rbk基因超表达对类植物乳杆菌LR-1生物被膜、黏附特性及代谢谱的调控作用
作者:
作者单位:

1.西华大学 食品与生物工程学院,四川省食品微生物重点实验室,四川 成都;2.兰州大学 动物医学与生物安全学院,动物疫病防控全国重点实验室,甘肃 兰州

通讯作者:

E-mail: LIU Lei, shaning0606@126.com
RAO Yu, ryfish@163.com

基金项目:

四川省科技计划重点研发项目(2023YFN0058);四川省自然科学基金(2023NSFSC1203);甘肃省科技重大专项(23ZDNA007)


Overexpression of rbk affects the biofilm formation, adhesion, and metabolic profile of Lactiplantibacillus paraplantarum LR-1
Author:
Affiliation:

1.Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, China;2.State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China

Fund Project:

This work was supported by the Science and Technology Program Key Research and Development Project of Sichuan Province (2023YFN0058), the Natural Science Foundation of Sichuan Province (2023NSFSC1203), and the Major Science and Technology Project of Gansu Province (23ZDNA007).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [52]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    目的 生物被膜形成和黏附能力是评价益生菌功效的重要指标。然而乳杆菌中特定基因与这些能力的关系尚不清楚。rbk基因编码核糖激酶,参与核糖代谢,可能与被膜形成和黏附能力相关。本研究旨在分析rbk基因超表达对类植物乳杆菌LR-1的生物被膜形成和黏附能力的影响,探讨其对群感及相关基因的调控,并从代谢谱角度揭示rbk超表达对菌体的影响机制。方法 以类植物乳杆菌LR-1为目标菌株,通过穿梭载体pMG76e构建rbk-pMG76e-LR-1重组菌株。通过qRT-PCR及酶活试验证实rbk基因超表达。采用结晶紫染色、细胞黏附试验和qRT-PCR分析rbk超表达对生物被膜形成、黏附能力,以及tufluxSrpoN基因表达的影响;进一步通过非靶向代谢组学分析rbk超表达对代谢谱的影响;最后通过外源添加代谢物验证其对LR-1生物被膜形成和黏附能力的影响。结果 rbk基因超表达显著提升了LR-1的生物被膜形成能力(在不同条件下提升1.55-2.34倍)和对HT-29细胞的黏附能力(约3.58倍),同时显著提升了tufluxSrpoN基因表达水平(分别提升70.30、96.94、45.61倍)。非靶向代谢组学分析显示,rbk超表达导致145种代谢物丰度变化。外源添加代谢物的结果显示,l-脯氨酸、鼠李糖及NADH显著提高了LR-1生物被膜形成(分别提升1.27、1.39和1.25倍)和黏附能力(分别提升1.40、1.41和1.52倍)。结论 本研究表明rbk基因可以作为提升乳杆菌生物被膜形成及黏附能力的关键靶点。

    Abstract:

    Objective Biofilm formation and adhesion are important indicators for evaluating the beneficial effects of probiotics. However, the relationship of specific genes with the biofilm formation and adhesion of Lactiplantibacillus remains unclear. The rbk gene encodes ribokinase, which is involved in ribose metabolism and may be related to biofilm formation and adhesion. This study aims to analyze the effects of rbk overexpression on the biofilm formation and adhesion of Lactiplantibacillus paraplantrum LR-1, explore the role of this gene in the regulation of quorum sensing (QS) and expression of related genes, and reveal the influencing mechanism of rbk overexpression in bacteria from a metabolic profile perspective.Methods L. paraplantarum LR-1 was selected as the target strain, and the shuttle vector pMG76e was used to construct the recombinant strain rbk-pMG76e-LR-1. The overexpression of rbk was confirmed by qRT-PCR and the enzyme activity assay. Crystal violet staining, cell adhesion assay, and qRT-PCR were employed to evaluate the effects of rbk overexpression on biofilm formation, adhesion, and expression of tuf, luxS, and rpoN. Furthermore, untargeted metabolomics analysis was conducted to assess the effect of rbk overexpression on the metabolic profile. Finally, the effect on the biofilm formation and adhesion of LR-1 was verified by exogenous addition of metabolites.Results The overexpression of rbk increased the biofilm formation of LR-1 and the adhesion to HT-29 cells by 1.55-2.34 folds and 3.58 folds, respectively. Moreover, the overexpression of rbk up-regulated the expression levels of tuf, luxS, and rpoN by 70.30, 96.94, and 45.61 folds, respectively. The untargeted metabolomics analysis revealed that rbk overexpression led to changes in the abundance of 145 metabolites. Finally, the exogenous addition of l-proline, rhamnose, and nicotinamide adenine dinucleotide (NADH) increased the biofilm formation of LR-1 by 1.27, 1.39, and 1.25 folds and the adhesion by 1.40, 1.41, and 1.52 folds, respectively.Conclusion This study demonstrates that rbk can serve as a key target for enhancing the biofilm formation and adhesion of Lactiplantibacillus.

    参考文献
    [1] SUEZ J, ZMORA N, SEGAL E, ELINAV E. The pros, cons, and many unknowns of probiotics[J]. Nature Medicine, 2019, 25(5): 716-729.
    [2] KHORUTS A, HOFFMANN DE, BRITTON RA. Probiotics: promise, evidence, and hope[J]. Gastroenterology, 2020, 159(2): 409-413.
    [3] JANDL B, DIGHE S, BAUMGARTNER M, MAKRISTATHIS A, GASCHE C, MUTTENTHALER M. Gastrointestinal biofilms: endoscopic detection, disease relevance, and therapeutic strategies[J]. Gastroenterology, 2024, 167(6): 1098-1112.e5.
    [4] LI ZH, BEHRENS AM, GINAT N, TZENG SY, LU XG, SIVAN S, LANGER R, JAKLENEC A. Biofilm-inspired encapsulation of probiotics for the treatment of complex infections[J]. Advanced Materials, 2018, 30(51): e1803925.
    [5] LI SY, SUN HX, LI JH, ZHAO YJ, WANG RY, XU L, DUAN CY, LI JL, WANG Z, LIU QM, WANG Y, OUYANG SY, SHEN XH, ZHANG L. Autoinducer-2 and bile salts induce c-di-GMP synthesis to repress the T3SS via a T3SS chaperone[J]. Nature Communications, 2022, 13(1): 6684.
    [6] LIU L, WU RY, ZHANG JL, SHANG N, LI PL. d-Ribose interferes with quorum sensing to inhibit biofilm formation of Lactobacillus paraplantarum L-ZS9[J]. Frontiers in Microbiology, 2017, 8: 1860.
    [7] POKUSAEVA K, NEVES AR, ZOMER A, O’CONNELL-MOTHERWAY M, MacSHARRY J, CURLEY P, FITZGERALD GF, van SINDEREN D. Ribose utilization by the human commensal Bifidobacterium breve UCC2003[J]. Microbial Biotechnology, 2010, 3(3): 311-323.
    [8] KORI LD, HOFMANN A, PATEL BKC. Expression, purification, crystallization and preliminary X-ray diffraction analysis of a ribokinase from the thermohalophile Halothermothrix orenii[J]. Acta Crystallographica Section F, Structural Biology and Crystallization Communications, 2012, 68(Pt 2): 240-243.
    [9] MARTINEZ S, GARCIA JG, WILLIAMS R, ELMASSRY M, WEST A, HAMOOD A, HURTADO D, GUDENKAUF B, VENTOLINI G, SCHLABRITZ-LOUTSEVITCH N. Lactobacilli spp.: real-time evaluation of biofilm growth[J]. BMC Microbiology, 2020, 20(1): 64.
    [10] CABRAL MP, SOARES NC, ARANDA J, PARREIRA JR, RUMBO C, POZA M, VALLE J, CALAMIA V, LASA I, BOU G. Proteomic and functional analyses reveal a unique lifestyle for Acinetobacter baumannii biofilms and a key role for histidine metabolism[J]. Journal of Proteome Research, 2011, 10(8): 3399-3417.
    [11] LIU L, CHEN X, ZHANG CY, DENG J, XIAO H, RAO Y. Lactiplantibacillus biofilm and planktonic cells ameliorate ulcerative colitis in mice via immunoregulatory activity, gut metabolism and microbiota modulation[J]. Food & Function, 2023, 14(20): 9181-9193.
    [12] LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-delta delta C(T)) Method[J]. Methods, 2001, 25(4): 402-408.
    [13] 陈星, 郭书玉, 陶雨飞, 邓西, 杨淑慧, 涂明霞, 吴艾玲, 马偲臆, 饶瑜, 刘蕾. 糖酵解途径相关基因与植物乳杆菌生理行为的相关性[J]. 食品科学, 2021, 42(22): 113-124.CHEN X, GUO SY, TAO YF, DENG X, YANG SH, TU MX, WU AL, MA SY, RAO Y, LIU L. Association of the expression of glycolytic pathway-related genes with the physiological behavior of Lactobacillus plantarum[J]. Food Science, 2021, 42(22): 113-124 (in Chinese).
    [14] CHO YJ, SONG HY, AMARA H BEN, CHOI BK, EUNJU R, CHO YA, SEOL Y, LEE Y, KU Y, RHYU IC, KOO KT. In vivo inhibition of Porphyromonas gingivalis growth and prevention of periodontitis with quorum-sensing inhibitors[J]. Journal of Periodontology, 2016, 87(9): 1075-1082.
    [15] LIU L, DENG J, GUO SY, LI YF, WANG LY, LIU YY, XV P, RAO Y. Stress tolerance and characterization of biofilm-like probiotic bacteria encapsulated in calcium pectin beads[J]. LWT, 2023, 184: 115072.
    [16] RIEU A, AOUDIA N, JEGO G, CHLUBA J, YOUSFI N, BRIANDET R, DESCHAMPS J, GASQUET B, MONEDERO V, GARRIDO C, GUZZO J. The biofilm mode of life boosts the anti-inflammatory properties of Lactobacillus[J]. Cellular Microbiology, 2014, 16(12): 1836-1853.
    [17] CALDAS TD, YAAGOUBI A EL, RICHARME G. Chaperone properties of bacterial elongation factor EF-tu[J]. Journal of Biological Chemistry, 1998, 273(19): 11478-11482.
    [18] DHANANI AS, BAGCHI T. The expression of adhesin EF-Tu in response to mucin and its role in Lactobacillus adhesion and competitive inhibition of enteropathogens to mucin[J]. Journal of Applied Microbiology, 2013, 115(2): 546-554.
    [19] RAMIAH K, van REENEN CA, DICKS LMT. Expression of the mucus adhesion gene mub, surface layer protein slp and adhesion-like factor EF-TU of Lactobacillus acidophilus ATCC 4356 under digestive stress conditions, as monitored with real-time PCR[J]. Probiotics and Antimicrobial Proteins, 2009, 1(1): 91.
    [20] LIU L, WU RY, ZHANG JL, LI PL. Overexpression of luxS promotes stress resistance and biofilm formation of Lactobacillus paraplantarum L-ZS9 by regulating the expression of multiple genes[J]. Frontiers in Microbiology, 2018, 9: 2628.
    [21] MAXSON ME, DARWIN AJ. Multiple promoters control expression of the Yersinia enterocolitica phage-shock-protein A (pspA) operon[J]. Microbiology, 2006, 152(Pt 4): 1001-1010.
    [22] YIP ES, GRUBLESKY BT, HUSSA EA, VISICK KL. A novel, conserved cluster of genes promotes symbiotic colonization and sigma-dependent biofilm formation by Vibrio fischeri[J]. Molecular Microbiology, 2005, 57(5): 1485-1498.
    [23] BELIK AS, TARASOVA NN, KHMEL’ IA. Regulation of biofilm formation in Escherichia coli K12: effect of mutations in HNS StpA, lon, and rpoN genes[J]. Molekuliarnaia Genetika, Mikrobiologiia I Virusologiia, 2008(4): 3-5.
    [24] HAYRAPETYAN H, TEMPELAARS M, NIEROP GROOT M, ABEE T. Bacillus cereus ATCC 14579 RpoN (sigma 54) is a pleiotropic regulator of growth, carbohydrate metabolism, motility, biofilm formation and toxin production[J]. PLoS One, 2015, 10(8): e0134872.
    [25] IYER VS, HANCOCK LE. Deletion of σ(54) (rpoN) alters the rate of autolysis and biofilm formation in Enterococcus faecalis[J]. Journal of Bacteriology, 2012, 194(2): 368-375.
    [26] NYAMUNDANDA G, BRENNAN L, GORMLEY IC. Probabilistic principal component analysis for metabolomic data[J]. BMC Bioinformatics, 2010, 11: 571.
    [27] SINDT NM, ROBISON F, BRICK MA, SCHWARTZ HF, HEUBERGER AL, PRENNI JE. MALDI-TOF-ms with PLS modeling enables strain typing of the bacterial plant pathogen Xanthomonas axonopodis[J]. Journal of the American Society for Mass Spectrometry, 2018, 29(2): 413-421.
    [28] BYLESJ? M, RANTALAINEN M, CLOAREC O, NICHOLSON JK, HOLMES E, TRYGG J. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification[J]. Journal of Chemometrics, 2006, 20(8/9/10): 341-351.
    [29] LEE SB, RHEE YK, GU EJ, KIM DW, JANG GJ, SONG SH, LEE JI, KIM BM, LEE HJ, HONG HD, CHO CW, KIM HJ. Mass-based metabolomic analysis of Lactobacillus sakei and its growth media at different growth phases[J]. Journal of Microbiology and Biotechnology, 2017, 27(5): 925-932.
    [30] TOMITA S, SAITO K, NAKAMURA T, SEKIYAMA Y, KIKUCHI J. Rapid discrimination of strain-dependent fermentation characteristics among Lactobacillus strains by NMR-based metabolomics of fermented vegetable juice[J]. PLoS One, 2017, 12(7): e0182229.
    [31] DONG SJ, LIN XH, LI H. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation[J]. The International Journal of Biochemistry & Cell Biology, 2015, 68: 33-41.
    [32] ILLEGHEMS K, de VUYST L, WECKX S. Comparative genome analysis of the candidate functional starter culture strains Lactobacillus fermentum 222 and Lactobacillus plantarum 80 for controlled cocoa bean fermentation processes[J]. BMC Genomics, 2015, 16: 766.
    [33] VEGGE CS, JANSEN van RENSBURG MJ, RASMUSSEN JJ, MAIDEN MCJ, JOHNSEN LG, DANIELSEN M, MacINTYRE S, INGMER H, KELLY DJ. Glucose metabolism via the Entner-Doudoroff pathway in Campylobacter: a rare trait that enhances survival and promotes biofilm formation in some isolates[J]. Frontiers in Microbiology, 2016, 7: 1877.
    [34] HARUTOSHI T. Exopolysaccharides of lactic acid bacteria for food and colon health applications[M]//Lactic Acid Bacteria-R&D for Food, Health and Livestock Purposes. IntechOpen: London, UK, 2013.
    [35] ZHANG WP, ZHAO YJ, ZHAO ZW, CHENG X, LI KT. Structural characterization and induced copper stress resistance in rice of exopolysaccharides from Lactobacillus plantarum LPC-1[J]. International Journal of Biological Macromolecules, 2020, 152: 1077-1088.
    [36] De ANGELIS M, SIRAGUSA S, CAMPANELLA D, di CAGNO R, GOBBETTI M. Comparative proteomic analysis of biofilm and planktonic cells of Lactobacillus plantarum DB200[J]. Proteomics, 2015, 15(13): 2244-2257.
    [37] RANG J, HE HC, YUAN SQ, TANG JL, LIU ZD, XIA ZY, KHAN TA, HU SB, YU ZQ, HU YB, SUN YJ, HUANG WT, DING XZ, XIA LQ. Deciphering the metabolic pathway difference between Saccharopolyspora pogona and Saccharopolyspora spinosa by comparative proteomics and metabonomics[J]. Frontiers in Microbiology, 2020, 11: 396.
    [38] FILANNINO P, CARDINALI G, RIZZELLO CG, BUCHIN S, de ANGELIS M, GOBBETTI M, di CAGNO R. Metabolic responses of Lactobacillus plantarum strains during fermentation and storage of vegetable and fruit juices[J]. Applied and Environmental Microbiology, 2014, 80(7): 2206-2215.
    [39] ZHAO HY, LIU LX, PENG S, YUAN L, LI H, WANG H. Heterologous expression of argininosuccinate synthase from Oenococcus oeni enhances the acid resistance of Lactobacillus plantarum[J]. Frontiers in Microbiology, 2019, 10: 1393.
    [40] WANG WW, HE JY, PAN DD, WU Z, GUO YX, ZENG XQ, LIAN LW. Metabolomics analysis of Lactobacillus plantarum ATCC 14917 adhesion activity under initial acid and alkali stress[J]. PLoS One, 2018, 13(5): e0196231.
    [41] NIEDERDORFER R, BESEMER K, BATTIN TJ, PETER H. Ecological strategies and metabolic trade-offs of complex environmental biofilms[J]. npj Biofilms and Microbiomes, 2017, 3: 21.
    [42] SONG XF, WANG QQ, XU X, LIN JW, WANG XR, XUE YT, WU RN, AN YF. Isolation and analysis of salt response of Lactobacillusplantarum FS5-5 from Dajiang[J]. Indian Journal of Microbiology, 2016, 56(4): 451-460.
    [43] BISCHER AP, KOVACS CJ, FAUSTOFERRI RC, QUIVEY RG JR. Disruption of l-rhamnose biosynthesis results in severe growth defects in Streptococcus mutans[J]. Journal of Bacteriology, 2020, 202(6): e00728-19.
    [44] HSU CY, CAIRNS L, HOBLEY L, ABBOTT J, O’BYRNE C, STANLEY-WALL NR. Genomic differences between Listeria monocytogenes EGDe isolates reveal crucial roles for SigB and wall rhamnosylation in biofilm formation[J]. Journal of Bacteriology, 2020, 202(7): e00692-19.
    [45] LANGE MD, FARMER BD, DECLERCQ AM, PEATMAN E, DECOSTERE A, BECK BH. Sickeningly sweet: l-rhamnose stimulates Flavobacterium columnare biofilm formation and virulence[J]. Journal of Fish Diseases, 2017, 40(11): 1613-1624.
    [46] XU CT, SHI ZW, SHAO JQ, YU CK, XU ZN. Metabolic engineering of Lactococcus lactis for high level accumulation of glutathione and S-adenosyl-l-methionine[J]. World Journal of Microbiology and Biotechnology, 2019, 35(12): 185.
    [47] GONG LC, REN C, XU Y. GlnR negatively regulates glutamate-dependent acid resistance in Lactobacillus brevis[J]. Applied and Environmental Microbiology, 2020, 86(7): e02615-19.
    [48] WU CH, HSUEH YH, KUO JM, LIU SJ. Characterization of a potential probiotic Lactobacillus brevis RK03 and efficient production of γ-aminobutyric acid in batch fermentation[J]. International Journal of Molecular Sciences, 2018, 19(1): 143.
    [49] SAFONOVA M, GOLOVNYOVA N. Adhesion factors of lactic acid bacteria and bifidobacteria[J].Микробные биотехнологии: фундаментальные и прикладные аспекты, 2021,13:103-118.
    [50] WEN JZ, YU YX, CHEN MQ, CUI L, XIA Q, ZENG XQ, GUO YX, PAN DD, WU Z. Amino acid-derived quorum sensing molecule alanine on the gastrointestinal tract tolerance of the Lactobacillus strains in the cocultured fermentation model[J]. Microbiology Spectrum, 2022, 10(2): e0083221.
    [51] SCHIUMA G, LARA D, CLEMENT J, NARDUCCI M, RIZZO R. Nicotinamide adenine dinucleotide: the redox sensor in aging-related disorders[J]. Antioxidants & Redox Signaling, 2024. DOI:10.1089/ars.2023.0375.
    [52] GE XC, SHI XL, SHI LM, LIU JL, STONE V, KONG FX, KITTEN T, XU P. Involvement of NADH oxidase in biofilm formation in Streptococcus sanguinis[J]. PLoS One, 2016, 11(3): e0151142.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨耀,宋云龙,陈星,黎小丽,龙海祺,刘蕾,饶瑜. rbk基因超表达对类植物乳杆菌LR-1生物被膜、黏附特性及代谢谱的调控作用[J]. 微生物学报, 2025, 65(3): 1241-1265

复制
分享
文章指标
  • 点击次数:3
  • 下载次数: 17
  • HTML阅读次数: 7
  • 引用次数: 0
历史
  • 收稿日期:2024-08-28
  • 在线发布日期: 2025-03-10
文章二维码