产半纤维素酶的苔藓放线酸菌对烟草上部叶品质的影响
作者:
作者单位:

1.内蒙古昆明卷烟有限责任公司,内蒙古 呼和浩特;2.中国农业科学院烟草研究所,山东 青岛

作者简介:

郝捷:概念构思、调查、结果分析、审阅与编辑;郭春生:结果分析、软件程序;张宝:数据分析;马尚毅:概念构思;张磊:可视化;洪杰:数据整理;王胜利:提供资源;丁海:提出研究方法;刘星明:验证,完成呈现;申国明:监督、项目管理、资金支持;吴元华:验证;张立:调查、原稿撰写。

基金项目:

内蒙古昆明卷烟有限责任公司科技项目(202315010534-JS-061, 202315010534-JS-062)


Effect of a hemicellulase-producing strain of Actinacidiphila bryophytorum on the quality of upper tobacco leaves
Author:
Affiliation:

1.Inner Mongolia Kunming Cigarette Limited Liability Company, Hohhot, Inner Mongolia, China;2.Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China

Fund Project:

This work was supported by the Inner Mongolia Kunming Cigarette Limited Liability Company Technology Project (202315010534-JS-061, 202315010534-JS-062).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    目的 提高烟草上部叶片的整体品质。方法 从烟草土壤中分离到一株产半纤维素酶的菌株,鉴定为苔藓放线酸菌(Actinacidiphila bryophytorum)。对该菌株进行培养条件优化后制成粗酶液喷施于烟草上部叶,对处理后的烟叶进行物理特性、化学成分等方面的效果评价。结果 该菌株的最佳发酵条件为接种量4%,培养温度30 ℃,培养基pH 6.0,培养时间36 h。将不同浓度的酶制剂(50、100、150、200、250 U/mL)喷施于烟草上部叶片表面,评价其外观质量、常规化学成分、木质纤维素含量和感官评价。结果表明,150 U/mL酶制剂处理效果最优。与对照组相比,烟叶在成熟度、颜色、特性和结构方面均有改善,总分提高5.15分。总糖和还原糖含量分别提高了29.87%和35.77%,烟碱含量降低了16.10%。纤维素、半纤维素和木质素含量分别下降16.37%、20.22%和17.13%。增加了香气特性,减少了杂气。结论 利用苔藓放线酸菌S2菌株发酵制备的酶制剂,改善了烟叶外观品质,提高了水溶性总糖和还原糖含量,降低了木质纤维素含量,改善了烟叶的香气、烟味和口感,对烟叶品质有所改善。

    Abstract:

    Objective To improve the overall quality of upper tobacco leaves.Methods We isolated a hemicellulase-producing bacterium from tobacco soil and identified it as Actinacidiphila bryophytorum. After optimizing the culture conditions of this strain, we prepared the crude enzyme liquid, which was sprayed on upper tobacco leaves. The physical properties and chemical composition of the treated tobacco leaves were then evaluated.Results The optimal fermentation conditions for the strain were an inoculation rate of 4%, pH 6.0, and incubation at 30 ℃ for 36 h. Enzyme preparations of different concentrations (50, 100, 150, 200 and 250 U/mL) were then sprayed on the surface of upper tobacco leaves, and the appearance quality, conventional chemical composition, lignocellulose content, and sensory scores of the tobacco leaves were evaluated. The results indicated that treatment of the enzyme preparation at 150 U/mL performed better than other treatments. Compared with the control group, the 150 U/mL treatment increased the overall score for the appearance quality (maturity, color, characteristics, and structure) of tobacco leaves by 5.15 points. Additionally, this treatment increased the total sugar content and reducing sugar content by 29.87% and 35.77%, respectively. Meanwhile, it decreased the content of nicotine, cellulose, hemicellulose, and lignin by 16.10%, 16.37%, 20.22%, and 17.13%, respectively. Furthermore, the aroma characteristics were enhanced, and off-flavors were reduced.Conclusion The enzyme preparation produced by the fermentation of A. bryophytorum S2 improves the appearance quality, increases the soluble total sugar and reducing sugar content, and reduces the lignocellulose content of tobacco leaves, thus improving the overall quality of tobacco leaves.

    参考文献
    [1] XUE YC. Smoking cessation programmes in China[J]. The Lancet, 2020, 395(10223): e28.
    [2] 陈二龙, 范志勇, 宋朝鹏, 王德勋, 户艳霞, 王新中, 孙军伟, 苏家恩, 贺帆. 烘烤期烟叶霉变发生规律及关键影响因素[J]. 江西农业大学学报, 2017, 39(5): 877-883.CHEN EL, FAN ZY, SONG ZP, WANG DX, HU YX, WANG XZ, SUN JW, SU JE, HE F. An analysis of the law and key influencing factors of tobacco leaf mildew during baking[J]. Acta Agriculturae Universitatis Jiangxiensis, 2017, 39(5): 877-883.
    [3] Zhang LY, Mai J, Shi JF, Ai KB, He L, Zhu MJ, Hu BB. Study on tobacco quality improvement and bacterial community succession during microbial co-fermentation[J]. Industrial Crops and Products, 2024, 208: 117889.
    [4] GENG ZL, HE P, GAO HJ, LIU J, QIU J, CAI B. Aroma precursors of cigars from different tobacco parts and origins, and their correlations with sensory characteristics[J]. Frontiers in Plant Science, 2023, 14: 1264739.
    [5] WU TN, ZHANG YW, GONG ZW, LU DF. Quantification of tobacco leaf appearance quality index based on computer vision[J]. IEEE Access, 2022, 10: 120352-120368.
    [6] HATSUKAMI DK, LUO XH, JENSEN JA, AL’ABSI M, ALLEN SS, CARMELLA SG, CHEN ML, CINCIRIPINI PM, DENLINGER-APTE R, DROBES DJ, KOOPMEINERS JS, LANE T, LE CT, LEISCHOW S, LUO K, JOSEPH MCCLERNON F, MURPHY SE, PAIANO V, ROBINSON JD, SEVERSON H, SIPE C, STRASSER AA, STRAYER LG, TANG MK, VANDREY R, HECHT SS, BENOWITZ NL, DONNY EC. Effect of immediate vs gradual reduction in nicotine content of cigarettes on biomarkers of smoke exposure: a randomized clinical trial[J]. Jama, 2018, 320(9): 880-891.
    [7] QIAO X, BING W, WU DX. Aroma style characteristics of flue-cured tobacco leaves from typical tobacco growing areas[J]. Tobacco Science & Technology, 2016, 49(9): 70-75.
    [8] SALSABILA N NUR, TARIK IBRAHIM J, MUMPUNI NINGSIH G. Analysis the competitiveness of indonesian tobacco exports to international markets 2003?2022[J]. International Journal of Scientific Research and Management (IJSRM), 2024, 12(1): 479-487.
    [9] PULJEVI? C, KING M, MECIAR I, GARTNER C. Smoking out Australia’s growing illicit tobacco market: current trends and future challenges[J]. International Journal of Drug Policy, 2024, 127: 104424.
    [10] CUMMINGS KM, ROBERSON A, LEVY DT, MEZA R, WARNER KE, FONG GT, XU SS, GRAVELY S, DHUNGEL B, BORLAND R, O’CONNOR RJ, GONIEWICZ ML, SWEANOR DT. Transformation of the tobacco product market in Japan, 2011?2023[J]. Tobacco Control, 2024: tc-2024-058734.
    [11] YUAN Y, ZOU P, ZHOU JH, GENG YT, FAN JJ, CLARK J, LI YQ, ZHANG CS. Microwave-assisted hydrothermal extraction of non-structural carbohydrates and hemicelluloses from tobacco biomass[J]. Carbohydrate Polymers, 2019, 223: 115043.
    [12] IRAKI NM, SINGH N, BRESSAN RA, CARPITA NC. Cell walls of tobacco cells and changes in composition associated with reduced growth upon adaptation to water and saline stress[J]. Plant Physiology, 1989, 91(1): 48-53.
    [13] BASHLINE L, LEI L, LI SD, GU Y. Cell wall, cytoskeleton, and cell expansion in higher plants[J]. Molecular Plant, 2014, 7(4): 586-600.
    [14] ZHAO HQ, WANG S, YANG RJ, YANG DM, ZHAO YJ, KUANG JH, CHEN LQ, ZHANG R, HU HZ. Side chain of confined xylan affects cellulose integrity leading to bending stem with reduced mechanical strength in ornamental plants[J]. Carbohydrate Polymers, 2024, 329: 121787.
    [15] ZHAO H, LI ZX, WANG YY, WANG JY, XIAO MG, LIU H, QUAN RD, ZHANG HW, HUANG RF, ZHU L, ZHANG ZJ. Cellulose synthase-like protein OsCSLD4 plays an important role in the response of rice to salt stress by mediating abscisic acid biosynthesis to regulate osmotic stress tolerance[J]. Plant Biotechnology Journal, 2022, 20(3): 468-484.
    [16] PODGóRSKA A, BURIAN M, GIECZEWSKA K, OSTASZEWSKA-BUGAJSKA M, ZEBROWSKI J, SOLECKA D, SZAL B. Altered cell wall plasticity can restrict plant growth under ammonium nutrition[J]. Frontiers in Plant Science, 2017, 8: 1344.
    [17] TAGUCHI S. Designer enzyme for green materials innovation: Lactate-polymerizing enzyme as a key catalyst[J]. Frontiers of Chemical Science and Engineering, 2017, 11(1): 139-142.
    [18] ZHAO CY. Is low-carbon energy technology a catalyst for driving green total factor productivity development? The case of China[J]. Journal of Cleaner Production, 2023, 428: 139507.
    [19] HUANG ZL, NI DW, CHEN ZW, ZHU YY, ZHANG WL, MU WM. Application of molecular dynamics simulation in the field of food enzymes: improving the thermal-stability and catalytic ability[J]. Critical Reviews in Food Science and Nutrition, 2024, 64(31): 11396-11408.
    [20] RUAN YN, TANG ZX, CHEN ZB, XIA TY. Effects of combined application of chemical fertilizer and microbial fertilizer on the chemical components contents of flue-cured tobacco leaves[J]. IOP Conference Series: Earth and Environmental Science, 2021, 792(1): 012048.
    [21] ZHOU KX, CHEN YQ, DENG XH, LI JJ, ZHOU PC, ZHANG DF, ZHANG JP, ZHENG QX, LONG T, CHEN SY, LU YH, FAN JQ. Enzymes Produced by Paenibacillus amylolyticus to improve the sensory quality of the upper leaves in flue-cured tobacco[J]. Pakistan Journal of Botany, 2024, 56(5): 1823-1830.
    [22] 李志豪, 张鸽, 貊志杰, 邓帅军, 李佳轶, 张海波, 刘晓晖, 刘好宝. 一株产木聚糖酶的蜡样芽孢杆菌对雪茄烟叶成分及发酵产物的影响[J]. 生物技术通报, 2022, 38(2): 105-112.LI ZH, ZHANG G, MO ZJ, DENG SJ, LI JY, ZHANG HB, LIU XH, LIU HB. Effects of a xylanase-producing Bacillus cereus on the composition and fermented products of cigar leaves[J]. Biotechnology Bulletin, 2022, 38(2): 105-112.
    [23] LI DY, HUANG CY, MAO YH, WANG Z, YU J, YANG CL, CHEN X. Screening of cellulase-producing bacteria and their effect on the chemical composition and aroma quality improvement of cigar wrapper leaves[J]. Bioresources, 2022, 17(1): 1566-1590.
    [24] ZHOU KP, DONG YS, ZHENG H, CHEN B, MAO RF, ZHOU L, WANG YF. Expression, fermentation, purification and lyophilisation of recombinant subtilisin QK in Pichia pastoris[J]. Process Biochemistry, 2017, 54: 1-8.
    [25] WU RX, TIAN ZZ, ZHANG CT, LI DK, TIAN N, XING LX, MA LC, JIANG ZP. Uniformity evaluation of stem distribution in cut tobacco and single cigarette by near infrared spectroscopy[J]. Vibrational Spectroscopy, 2022, 121: 103401.
    [26] SLUITER A, HAMES B, HAMES BR, RUIZ R, SCARLATA C, SLUITER J, TEMPLETON D, CROCKER D. Determination of structural carbohydrates and lignin in biomass[R]. NREL, 2012. https://www.nrel.gov/docs/gen/fy13/42618.pdf.
    [27] CHEN Y, BIN J, ZOU CM, DING MJ. Discrimination of fresh tobacco leaves with different maturity levels by near-infrared (NIR) spectroscopy and deep learning[J]. Journal of Analytical Methods in Chemistry, 2021, 2021: 9912589.
    [28] ZHU ZQ, QI GQ, LEI YB, JIANG DY, MAZUR N, LIU Y, WANG D, ZHU W. A long short-term memory neural network based simultaneous quantitative analysis of multiple tobacco chemical components by near-infrared hyperspectroscopy images[J]. Chemosensors, 2022, 10(5): 164.
    [29] BUTORAC A, MESI? M, BUTORAC J, TUR?I? I, BA?I? F, VULETI? N, BERDIN M. Influence of biopost and organo upon flue-cured tobacco grown on semigley. II. chemical composition of tobacco leaf and changes in the chemical soil complex[J]. Journal of Agronomy and Crop Science, 1995, 175(5): 307-316.
    [30] REN MJ, ZHANG MY, YANG HJ, SHI HZ. Reducing the nicotine content of tobacco by grafting with eggplant[J]. BMC Plant Biology, 2020, 20(1): 285.
    [31] LEGAZ I, PéREZ-CáRCELES MD, deLa CALLE I, ARJONA F, ROCA M, CEJUDO P, LUNA A, OSUNA E. Genetic susceptibility to nicotine and/or alcohol addiction: a systematic review[J]. Toxin Reviews, 2021, 40(4): 371-382.
    [32] XIAO ZZ, WANG SZ, LUO M, CAI JJ. Combustion characteristics and synergistic effects during co-combustion of lignite and lignocellulosic components under oxy-fuel condition[J]. Fuel, 2022, 310: 122399.
    [33] ?WIS?OWSKI P, ?MIECHOWICZ B, RAJFUR M. Effects of tobacco smoke on indoor air quality: the use of mosses in biomonitoring[J]. Journal of Environmental Health Science & Engineering, 2022, 20(1): 485-493.
    [34] LEE JS, KIM KS. Optimization of conditions for the secretion of recombinant KG51 xylanase by Bacillus subtilis[J]. Research Journal of Biotechnology, 2024, 19(10): 1-12.
    [35] IRFAN M, GONZALEZ CF, RAZA S, RAFIQ M, HASAN F, KHAN S, Shah AA. Improvement in thermostability of xylanase from Geobacillus thermodenitrificans C5 by site directed mutagenesis[J]. Enzyme and Microbial Technology, 2018, 111: 38-47.
    [36] 陈飞程, 杨懿德, 段玉锋, 李生栋, 杨洋, 鄢敏, 段卫东. 基于PLS-DA方法分析变黄方式对烤烟品质的影响[J]. 河南农业科学, 2022, 51(1): 171-179.CHEN FC, YANG YD, DUAN YF, LI SD, YANG Y, YAN M, DUAN WD. Effects of different yellowing treatments on the quality of flue-cured tobacco by using partial least squares-discrimination analysis[J]. Journal of Henan Agricultural Sciences, 2022, 51(1): 171-179 (in Chinese).
    [37] ZHANG W, DENG Q, ZHU BK, XIAO D, CHEN QM, PAN HY, CHEN J. Improving the quality of low-grade tobacco by enzymatic treatment and co-fermentation with yeast and lactic acid bacteria[J]. Applied Biochemistry and Biotechnology, 2025, 197(1): 613-630.
    [38] ZHANG BC, ZHANG LJ, LI F, ZHANG DM, LIU XL, WANG H, XU ZP, CHU CC, ZHOU YH. Control of secondary cell wall patterning involves xylan deacetylation by a GDSL esterase[J]. Nature Plants, 2017, 3: 17017.
    [39] HOUFANI AA, ANDERS N, SPIESS AC, BALDRIAN P, Benallaoua S. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars: a review[J]. Biomass and Bioenergy, 2020, 134: 105481.
    [40] MATHEWS SL, GRUNDEN AM, PAWLAK J. Degradation of lignocellulose and lignin by Paenibacillus glucanolyticus[J]. International Biodeterioration & Biodegradation, 2016, 110: 79-86.
    [41] NING Y, MAI J, HU BB, LIN ZL, CHEN Y, JIANG YL, WEI MY, ZHU MJ. Study on the effect of enzymatic treatment of tobacco on HnB cigarettes and microbial succession during fermentation[J]. Applied Microbiology and Biotechnology, 2023, 107(13): 4217-4232.
    [42] PETRY AL, PATIENCE JF. Xylanase supplementation in corn-based swine diets: a review with emphasis on potential mechanisms of action[J]. Journal of Animal Science, 2020, 98(11): skaa318.
    [43] AHMAD Z, BUTT MS, AHMED A, KHALID N. Xylanolytic modification in wheat flour and its effect on dough rheological characteristics and bread quality attributes[J]. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56(6): 723-729.
    [44] BHARDWAJ N, KUMAR B, AGRAWAL K, VERMA P. Bioconversion of rice straw by synergistic effect of in-house produced ligno-hemicellulolytic enzymes for enhanced bioethanol production[J]. Bioresource Technology Reports, 2020, 10: 100352.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郝捷,郭春生,张宝,马尚毅,张磊,洪杰,王胜利,丁海,刘星明,申国明,吴元华,张立. 产半纤维素酶的苔藓放线酸菌对烟草上部叶品质的影响[J]. 微生物学报, 2025, 65(7): 3089-3104

复制
分享
文章指标
  • 点击次数:41
  • 下载次数: 111
  • HTML阅读次数: 71
  • 引用次数: 0
历史
  • 收稿日期:2024-12-30
  • 在线发布日期: 2025-07-04
文章二维码