elegans[J]. Frontiers in Immunology, 2021, 12: 744454.
    [31] LUO XJ, ZHAN XR, RUAN RX, XI Y, SHEN CJ, WANG HZ, WANG MS. Genome-wide identification of the Penicillium digitatum bZIP gene family and the roles of one key member, PdatfA[J]. Research in Microbiology, 2022, 173(8): 103970.
    [32] MARINER BL, FELKER DP, CANTERGIANI RJ, PETERSON J, McCORMICK MA. Multiomics of GCN4-dependent replicative lifespan extension models reveals Gcn4 as a regulator of protein turnover in yeast[J]. International Journal of Molecular Sciences, 2023, 24(22): 16163.
    [33] ZHANG L, ZENG SG, YU ZZ, ZHANG GX, XIONG ZF, XIE FY, YOU ZY. Overexpression of activating transcription factor-2(ATF-2) activates Wnt/Ca2+ signaling pathways and promotes proliferation and invasion in non-small-cell lung cancer[J]. Disease Markers, 2022, 2022: 5772089.
    [34] LI LT, BERTRAM S, KAPLAN J, JIA X, WARD DM. The mitochondrial iron exporter genes MMT1 and MMT2 in yeast are transcriptionally regulated by Aft1 and Yap1[J]. The Journal of Biological Chemistry, 2020, 295(6): 1716-1726.
    [35] RODRIGUES-POUSADA C, DEVAUX F, CAETANO SM, PIMENTEL C, Da SILVA S, CORDEIRO AC, AMARAL C. Yeast AP-1 like transcription factors (Yap) and stress response: a current overview[J]. Microbial Cell, 2019, 6(6): 267-285.
    [36] FORDYCE PM, PINCUS D, KIMMIG P, NELSON CS, EL-SAMAD H, WALTER P, DeRISI JL. Basic leucine zipper transcription factor Hac1 binds DNA in two distinct modes as revealed by microfluidic analyses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(45): E3084-E3093.
    [37] MATITYAHU A, SHWARTZ M, ONN I. Identifying functional domains in subunits of structural maintenance of chromosomes (SMC) complexes by transposon mutagenesis screen in yeast[J]. Methods in Molecular Biology, 2019, 2004: 63-78.
    [38] 蒋翊宸, 刘馨, 方欣, 冯建茹, 李露, 徐剑宏, 史建荣. 单端孢霉烯族毒素的产生及分子调控机制[J]. 菌物学报, 2020, 39(3): 521-538. JIANG YC, LIU X, FANG X, FENG JR, LI L, XU JH, SHI JR. Recent advances on trichothece mycotoxins: their biosynthesis and regulation[J]. Mycosystema, 2020, 39(3): 521-538(in Chinese).
    [39] ALEXANDER NJ, McCORMICK SP, HOHN TM. TRI12, a trichothecene efflux pump from Fusarium sporotrichioides: gene isolation and expression in yeast[J]. Molecular & General Genetics, 1999, 261(6): 977-984.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张淑红,张运峰,高凤菊,武秋颖,李亚子,许可,范永山,刘玉卫. 玉米大斑病菌bZIP基因家族鉴定及HT-毒素诱导过程中的表达[J]. 微生物学报, 2025, 65(1): 283-302

复制
分享
文章指标
  • 点击次数:70
  • 下载次数: 151
  • HTML阅读次数: 97
  • 引用次数: 0
历史
  • 收稿日期:2024-07-30
  • 在线发布日期: 2025-01-04
  • 出版日期: 2025-01-04
文章二维码