茶花鸡源罗伊特氏黏液乳杆菌CHF7-2的益生特性及全基因组测序分析
作者:
作者单位:

1.云南农业大学 动物科学技术学院,云南 昆明;2.云南省动物营养与饲料重点实验室,云南 昆明;3.云南农业大学 食品科学技术学院,云南 昆明

作者简介:

徐乐:实验设计、实验操作、数据分析和论文撰写;陈诗宇:实验操作、数据分析和论文撰写;王上:实验操作、数据分析;张志翔:实验操作;董斌:实验操作;林秋叶:实验设计、数据分析、论文审阅和修改;曹振辉:实验设计、数据分析、论文审阅和修改。

基金项目:

云南省中青年学术和技术带头人后备人才项目(202305AC160040);“兴滇英才支持计划” 青年人才项目(YNWR-QNBJ-2018-137)


Probiotic characterization and whole genome sequencing of Limosilactobacillus reuteri CHF7-2 from Chahua chicken
Author:
Affiliation:

1.Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China;2.Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Kunming, Yunnan, China;3.College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China

Fund Project:

This work was supported by the Yunnan Provincial Middle-young Academic and Technical Leader Candidate (202305AC160040) and the Young Top-notch Talent of Yunnan Xingdian Support Project for High Level Talents (YNWR-QNBJ-2018-137).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [64]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    目的 解析茶花鸡源罗伊特氏黏液乳杆菌CHF7-2的益生特性和安全性,为开发利用该菌株作为饲用微生态制剂提供理论依据。方法 通过体外试验检测菌株CHF7-2的黏附性能、产酶性能、抑菌功效和抗氧化活性。利用PacBio Sequel II和Illumina NovaSeq 6000平台对菌株CHF7-2进行全基因组测序,并采用多种生物信息学工具和数据库对其基因组进行注释,从分子层面探究其益生机制和安全性。结果 体外试验研究表明,菌株CHF7-2展现出良好的益生特性和安全性:具有较强的表面疏水性、自凝聚性和一定的抗氧化能力;能有效抑制大肠杆菌K88、金黄色葡萄球菌ATCC 49521、鸡伤寒沙门氏菌CICC 21510和猪霍乱沙门氏菌CVCC 3383的生长;能够产生蛋白酶和脂肪酶;不产生溶血环,表明其饲用安全性。全基因组测序分析结果显示,菌株CHF7-2的基因组大小为2 116 761 bp,平均G+C含量为38.8%,编码基因数量为2 067个。同时,在CHF7-2基因组中发现了Ⅲ类细菌素EnlA合成基因簇,以及多个与耐酸、耐胆盐、耐热胁迫、耐冷胁迫、黏附、抗氧化和有机酸合成相关的抗应激和益生基因,且基因组中未发现毒力和耐药基因。结论 罗伊特氏黏液乳杆菌CHF7-2是一株具有潜力的益生菌,有望成为饲用微生态制剂的重要候选菌株。

    Abstract:

    Objective To study the probiotic properties and safety of Limosilactobacillus reuteri CHF7-2 isolated from Chahua chicken, providing a theoretical basis for the development of this strain as a microecological feed additive.Methods In vitro assays were conducted to evaluate the adhension, enzyme production, antibacterial activity, and antioxidant activity of strain CHF7-2. PacBio Sequel II and Illumina NovaSeq 6000 were used for whole genome sequencing of strain CHF7-2. Bioinformatics tools and databases were then used for genome annotation to explore the probiotic mechanisms and safety of this strain at the molecular level.Results Strain CHF7-2 possessed significant probiotic properties and safety. It exhibited high surface hydrophobicity, self-coagulation, and antioxidant activity. The strain inhibited the growth of Escherichia coli K88, Staphylococcus aureus ATCC 49521, Salmonella gallinarum CICC 21510, and Salmonella choleraesuis CVCC 3383. Strain CHF7-2 produced protease and lipase, and it was safe for use in feed since it did not exhibit hemolytic activity. Whole genome sequencing revealed that the genome size of CHF7-2 was 2 116 761 bp, with the G+C content of 38.8%, encoding 2 067 genes. Additionally, the genome carried the biosynthetic gene cluster of the class III bacteriocin EnlA and multiple genes involved in the acid tolerance, bile salt tolerance, heat stress tolerance, cold stress tolerance, adhesion, antioxidation, and organic acid synthesis, with no virulence or antibiotic resistance genes detected.Conclusion L. reuteri CHF7-2 is a potential probiotic strain and a promising candidate for use as a microecological feed additive.

    参考文献
    [1] HUO JL, WU GS, CHEN T, HUO HL, YUAN F, LIU LX, GE CR, MIAO YW. Genetic diversity of local Yunnan chicken breeds and their relationships with Red Junglefowl[J]. Genetics and Molecular Research, 2014, 13(2): 3371-3383.
    [2] 王坤, 葛长荣. 云南地方鸡资源现状与保护[J]. 中国畜禽种业, 2023, 19(12): 129-139.WANG K, GE CR. Present situation and protection of Yunnan local chicken resources[J]. The Chinese Livestock and Poultry Breeding, 2023, 19(12): 129-139 (in Chinese).
    [3] 杨亮宇. 三种云南地方鸡肠道微生物宏基因组学研究[D]. 武汉: 华中农业大学博士学位论文, 2022.YANG LY. Metagenomic studies on gut microbiome of three kinds of native chicken breeds in Yunnan Province[D]. Wuhan: Doctoral Dissertation of Huazhong Agricultural University, 2022 (in Chinese).
    [4] CARRASCO JMD, CASANOVA NA, MIYAKAWA MEF. Microbiota, gut health and chicken productivity: what is the connection?[J]. Microorganisms, 2019, 7(10): 374.
    [5] RYCHLIK I. Composition and function of chicken gut microbiota[J]. Animals, 2020, 10(1): 103.
    [6] 邹建华, 叶朋飞, 毕润, 柴宁, 汤中洁, 汪思凡, 潘洪彬, 曹振辉. 散养茶花鸡源乳酸菌分离鉴定及益生特性研究[J]. 云南农业大学学报(自然科学), 2018, 33(4): 647-654.ZOU JH, YE PF, BI R, CHAI N, TANG ZJ, WANG SF, PAN HB, CAO ZH. Isolation and identification of lactic acid bacteria from fee range Chahua chickens and their probiotic properties[J]. Journal of Yunnan Agricultural University (Natural Science), 2018, 33(4): 647-654 (in Chinese).
    [7] JIANG JY, LI K, XIAO Y, ZHONG AA, TANG JJ, DUAN YF, LI ZJ. Limosilactobacillus reuteri regulating intestinal function: a review[J]. Fermentation, 2023, 9(1): 19.
    [8] ABUQWIDER J, ALTAMIMI M, MAURIELLO G. Limosilactobacillus reuteri in health and disease[J]. Microorganisms, 2022, 10(3): 522.
    [9] LUO ZC, CHEN AL, XIE AN, LIU XY, JIANG SY, YU RQ. Limosilactobacillus reuteri in immunomodulation: molecular mechanisms and potential applications[J]. Frontiers in Immunology, 2023, 14: 1228754.
    [10] 饲料添加剂品种目录(2013)[J]. 中华人民共和国农业部公报, 2014(1): 61-63.Catalogue of feed additive varieties (2013)[J]. Bulletin of the Ministry of Agriculture of the People’s Republic of China, 2014(1): 61-63 (in Chinese).
    [11] 解读关于《可用于食品的菌种名单》和《可用于婴幼儿食品的菌种名单》更新的公告(2022年第4号)[J]. 饮料工业, 2022, 25(5): 3-4.Announcement on the updates to the List of Strains Usable in Food and the List of Strains Usable in Infant Food (2022 No. 4)[J]. Beverage Industry, 2022, 25(5): 3-4 (in Chinese).
    [12] PENG XQ, ED-DRA A, YUE M. Whole genome sequencing for the risk assessment of probiotic lactic acid bacteria[J]. Critical Reviews in Food Science and Nutrition, 2022, 63(32): 11244-11262.
    [13] 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准 食品微生物学检验 乳酸菌检验: GB 4789.35—2023[S]. 北京: 中国标准出版社, 2023.National Health Commission of the People’s Republic of China, National Medical Products Administration. Food Safety National Standard, Food Microbiological Examination, Lactic Acid Bacteria Test: GB 4789.35-2023[S]. Beijing: Standards Press of China, 2023 (in Chinese).
    [14] FITRI F, TAWALI AB, LAGA A, DWYANA Z. Enzyme activity assay of lactic acid bacteria from civet (Paradoxurus hermaphroditus) digestive tract[J]. Advances in Animal and Veterinary Sciences, 2021, 9(10): 1649-1654.
    [15] KANPIENGJAI A, LUMYONG S, NGUYEN TH, HALTRICH D, KHANONGNUCH C. Characterization of a maltose-forming α-amylase from an amylolytic lactic acid bacterium Lactobacillus plantarum S21[J]. Journal of Molecular Catalysis B-Enzymatic, 2015, 120: 1-8.
    [16] KAUSHIK JK, KUMAR A, DUARY RK, MOHANTY AK, GROVER S, BATISH VK. Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum[J]. PLoS One, 2009, 4(12): e8099.
    [17] 李忠琴, 王泽楠, 黄文树, 杨求华, 邹文政. 仿刺参(Apostichopus japonicus)肠道源植物乳杆菌(Lactobacillus plantarum) HY21的生长及益生特性分析[J]. 微生物学报, 2024, 64(3): 840-853.LI ZQ, WANG ZN, HUANG WS, YANG QH, ZOU WZ. Growth and probiotic properties of Lactobacillus plantarum HY21 from intestinal tract of Apostichopus japonicus[J]. Acta Microbiologica Sinica, 2024, 64(3): 840-853 (in Chinese).
    [18] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 饲料添加剂酸性、中性蛋白酶活力的测定 分光光度法: GB/T 28715—2012[S]. 北京: 中国标准出版社, 2013.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Determination of acidic and neutral protease activity in feed additives—Spetrophotometric method: GB/T 28715—2012[S]. Beijing: Standards Press of China, 2013 (in Chinese).
    [19] FATHI F, QAMSARI EM, KERMANSHAHI RK, MOOSAVI-NEJAD Z, GHASHGHAEI T. Optimization of lipase production by a newly isolate of Lactobacillus fermentum[J]. Iranian Journal of Science and Technology Transactions A-Science, 2022, 46(4): 1103-1113.
    [20] DASH BK, RAHMAN MM, SARKER PK. Molecular identification of a newly isolated Bacillus subtilis BI19 and optimization of production conditions for enhanced production of extracellular amylase[J]. BioMed Research International, 2015, 2015: 859805.
    [21] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 饲用纤维素酶活性的测定 滤纸法: GB/T 23881—2009[S]. 北京: 中国标准出版社, 2009.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Determination of feed cellulase activity—Filter paper assay method: GB/T 23881—2009[S]. Beijing: Standards Press of China, 2009 (in Chinese).
    [22] CHEN LH, YANG J, YU J, YAO ZJ, SUN LL, SHEN Y, JIN Q. VFDB: a reference database for bacterial virulence factors[J]. Nucleic Acids Research, 2005, 33 (Database issue): D325-D328.
    [23] JIA BF, RAPHENYA AR, ALCOCK B, WAGLECHNER N, GUO PY, TSANG KK, LAGO BA, DAVE BM, PEREIRA S, SHARMA AN, DOSHI S, COURTOT M, LO R, WILLIAMS LE, FRYE JG, ELSAYEGH T, SARDAR D, WESTMAN EL, PAWLOWSKI AC, JOHNSON TA, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database[J]. Nucleic Acids Research, 2017, 45(D1): D566-D573.
    [24] 农业农村部办公厅关于印发《直接饲喂微生物和发酵制品生产菌株鉴定及其安全性评价指南》的通知[J]. 中华人民共和国农业农村部公报, 2021(11): 97-111.Notice from the General Office of the Ministry of Agriculture and Rural Affairs on the Issuance of the Guidelines for Identification and Safety Evaluation of Strains Used in Direct Feeding of Microorganisms and Fermented Products[J]. Bulletin of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2021(11): 97-111 (in Chinese).
    [25] SEEMANN T. Prokka: rapid prokaryotic genome annotation[J]. Bioinformatics, 2014, 30(14): 2068-2069.
    [26] PAGE AJ, CUMMINS CA, HUNT M, WONG VK, REUTER S, HOLDEN MTG, FOOKES M, FALUSH D, KEANE JA, PARKHILL J. Roary: rapid large-scale prokaryote pan genome analysis[J]. Bioinformatics, 2015, 31(22): 3691-3693.
    [27] TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.
    [28] LETUNIC I, BORK P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation[J]. Nucleic Acids Research, 2021, 49(W1): W293-W296.
    [29] JAIN C, RODRIGUEZ-R LM, PHILLIPPY AM, KONSTANTINIDIS KT, ALURU S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries[J]. Nature Communications, 2018, 9: 5114.
    [30] KERS JG, VELKERS FC, FISCHER EAJ, HERMES GDA, STEGEMAN JA, SMIDT H. Host and environmental factors affecting the intestinal microbiota in chickens[J]. Frontiers in Microbiology, 2018, 9: 236.
    [31] BINDARI YR, GERBER PF. Centennial review: factors affecting the chicken gastrointestinal microbial composition and their association with gut health and productive performance[J]. Poultry Science, 2022, 101(1): 101612.
    [32] LIN XN, XIA YJ, YANG YJ, WANG GQ, ZHOU W, AI LZ. Probiotic characteristics of Lactobacillus plantarum AR113 and its molecular mechanism of antioxidant[J]. LWT, 2020, 126: 109278.
    [33] NILSEN T, NES IF, HOLO H. Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333[J]. Applied and Environmental Microbiology, 2003, 69(5): 2975-2984.
    [34] KHAN H, FLINT SH, YU PL. Determination of the mode of action of enterolysin A, produced by Enterococcus faecalis B9510[J]. Journal of Applied Microbiology, 2013, 115(2): 484-494.
    [35] CHEN FM, CHEN JY, CHEN QH, YANG LY, YIN J, LI YH, HUANG XG. Lactobacillus delbrueckii protected intestinal integrity, alleviated intestinal oxidative damage, and activated Toll-like receptor-bruton’s tyrosine kinase-nuclear factor erythroid 2-related factor 2 pathway in weaned piglets challenged with lipopolysaccharide[J]. Antioxidants, 2021, 10(3): 468.
    [36] PETROVA P, PETROV K, STOYANCHEVA G. Starch-modifying enzymes of lactic acid bacteria-structures, properties, and applications[J]. Starch-Starke, 2013, 65(1/2): 34-47.
    [37] WANG K, GAO PW, GENG LL, LIU CQ, ZHANG J, SHU CL. Lignocellulose degradation in Protaetia brevitarsis larvae digestive tract: refining on a tightly designed microbial fermentation production line[J]. Microbiome, 2022, 10(1): 90.
    [38] 刘文俊, 张和平. 益生菌基因组学在乳酸菌筛选和功能评价中的应用[J]. 中国食品学报, 2024, 24(1): 1-11.LIU WJ, ZHANG HP. Application of probiogenomics in screening and functional evaluation of probiotics lactic acid bacteria[J]. Journal of Chinese Institute of Food Science and Technology, 2024, 24(1): 1-11 (in Chinese).
    [39] SMYTHE P, EFTHIMIOU G. In silico genomic and metabolic atlas of Limosilactobacillus reuteri DSM 20016: an insight into human health[J]. Microorganisms, 2022, 10(7): 1341.
    [40] WU JJ, ZHOU QY, LIU DM, XIONG J, LIANG MH, TANG J, XU YQ. Evaluation of the safety and probiotic properties of Lactobacillus gasseri LGZ1029 based on whole genome analysis[J]. LWT, 2023, 184: 114759.
    [41] YOGESWARA IBA, MANEERAT S, HALTRICH D. Glutamate decarboxylase from lactic acid bacteria-a key enzyme in GABA synthesis[J]. Microorganisms, 2020, 8(12): 1923.
    [42] YANG H, HE MW, WU CD. Cross protection of lactic acid bacteria during environmental stresses: stress responses and underlying mechanisms[J]. LWT, 2021, 144: 111203.
    [43] LIANG LF, YI YH, LV YY, QIAN JW, LEI XJ, ZHANG GY. A comprehensive genome survey provides novel insights into bile salt hydrolase (BSH) in Lactobacillaceae[J]. Molecules, 2018, 23(5): 1157.
    [44] YU YX, ZONG ML, LAO LF, WEN JZ, PAN DD, WU Z. Adhesion properties of cell surface proteins in Lactobacillus strains in the GIT environment[J]. Food & Function, 2022, 13(6): 3098-3109.
    [45] SELTANA A, CLOUTIER G, NICOLAS VR, KHALFAOUI T, TELLER IC, PERREAULT N, BEAULIEU JF. Fibrin (ogen) is constitutively expressed by differentiated intestinal epithelial cells and mediates wound healing[J]. Frontiers in Immunology, 2022, 13: 916187.
    [46] JABAJI Z, BRINKLEY GJ, KHALIL HA, SEARS CM, LEI NY, LEWIS M, STELZNER M, MARTíN MG, DUNN JCY. Type I collagen as an extracellular matrix for the in vitro growth of human small intestinal epithelium[J]. PLoS One, 2014, 9(9): e107814.
    [47] PELASEYED T, HANSSON GC. Membrane mucins of the intestine at a glance[J]. Journal of Cell Science, 2020, 133(5): jcs240929.
    [48] BEACHEY EH, SIMPSON WA. The adherence of group A streptococci to oropharyngeal cells: the lipoteichoic acid adhesin and fibronectin receptor[J]. Infection, 1982, 10(2): 107-111.
    [49] POPHALY SD, SINGH R, POPHALY SD, KAUSHIK JK, TOMAR SK. Current status and emerging role of glutathione in food grade lactic acid bacteria[J]. Microbial Cell Factories, 2012, 11: 114.
    [50] MAILLOUX RJ. Protein S-glutathionylation reactions as a global inhibitor of cell metabolism for the desensitization of hydrogen peroxide signals[J]. Redox Biology, 2020, 32: 101472.
    [51] LU J, HOLMGREN A. The thioredoxin antioxidant system[J]. Free Radical Biology and Medicine, 2014, 66: 75-87.
    [52] OLFAT N, ASHOORI M, SAEDISOMEOLIA A. Riboflavin is an antioxidant: a review update[J]. British Journal of Nutrition, 2022, 128(10): 1887-1895.
    [53] BERTOLLO CM, OLIVEIRA ACP, ROCHA LTS, COSTA KA, NASCIMENTO EB, COELHO MM. Characterization of the antinociceptive and anti-inflammatory activities of riboflavin in different experimental models[J]. European Journal of Pharmacology, 2006, 547(1-3): 184-191.
    [54] ZHOU H, SUN J, GE LP, LIU ZH, CHEN H, YU B, CHEN DW. Exogenous infusion of short-chain fatty acids can improve intestinal functions independently of the gut microbiota[J]. Journal of Animal Science, 2020, 98(12): skaa371.
    [55] CASTALDO C, SICILIANO RA, MUSCARIELLO L, MARASCO R, SACCO M. CcpA affects expression of the groESL and dnaK operons in Lactobacillus plantarum[J]. Microbial Cell Factories, 2006, 5: 35.
    [56] JIN SS, WANG YZ, ZHAO XH. Cold-adaptive mechanism of psychrophilic bacteria in food and its application[J]. Microbial Pathogenesis, 2022, 169: 105652.
    [57] YU J, SONG YQ, REN Y, QING YT, LIU WJ, SUN ZH. Genome-level comparisons provide insight into the phylogeny and metabolic diversity of species within the genus Lactococcus[J]. BMC Microbiology, 2017, 17: 1-10.
    [58] GENG A, JIN M, LI NN, ZHU DC, XIE RR, WANG QQ, LIN HX, SUN JZ. New insights into the co-occurrences of glycoside hydrolase genes among prokaryotic genomes through network analysis[J]. Microorganisms, 2021, 9(2): 427.
    [59] GLOSTER TM. Advances in understanding glycosyltransferases from a structural perspective[J]. Current Opinion in Structural Biology, 2014, 28: 131-141.
    [60] OEHME DP, SHAFEE T, DOWNTON MT, BACIC A, DOBLIN MS. Differences in protein structural regions that impact functional specificity in GT2 family β-glucan synthases[J]. PLoS One, 2020, 14(10): e0224442.
    [61] ALSHAREEF SA. Metabolic analysis of the CAZy class glycosyltransferases in rhizospheric soil fungiome of the plant species Moringa oleifera[J]. Saudi Journal of Biological Sciences, 2024, 31(4): 103956.
    [62] LIPSKI A, HERVé M, LOMBARD V, NURIZZO D, MENGIN-LECREULX D, BOURNE Y, VINCENT F. Structural and biochemical characterization of the β-N-acetylglucosaminidase from Thermotoga maritima: toward rationalization of mechanistic knowledge in the GH73 family[J]. Glycobiology, 2015, 25(3): 319-330.
    [63] LóPEZ-MONDéJAR R, TLáSKAL V, VETROVSKY T, STURSOVá M, TOSCAN R, da ROCHA UN, BALDRIAN P. Metagenomics and stable isotope probing reveal the complementary contribution of fungal and bacterial communities in the recycling of dead biomass in forest soil[J]. Soil Biology & Biochemistry, 2020, 148: 107875.
    [64] CHEN KX, ZHOU XY, ZHAO JX, ROSS RP, STANTON C, CHEN W, YANG B. Comparative genomics of Lactobacillus johnsonii reveals extensive intraspecific genetic variation[J]. Food Bioscience, 2023, 56: 103190.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐乐,陈诗宇,王上,张志翔,董斌,林秋叶,曹振辉. 茶花鸡源罗伊特氏黏液乳杆菌CHF7-2的益生特性及全基因组测序分析[J]. 微生物学报, 2025, 65(3): 1197-1218

复制
分享
文章指标
  • 点击次数:15
  • 下载次数: 41
  • HTML阅读次数: 20
  • 引用次数: 0
历史
  • 收稿日期:2024-10-16
  • 在线发布日期: 2025-03-10
文章二维码