绿肥替代不同比例化肥对红壤稻田土壤真菌群落的影响
作者:
基金项目:

国家重点研发计划(2021YFD1700203);国家自然科学基金(42267046,32160766);安徽省优秀青年科研项目(2022AH030015)


Replacement of chemical fertilizer with green manure at different proportions affects fungal community in the paddy field of Ultisol
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】探究绿肥替代化肥的最佳比例及对红壤稻田土壤真菌群落的影响,以期实现我国南方红壤科学培肥和可持续利用。【方法】研究设置7个处理:不施肥(Control)、早稻不施化肥仅翻压紫云英(G)、早稻常规施用化肥(NPK100)、早稻翻压紫云英且常规施用化肥(NPK100+G)、早稻翻压紫云英且化肥减量20%(NPK80+G)、早稻翻压紫云英且化肥减量40%(NPK60+G)、早稻翻压紫云英且化肥减量60%(NPK40+G)。除Control外,所有处理晚稻均常规施用化肥。在晚稻成熟期采集不同处理水稻根表土样品测定土壤理化性质,同时基于Illumina Miseq高通量测序平台对土壤样品在DNA水平上进行测序,分析土壤真菌群落特征。【结果】与常规施用化肥相比,绿肥替代部分化肥处理提高水稻稻谷和秸秆产量。不同农业措施显著改变土壤真菌群落组成(P=0.001)。绿肥替代中低量化肥处理提高土壤腐生真菌的相对丰度,增加土壤有机质的转化效率和养分周转速率。相比于常规施用化肥,绿肥替代0、20%和40%化肥处理土壤腐生真菌相对丰度分别提高33.55%、167.27%和55.28%。此外,绿肥替代中低量化肥处理降低土壤中潜在植物病原菌的相对丰度和多样性。【结论】绿肥替代20%−40%化肥既能提高水稻产量,又能减少农业面源污染、提高土壤养分含量及优化土壤真菌群落。本研究系统评估绿肥部分替代化肥对红壤稻田生态系统的影响,研究结果为我国南方红壤区农业可持续发展提供了理论基础。

    Abstract:

    [Objective] This study investigated the optimal proportion of green manure replacing chemical fertilizer and its effect on soil fungal community in the paddy field of Ultisol, aiming to achieve soil fertilization and sustainable utilization of Ultisol in southern China. [Methods] This study set seven treatments: no fertilizer (Control), application of Chinese milk vetch without chemical fertilizer in early season rice (G), conventional application of chemical fertilizer in early season rice (NPK100), application of Chinese milk vetch and conventional chemical fertilizer in early season rice (NPK100+G), application of Chinese milk vetch and 80% conventional chemical fertilizer in early season rice (NPK80+G), application of Chinese milk vetch and 60% conventional chemical fertilizer in early season rice (NPK60+G), and application of Chinese milk vetch and 40% conventional chemical fertilizer in early season rice (NPK40+G). The conventional chemical fertilizer was applied in late season rice for other treatments except the Control. The root surface soil samples of different treatments were collected at the maturity stage of late rice for the measurement of soil properties. At the same time, high-throughput sequencing (Illumina MiSeq) was employed to analyze the features of soil fungal community. [Results] Compared with NPK100, the treatments of green manure replacing chemical fertilizer increased the yields of rice and straw. Different treatments significantly altered the soil fungal community composition (P=0.001). Replacing medium and low amounts of chemical fertilizer with green manure increased the relative abundance of saprophytic fungi in soil, which increased the conversion rate of soil organic matter and nutrient turnover rate. Compared with NPK100, replacing 0, 20%, and 40% chemical fertilizer with green manure increased the relative abundance of saprophytic fungi in soil by 33.55%, 167.27%, and 55.28%, respectively. In addition, replacing medium and low amounts of chemical fertilizer with green manure decreased the relative abundance and diversity of potential plant pathogens in soil. [Conclusion] Replacing medium and low amounts (20%–40%) of chemical fertilizer with green manure not only increased rice yield but also reduced environmental pollution, improved soil nutrients, and optimized the fungal community in soil. This study systematically evaluated the effect of replacing different proportions of chemical fertilizer with green manure on the Ultisol paddy ecosystems. The results provided a theoretical basis for the sustainable development of agriculture in the Ultisol region of southern China.

    参考文献
    [1] 徐春春, 纪龙, 陈中督, 方福平. 中国水稻生产、市场与进出口贸易的回顾与展望[J]. 中国稻米, 2021, 27(4): 17-21. XU CC, JI L, CHEN ZD, FANG FP. Historical review and prospect of China’s rice production, market and import and export trade[J]. China Rice, 2021, 27(4): 17-21(in Chinese).
    [2] XIANG XJ, LIU J, ZHANG J, LI DM, XU CX, KUZYAKOV Y. Divergence in fungal abundance and community structure between soils under long-term mineral and organic fertilization[J]. Soil & Tillage Research, 2020, 196: 104491.
    [3] 宁川川, 王建武, 蔡昆争. 有机肥对土壤肥力和土壤环境质量的影响研究进展[J]. 生态环境学报, 2016, 25(1): 175-181. NING CC, WANG JW, CAI KZ. The effects of organic fertilizers on soil fertility and soil environmental quality: a review[J]. Ecology and Environmental Sciences, 2016, 25(1): 175-181(in Chinese).
    [4] 沈仁芳, 赵学强. 土壤微生物在植物获得养分中的作用[J]. 生态学报, 2015, 35(20): 6584-6591. SHEN RF, ZHAO XQ. Role of soil microbes in the acquisition of nutrients by plants[J]. Acta Ecologica Sinica, 2015, 35(20): 6584-6591(in Chinese).
    [5] 张济世, 刘春增, 郑春风, 张琳, 张香凝, 吕玉虎, 曹卫东, 张玉亭. 紫云英还田与化肥减量配施对稻田土壤细菌群落组成和功能的影响[J]. 环境科学, 2023, 44(5): 2936-2944. ZHANG JS, LIU CZ, ZHENG CF, ZHANG L, ZHANG XN, LÜ YH, CAO WD, ZHANG YT. Effects of Chinese milk vetch returning incorporated with chemical fertilizer reduction on the composition and function of soil bacterial communities in paddy fields[J]. Environmental Science, 2023, 44(5): 2936-2944(in Chinese).
    [6] KIM SY, GUTIERREZ J, KIM PJ. Considering winter cover crop selection as green manure to control methane emission during rice cultivation in paddy soil[J]. Agriculture, Ecosystems and Environment, 2012, 161: 130-136.
    [7] 赵其国, 黄国勤, 马艳芹. 中国南方红壤生态系统面临的问题及对策[J]. 生态学报, 2013, 33(24): 7615-7622. ZHAO QG, HUANG GQ, MA YQ. The problems in red soil ecosystem in southern of China and its countermeasures[J]. Acta Ecologica Sinica, 2013, 33(24): 7615-7622(in Chinese).
    [8] ZHANG HM, WANG BR, XU MG, FAN TL. Crop yield and soil responses to long-term fertilization on a red soil in southern China[J]. Pedosphere, 2009, 19(2): 199-207.
    [9] 赵竟茹, 晏蒙, 吴远诺, 刘天赐, 李绍兵, 冷珂, 项兴佳, 刘佳. 添加毛叶苕子对红壤旱地土壤真菌群落的影响[J]. 微生物学报, 2024, 64(2): 581-596. ZHAO JR, YAN M, WU YN, LIU TC, LI SB, LENG K, XIANG XJ, LIU J. Application of hairy vetch (Vicia villosa Roth L.) affects fungal community in upland red soil [J]. Acta Microbiologica Sinica, 2024, 64(2): 581-596(in Chinese).
    [10] 王强盛, 薄雨心, 余坤龙, 刘晓雪. 绿肥还田在稻作生态系统的效应分析及研究展望[J]. 土壤, 2021, 53(2): 243-249. WANG QS, BO YX, YU KL, LIU XX. Analysis and research prospect of effect of green manure returning on rice cropping ecosystem[J]. Soils, 2021, 53(2): 243-249(in Chinese).
    [11] 蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用[J]. 植物生态学报, 2010, 34(8): 979-988. JIANG J, SONG MH. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling[J]. Chinese Journal of Plant Ecology, 2010, 34(8): 979-988(in Chinese).
    [12] 谢姆西努尔·图尔贡, 张经博, 董正武, 马晓东, 刘隋赟昊. 干旱区高寒湿地逆行演替下土壤微生物群落结构的研究[J]. 微生物学报, 2023, 63(4): 1603-1617. TUERGONG XMXNR, ZHANG JB, DONG ZW, MA XD, LIU SYH. The soil microbial community structure under retrogressive succession of an alpine wetland in the arid area[J]. Acta Microbiologica Sinica, 2023, 63(4): 1603-1617(in Chinese).
    [13] GAO SJ, CAO WD, ZHOU GP, REES RM. Bacterial communities in paddy soils changed by milk vetch as green manure: a study conducted across six provinces in south China[J]. Pedosphere, 2021, 31(4): 521-530.
    [14] ABLIMIT R, LI WK, ZHANG JD, GAO HN, ZHAO YM, CHENG MM, MENG XQ, AN LZ, CHEN Y. Altering microbial community for improving soil properties and agricultural sustainability during a 10-year maize-green manure intercropping in Northwest China[J]. Journal of Environmental Management, 2022, 321: 115859.
    [15] 刘春增, 张琳, 丁丽, 张香凝, 郑春风, 张成兰, 吕玉虎, 曹卫东, 张济世, 张玉亭. 稻田土壤真菌群落结构与功能对化肥减量配施紫云英还田的响应[J]. 中国土壤与肥料, 2023(9): 68-76. LIU CZ, ZHANG L, DING L, ZHANG XN, ZHENG CF, ZHANG CL, LÜ YH, CAO WD, ZHANG JS, ZHANG YT. Response of fungal community structure and function to chemical fertilizer reduction incorporated with Chinese milk vetch returning in paddy soil[J]. Soil and Fertilizer Sciences in China, 2023(9): 68-76(in Chinese).
    [16] 宁琪, 陈林, 李芳, 张丛志, 马东豪, 蔡泽江, 张佳宝. 被孢霉对土壤养分有效性和秸秆降解的影响[J]. 土壤学报, 2022, 59(1): 206-217. NING Q, CHEN L, LI F, ZHANG CZ, MA DH, CAI ZJ, ZHANG JB. Effects of Mortierella on nutrient availability and straw decomposition in soil[J]. Acta Pedologica Sinica, 2022, 59(1): 206-217(in Chinese).
    [17] 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. CHEN BD, FU W, WU SL, ZHU YG. Involvements of mycorrhizal fungi in terrestrial ecosystem carbon cycling[J]. Chinese Journal of Plant Ecology, 2024, 48(1): 1-20(in Chinese).
    [18] LIU SG, GARCÍA-PALACIOS P, TEDERSOO L, GUIRADO E, van der HEIJDEN MGA, WAGG C, CHEN DM, WANG QK, WANG JT, SINGH BK, DELGADO-BAQUERIZO M. Phylotype diversity within soil fungal functional groups drives ecosystem stability[J]. Nature Ecology & Evolution, 2022, 6: 900-909.
    [19] 段佳丽. 丹参根部病害发生微生态机制与放线菌促生作用研究[D]. 杨凌: 西北农林科技大学博士学位论文, 2013. DUAN JL. Studies on microecological mechanism of Salvia miltiorrhiza Bge. root diseases and growth-promoting effect of antimicrobial actinomycetes[D]. Yangling: Doctoral Dissertation of Northwest A&F University, 2013(in Chinese).
    [20] LI SX, LI YJ, HU C, ZHENG XQ, ZHANG JQ, ZHANG HL, BAI NL, ZHANG HY, TIAN ML, BAN ST, WU GG, PAN AH, LI P, LV WG. Stochastic processes drive bacterial and fungal community assembly in sustainable intensive agricultural soils of Shanghai, China[J]. Science of the Total Environment, 2021, 778: 146021.
    [21] CASTRO LL, WHALEN JK. Ion exchange membranes are sensitive indicators of ammonium and nitrate released from green manures with low C/N ratios[J]. European Journal of Soil Biology, 2016, 77: 4-8.
    [22] 郝小雨, 高伟, 王玉军, 黄绍文, 唐继伟, 金继运. 有机无机肥料配合施用对设施番茄产量、品质及土壤硝态氮淋失的影响[J]. 农业环境科学学报, 2012, 31(3): 538-547. HAO XY, GAO W, WANG YJ, HUANG SW, TANG JW, JIN JY. Effects of combined application of organic manure and chemical fertilizers on yield and quality of tomato and soil nitrate leaching loss under greenhouse condition[J]. Journal of Agro-Environment Science, 2012, 31(3): 538-547(in Chinese).
    [23] 习斌, 翟丽梅, 刘申, 刘宏斌, 杨波, 任天志. 有机无机肥配施对玉米产量及土壤氮磷淋溶的影响[J]. 植物营养与肥料学报, 2015, 21(2): 326-335. XI B, ZHAI LM, LIU S, LIU HB, YANG B, REN TZ. Effects of combination of organic and inorganic fertilization on maize yield and soil nitrogen and phosphorus leaching[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(2): 326-335(in Chinese).
    [24] NIE SA, LEI XM, ZHAO LX, BROOKES PC, WANG F, CHEN CR, YANG WH, XING SH. Fungal communities and functions response to long-term fertilization in paddy soils[J]. Applied Soil Ecology, 2018, 130: 251-258.
    [25] 邓超, 毕利东, 秦江涛, 张桃林, 余喜初. 长期施肥下土壤性质变化及其对微生物生物量的影响[J]. 土壤, 2013, 45(5): 888-893. DENG C, BI LD, QIN JT, ZHANG TL, YU XC. Effects of long-term fertilization on soil property changes and soil microbial biomass[J]. Soils, 2013, 45(5): 888-893(in Chinese).
    [26] 方畅宇, 屠乃美, 张清壮, 易镇邪. 不同施肥模式对稻田土壤速效养分含量及水稻产量的影响[J]. 土壤, 2018, 50(3): 462-468. FANG CY, TU NM, ZHANG QZ, YI ZX. Effects of fertilization modes on available nutrient contents of reddish paddy soils and rice yields[J]. Soils, 2018, 50(3): 462-468(in Chinese).
    [27] 李正, 刘国顺, 敬海霞, 解昌盛, 向永光, 杨超, 郑文冉, 叶协锋. 翻压绿肥对植烟土壤微生物量及酶活性的影响[J]. 草业学报, 2011, 20(3): 225-232. LI Z, LIU GS, JING HX, XIE CS, XIANG YG, YANG C, ZHENG WR, YE XF. Effects of green manure application on the microbial biomass C and N contents and of the enzyme activity of tobacco-planting soil[J]. Acta Prataculturae Sinica, 2011, 20(3): 225-232(in Chinese).
    [28] TANG S, MA QX, MARSDEN KA, CHADWICK DR, LUO Y, KUZYAKOV Y, WU LH, JONES DL. Microbial community succession in soil is mainly driven by carbon and nitrogen contents rather than phosphorus and sulphur contents[J]. Soil Biology and Biochemistry, 2023, 180: 109019.
    [29] KANG P, PAN YQ, RAN YC, LI WN, SHAO MX, ZHANG YQ, JI QB, DING XD. Soil saprophytic fungi could be used as an important ecological indicator for land management in desert steppe[J]. Ecological Indicators, 2023, 150: 110224.
    [30] CAMENZIND T, AGUILAR-TRIGUEROS CA, HEMPEL S, LEHMANN A, BIELCIK M, ANDRADE-LINARES DR, BERGMANN J, dela CRUZ J, GAWRONSKI J, GOLUBEVA P, HASLWIMMER H, LARTEY L, LEIFHEIT E, MAAß S, MARHAN S, PINEK L, POWELL JR, ROY J, VERESOGLOU SD, WANG DW, et al. Towards establishing a fungal economics spectrum in soil saprobic fungi[J]. Nature Communications, 2024, 15(1): 3321.
    [31] DELGADO-BAQUERIZO M, GUERRA CA, CANO-DÍAZ C, EGIDI E, WANG JT, EISENHAUER N, SINGH BK, MAESTRE FT. The proportion of soil-borne pathogens increases with warming at the global scale[J]. Nature Climate Change, 2020, 10: 550-554.
    [32] 李芳, 张峰, 高萍, 段廷玉. 农业生态系统中AM真菌、禾草内生真菌及病原菌互作[J]. 草业科学, 2016, 33(2): 219-229. LI F, ZHANG F, GAO P, DUAN TY. Progress of research on the interactions of arbuscular mycorrhizal fungi, grass endophyte and plant pathogens in agro-ecosystem[J]. Pratacultural Science, 2016, 33(2): 219-229(in Chinese).
    [33] ZHOU YY, YANG Z, LIU JG, LI XD, WANG XX, DAI CC, ZHANG TL, CARRIÓN VJ, WEI Z, CAO FL, DELGADO-BAQUERIZO M, LI XG. Crop rotation and native microbiome inoculation restore soil capacity to suppress a root disease[J]. Nature Communications, 2023, 14(1): 8126.
    [34] 台莲梅, 姜小玉, 靳学慧, 张亚玲. 黑龙江省水稻穗褐变病病原菌的分离与鉴定[J]. 微生物学通报, 2020, 47(6): 1776-1786. TAI LM, JIANG XY, JIN XH, ZHANG YL. Isolation and identification of pathogen causing rice panicle browning in Heilongjiang Province[J]. Microbiology China, 2020, 47(6): 1776-1786(in Chinese).
    [35] GUTIÉRREZ SA, CARMONA MA, REIS EM. Methods for detection of Alternaria padwickii in rice seeds[J]. Journal of Phytopathology, 2010, 158(7/8): 523-526.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

路静,项兴佳,康耘滔,尹静,袁丹丹,刘佳. 绿肥替代不同比例化肥对红壤稻田土壤真菌群落的影响[J]. 微生物学报, 2025, 65(1): 323-336

复制
分享
文章指标
  • 点击次数:97
  • 下载次数: 155
  • HTML阅读次数: 119
  • 引用次数: 0
历史
  • 收稿日期:2024-08-22
  • 在线发布日期: 2025-01-04
  • 出版日期: 2025-01-04
文章二维码