营养限制对桦褐孔菌生长及三萜合成的影响
作者:
基金项目:

国家自然科学基金(32030072)


Effects of nutrient restriction on growth and triterpene synthesis of Inonotus obliquus
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】碳源和氮源在提供真菌所需的能量和增加次级产物代谢方面具有重要的作用。本研究旨在确认碳、氮限制对桦褐孔菌生长及三萜类次级代谢产物生产的影响。【方法】以l-谷氨酰胺和d-无水葡萄糖分别作为氮源和碳源,以营养充足培养基(0.877 g/L l-谷氨酰胺,20.000 g/L无水葡萄糖)作为对照组,实验组分为添加0.044 g/L l-谷氨酰胺的N元素限制培养基(N-L)和添加2.000 g/L无水葡萄糖的C元素限制培养基(C-L)。平板实验中,接种后的平板置于28℃恒温培养箱培养,每天测量并记录其菌落直径。摇瓶发酵实验中,摇瓶接种后分别于5 d和10 d收样,测定生物量、三萜含量及三萜合成相关基因的表达量。【结果】平板实验结果显示,C-L组菌丝延伸速度最快,但菌丝稀疏,菌丝的老化速度也得到较大延缓,N-L组菌丝延伸速度较CK组快但低于C-L组,菌丝老化速度最快;摇瓶发酵实验结果显示,N-L组生物量最高;RT-qPCR结果显示,C-L和N-L条件下,多数三萜类合成酶基因出现上调趋势;GC-MS结果显示,与CK组相比,C-L和N-L组中羊毛甾醇以及桦褐孔菌醇含量均有所上升。【结论】营养限制条件下会刺激桦褐孔菌三萜类化合物的积累。

    Abstract:

    [Objective] Carbon and nitrogen sources play an important role in providing the energy required for fungal growth and increasing secondary metabolite production. This study aims to investigate the effects of carbon and nitrogen restriction on the growth of Inonotus obliquus and the production of triterpenoid secondary metabolites. [Methods] l-glutamine and d-anhydrous glucose were used as the nitrogen and carbon sources, respectively. A nutrient-sufficient medium (0.877 g/L l-glutamine and 20.000 g/L of d-anhydrous glucose) served as the control group (CK). The experimental groups included a nitrogen-limited medium (N-L) with 0.044 g/L l-glutamine and a carbon-limited medium (C-L) with 2.000 g/L d-anhydrous glucose. In the plate experiment, inoculated plates were incubated at 28 ℃ in a constant temperature incubator, and colony diameters were measured and recorded daily. In the shake flask fermentation experiment, samples were collected on the 5th and 10th days to measure biomass, triterpene content, and the expression levels of triterpene synthesis-related genes. [Results] The plate experiment showed that the C-L group had the fastest mycelium extension, but the mycelium was sparse, and the aging was greatly delayed. The N-L group exhibited faster mycelium extension than the CK group but slower than the C-L group, with the fastest mycelium aging. The shake flask fermentation results showed that the N-L group had the highest biomass. qPCR results demonstrated an upregulation trend in most triterpenoid synthase genes under C-L and N-L conditions. GC-MS analysis revealed that both lanosterol and inotodiol content increased in the C-L and N-L groups compared to the CK group. [Conclusion] Nutritional restriction conditions stimulate the accumulation of triterpenes in I. obliquus.

    参考文献
    [1] 黄年来. 俄罗斯神秘的民间药用真菌: 桦褐孔菌[J]. 中国食用菌, 2002, 21(4): 7-8. HUANG NL. Inonotus obliquus, a mysterious folk medicinal fungus in Russia[J]. Edible Fungi of China, 2002, 21(4): 7-8(in Chinese).
    [2] ZHENG WF, MIAO KJ, LIU YB, ZHAO YX, ZHANG MM, PAN SY, DAI YC. Chemical diversity of biologically active metabolites in the Sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production[J]. Applied Microbiology and Biotechnology, 2010, 87(4): 1237-1254.
    [3] ZHONG XH, REN K, LU SJ, YANG SY, SUN DZ. Progress of research on Inonotus obliquus[J]. Chinese Journal of Integrative Medicine, 2009, 15(2): 156-160.
    [4] JOO JI, KIM DH, YUN JW. Extract of Chaga mushroom (Inonotus obliquus) stimulates 3T3-L1 adipocyte differentiation[J]. Phytotherapy Research, 2010, 24(11): 1592-1599.
    [5] 戴玉成, 李玉. 中国六种重要药用真菌名称的说明[J]. 菌物学报, 2011, 30(4): 515-518. DAI YC, LI Y. Notes on the nomenclature of six important medicinal fungi in China[J]. Mycosystema, 2011, 30(4): 515-518(in Chinese).
    [6] CHEN YF, ZHENG JJ, QU C, XIAO Y, LI FF, JIN QX, LI HH, MENG FP, JIN GH, JIN D. Inonotus obliquus polysaccharide ameliorates dextran sulphate sodium induced colitis involving modulation of Th1/Th2 and Th17/Treg balance[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2019, 47(1): 757-766.
    [7] KIM YO, HAN SB, LEE HW, AHN HJ, YOON YD, JUNG JK, KIM HM, SHIN CS. Immuno-stimulating effect of the endo-polysaccharide produced by submerged culture of Inonotus obliquus[J]. Life Sciences, 2005, 77(19): 2438-2456.
    [8] MIZUNO T, ZHUANG C, ABE K, OKAMOTO H, KIHO T, UKAI S, LECLERC S, MEIJER L. Antitumor and hypoglycemic activities of polysaccharides from the Sclerotia and mycelia of Inonotus obliquus (pers.: Fr.) pil. (aphyllophoromycetideae)[J]. International Journal of Medicinal Mushrooms, 1999, 1(4): 301-316.
    [9] NIU H, SONG D, MU HB, ZHANG WX, SUN FF, DUAN JY. Investigation of three lignin complexes with antioxidant and immunological capacities from Inonotus obliquus[J]. International Journal of Biological Macromolecules, 2016, 86: 587-593.
    [10] YOON BG, NOH JY, YOON JJ. Composition for prevention and treatment of type1 and type2 diabetes, containing water extract of cordyceps militaris and Inonotus obliquus as effective ingredient: KR20030014648[P]. 2004-09-16.
    [11] LIAN LD, WANG LS, SONG SQ, ZHU J, LIU R, SHI L, REN A, ZHAO MW. GCN4 regulates secondary metabolism through activation of antioxidant gene expression under nitrogen limitation conditions in Ganoderma lucidum[J]. Applied and Environmental Microbiology, 2021, 87(14): e0015621.
    [12] SCHERLACH K, SARKAR A, SCHROECKH V, DAHSE HM, ROTH M, BRAKHAGE AA, HORN U, HERTWECK C. Two induced fungal polyketide pathways converge into antiproliferative spiroanthrones[J]. Chembiochem, 2011, 12(12): 1836-1839.
    [13] EHRLICH KC, COTTY PJ. Variability in nitrogen regulation of aflatoxin production by Aspergillus flavus strains[J]. Applied Microbiology and Biotechnology, 2002, 60(1/2): 174-178.
    [14] WANG Z, CHEN JH, DING J, HAN J, SHI L. GlMPC activated by GCN4 regulates secondary metabolism under nitrogen limitation conditions in Ganoderma lucidum[J]. mBio, 2023, 14(5): e0135623.
    [15] ZHAO W, XU JW, ZHONG JJ. Enhanced production of ganoderic acids in static liquid culture of Ganoderma lucidum under nitrogen-limiting conditions[J]. Bioresource Technology, 2011, 102(17): 8185-8190.
    [16] LYU H, CHEN J, LI WL. Natural triterpenoids for the treatment of diabetes mellitus: a review[J]. Natural Product Communications, 2016, 11(10): 1579-1586.
    [17] ZHAO FQ, XIA GY, CHEN LX, ZHAO JL, XIE ZF, QIU F, HAN G. Chemical constituents from Inonotus obliquus and their antitumor activities[J]. Journal of Natural Medicines, 2016, 70(4): 721-730.
    [18] KIM J, YANG SC, HWANG AY, CHO H, HWANG KT. Composition of triterpenoids in Inonotus obliquus and their anti-proliferative activity on cancer cell lines[J]. Molecules, 2020, 25(18): 4066.
    [19] ZOU CX, DONG SH, HOU ZL, YAO GD, LIN B, HUANG XX, SONG SJ. Modified lanostane-type triterpenoids with neuroprotective effects from the fungus Inonotus obliquus[J]. Bioorganic Chemistry, 2020, 105: 104438.
    [20] 赵芬琴, 王雪慧, 王宁宁, 蒋莉珂, 郁慧敏, 陈文娟. 桦褐孔菌中羊毛脂烷型三萜的生物合成途径探讨[J]. 河南大学学报(医学版), 2017, 36(1): 64-69. ZHAO FQ, WANG XH, WANG NN, JIANG LK, YU HM, CHEN WJ. Discussion on the biosynthetic pathway of lanostanes in Inonotus obliquus[J]. Journal of Henan University (Medical Science), 2017, 36(1): 64-69(in Chinese).
    [21] 高铫晖, 王高乾, 黄蕙芸, 高昊, 姚新生, 胡丹. 真菌三萜及甾体的生物合成研究进展[J]. 有机化学, 2018, 38(9): 2335-2347. GAO YH, WANG GQ, HUANG HY, GAO H, YAO XS, HU D. Biosynthesis of fungal triterpenoids and steroids[J]. Chinese Journal of Organic Chemistry, 2018, 38(9): 2335-2347(in Chinese).
    [22] 赵卓卓, 冉棋, 丁辉, 刘秀琨, 余河水, 宋新波, 张丽娟. 桦褐孔菌醇研究进展[J]. 食用菌学报, 2018, 25(4): 121-129. ZHAO ZZ, RAN Q, DING H, LIU XK, YU HS, SONG XB, ZHANG LJ. Advances in inotodiol research[J]. Acta Edulis Fungi, 2018, 25(4): 121-129(in Chinese).
    [23] 徐明雅, 丰文燕, 申屠婉铃, 周旭. GC-MS/MS国标法检测稻谷中11种农药残留存在的问题及改进[J]. 粮食与油脂, 2024, 37(4): 140-144, 157. XU MY, FENG WY, SHENTU WL, ZHOU X. Problems and improvements of GC-MS/MS national standard method for determination of 11 pesticide residues in rice[J]. Cereals & Oils, 2024, 37(4): 140-144, 157(in Chinese).
    [24] GIMENO CJ, LJUNGDAHL PO, STYLES CA, FINK GR. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS[J]. Cell, 1992, 68(6): 1077-1090.
    [25] SUN MH, LIU XZ. Carbon requirements of some nematophagous, entomopathogenic and mycoparasitic hyphomycetes as fungal biocontrol agents[J]. Mycopathologia, 2006, 161(5): 295-305.
    [26] GUO JW, YU ZF, QIAO M, ZHANG KQ. Effects of carbon and nitrogen sources on sexual reproduction of five strains from the ascomycete Orbilia[J]. Annals of Microbiology, 2009, 59(1): 51-55.
    [27] GUO JW, YU ZF, LI CY, ZHANG KQ. The evalution of sexual reproduction capacity of orbiliaceous anamorphs[J]. Mycosystema, 2009, 28(5): 692-697.
    [28] GAO L, SUN MH, LIU XZ, CHE YS. Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biocontrol fungi[J]. Mycological Research, 2007, 111(1): 87-92.
    [29] 殷红. 氮源浓度对平菇菌丝生长和子实体形成的影响[J]. 西北植物学报, 1995, 15(6): 91-94. YIN H. Effect of nitrogen source concentration on Mycelium growth and fruiting body formation of Pleurotus ostreatus[J]. Acta Botanica Boreali-Occidentalia Sinica, 1995, 15(6): 91-94(in Chinese).
    [30] 殷红. 缺素对平菇菌丝生长速率和菌落形态的影响[J]. 西北植物学报, 1995, 15(2): 149-153. YIN H. Influences of mineral element deficiency on the mycelial growth rate and colonial morphology of Pleurotus ostreatus[J]. Acta Botanica Boreali-Occidentalia Sinica, 1995, 15(2): 149-153(in Chinese).
    [31] TEICHERT S, RUTHERFORD JC, WOTTAWA M, HEITMAN J, TUDZYNSKI B. Impact of ammonium permeases mepA, mepB, and mepC on nitrogen-regulated secondary metabolism in Fusarium fujikuroi[J]. Eukaryotic Cell, 2008, 7(2): 187-201.
    [32] TEICHERT S, WOTTAWA M, SCHÖNIG B, TUDZYNSKI B. Role of the Fusarium fujikuroi TOR kinase in nitrogen regulation and secondary metabolism[J]. Eukaryotic Cell, 2006, 5(10): 1807-1819.
    [33] TEICHMANN B, LIU LD, SCHINK KO, BÖLKER M. Activation of the ustilagic acid biosynthesis gene cluster in Ustilago maydis by the C2H2 zinc finger transcription factor Rua1[J]. Applied and Environmental Microbiology, 2010, 76(8): 2633-2640.
    [34] 艾斯卡尔·艾拉提. 灵芝菌胞外多糖生物合成的氮源调控及其纳米微粒的应用[D]. 无锡: 江南大学博士学位论文, 2019. Eschal Erati. Nitrogen source regulation of extracellular polysaccharide biosynthesis by Ganoderma lucidum and application of nanoparticles[D]. Wuxi: Doctoral Dissertation of Jiangnan University, 2019(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曾丽梅,柳巧,武慧,杨梦媛,曹舒佳,杨绪勤,蒋继宏,曹小迎. 营养限制对桦褐孔菌生长及三萜合成的影响[J]. 微生物学报, 2025, 65(1): 362-370

复制
分享
文章指标
  • 点击次数:82
  • 下载次数: 325
  • HTML阅读次数: 214
  • 引用次数: 0
历史
  • 收稿日期:2024-07-27
  • 在线发布日期: 2025-01-04
  • 出版日期: 2025-01-04
文章二维码