内生菌72146对盐胁迫下大豆幼苗过氧化氢酶活性和脯氨酸含量的影响
作者:
作者单位:

1.商丘师范学院 生物与食品学院,商丘市农业微生物资源利用重点实验室,河南 商丘;2.东北林业大学 生命科学学院,黑龙江 哈尔滨

作者简介:

赵龙飞:实验总体设计;徐亚军:实验开展及论文撰写;杨静雅:数据处理及分析;黄雪珍:协助数据处理和校对;宋唯一:英文翻译及校对;杜丽平:实验开展及论文撰写。

基金项目:

国家自然科学基金(U1204301);河南省重点研发与推广专项(212102310223);河南省高校重点科研项目(24A180022)


Endophytic bacterial strains 72 and 146 affect catalase activity and proline content in soybean seedlings under salt stress
Author:
Affiliation:

1.Key Laboratory on Agricultural Microorganism Resources Development of Shangqiu, College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan, China;2.College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China

Fund Project:

This work was supported by the National Natural Science Foundation of China (U1204301), the Key Specialized Research and Development Program of Henan Province (212102310223), and the Key Scientific Research Program of Henan University (24A180022).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • | | | |
  • 文章评论
    摘要:

    目的 探索盐胁迫环境下大豆根瘤内生菌对大豆幼苗生长的影响,为黄河流域作物高质量发展提供参考。方法 以‘徐豆20’为实验材料,设置对照组、盐胁迫组和盐胁迫接种内生菌组3组处理,在人工气候条件下采用盆栽法探究不同盐胁迫下接种内生菌对大豆幼苗生长的影响。结果 在盐胁迫条件下,接种内生菌72时,大豆幼苗培养至21 d时,使用OD600=0.75菌悬液(2:1)接种,当盐浓度为200 mmol/L时,过氧化氢酶(catalase, CAT)活性最高,为2.010 0 U/g FW,比盐胁迫组高出54.02%;使用OD600=0.33的菌悬液(1:2)接种时,在盐浓度为 300 mmol/L时,脯氨酸含量最高,为0.028 6 mg/g,而在盐浓度为100 mmol/L时,脯氨酸含量比盐胁迫组高出64.38%。接种内生菌146时,大豆幼苗培养至21 d时,使用OD600=0.50的菌悬液(1:1)接种,在盐浓度为50 mmol/L时,CAT活性最高,为1.350 0 U/g FW;培养至28 d,使用OD600=0.75的菌悬液(2:1)接种,在盐浓度为100 mmol/L时,CAT活性比盐胁迫组高出272.73%;在盐浓度为150 mmol/L时,脯氨酸含量最高,为0.147 0 mg/g,比盐胁迫组高出860.78%。由此可见,在盐胁迫条件下,接种内生菌72和146均具有一定的修复作用。总体而言,接种内生菌146后,大豆幼苗的CAT活性和脯氨酸含量均显著高于盐胁迫组,说明内生菌146的修复作用更为明显。基于16S rRNA基因序列及系统发育分析结果,菌株72与枯草芽孢杆菌(Bacillus subtilis)最相似,相似率为99.45%;菌株146与解蛋白芽孢杆菌(Bacillus proteolyticus)最相似,相似率为100%。结论 接种内生菌可有效缓解黄河流域盐碱土壤对大豆幼苗生长的不利影响,对研发生物防治剂具有重要意义。

    Abstract:

    Objective To explore the effects of endophytic bacteria in soybean nodules on the growth of soybean seedlings under salt stress and provide reference for the high-quality development of crops in the Yellow River Basin.Methods A pot experiment was conducted with the soybean cultivar ‘Xudou 20’ under artificial climate conditions. Three groups were designed: control, salt stress, and salt stress inoculated with endophytic bacteria. The growth of soybean seedlings in each group was measured.Results Regarding strain 72, in the case of inoculation with the suspension at OD600=0.75 (2:1) and the salt concentration of 200 mmol/L, the activity of catalase (CAT) in the seedlings of 21 days was the highest (2.010 0 U/g FW), which was 54.02% higher than that in the salt stress group; in the case of inoculation with the suspension at OD600=0.33 (1:2) and the salt concentration of 300 mmol/L, the proline content was the highest (0.028 6 mg/g); in the case of inoculation with the suspension at OD600=0.75 (2:1) and the salt concentration of 100 mmol/L, the proline content was 64.38% higher than that in the salt stress group. Regarding strain 146, the seedlings of 21 days in the case of inoculation with the suspension at OD600=0.50 (1:1) and the salt concentration of 50 mmol/L had the highest CAT activity (1.350 0 U/g FW); the seedlings of 28 days in the case of inoculation with the suspension at OD600=0.75 (2:1) and the salt concentration of 100 mmol/L had the CAT activity 272.73% higher than that in the salt stress group; the seedlings in the case of inoculation with the suspension at OD600=0.75 (2:1) and the salt concentration of 150 mmol/L had the highest proline content of 0.147 0 mg/g, which was 860.78% higher than that in the salt stress group. The results indicated that inoculation with the endophytic bacterial strain 72 or 146 had a repairing effect. The increases in the CAT activity and proline content in the soybean seedlings inoculated with strain 146 over those in the salt stress group were generally higher than those in the case of inoculation with strain 72, indicating that the repairing effect of strain 146 was more obvious. The phylogenetic tree built based on 16S rRNA gene sequences showed that strains 72 and 146 had the highest similarity with Bacillus subtilis (99.45%) and B. protolyticus (100%), respectively.Conclusion Inoculating endophytic bacteria was of great significance for alleviating the effect of saline-alkali stress in the Yellow River Basin on the growth of soybean seedlings and developing biological repairing agents.

    参考文献
    [1] 聂莹, 邢亚楠, 黄家章, 肖晓红, 刘锐. 主栽大豆营养品质及加工特性初探[J]. 食品工业科技, 2021, 42(17): 1-7.NIE Y, XING YN, HUANG JZ, XIAO XH, LIU R. Nutritional quality and preliminary investigation of processing characteristics for main soybean cultivars[J]. Science and Technology of Food Industry, 2021, 42(17): 1-7 (in Chinese).
    [2] PI EX, XU J, LI HH, FAN W, ZHU CM, ZHANG TY, JIANG JC, HE LT, LU HF, WANG HZ, POOVAIAH BW, DU LQ. Enhanced salt tolerance of rhizobia-inoculated soybean correlates with decreased phosphorylation of the transcription factor GmMYB183 and altered flavonoid biosynthesis[J]. Molecular & Cellular Proteomics, 2019, 18(11): 2225-2243.
    [3] 赵起越, 夏夜, 邹本东. 土壤盐渍化成因危害及恢复[J]. 农业与技术, 2022, 42(11): 115-119.ZHAO QY, XIA Y, ZOU BD. Causes, harm and recovery of soil salinization[J]. Agriculture and Technology, 2022, 42(11): 115-119 (in Chinese).
    [4] De GARA L, FOYER CH. Ying and Yang interplay between reactive oxygen and reactive nitrogen species controls cell functions[J]. Plant, Cell & Environment, 2017, 40(4): 459-461.
    [5] 朱建峰, 崔振荣, 吴春红, 邓丞, 陈军华, 张华新. 我国盐碱地绿化研究进展与展望[J]. 世界林业研究, 2018, 31(4): 70-75.ZHU JF, CUI ZR, WU CH, DENG C, CHEN JH, ZHANG HX. Research advances and prospect of saline and alkali land greening in China[J]. World Forestry Research, 2018, 31(4): 70-75 (in Chinese).
    [6] ADHIKARI P, JOSHI K, PANDEY A. Taxus associated fungal endophytes: anticancerous to other biological activities[J]. Fungal Biology Reviews, 2023, 45: 100308.
    [7] MUSHTAQ S, SHAFIQ M, TARIQ MR, SAMI A, NAWAZ-UL-REHMAN MS, BHATTI MHT, HAIDER MS, SADIQ S, ABBAS MT, HUSSAIN M, SHAHID MA. Interaction between bacterial endophytes and host plants[J]. Frontiers in Plant Science, 2023, 13: 1092105.
    [8] 靳锦, 赵庆, 张晓梅, 李文均. 植物内生菌活性代谢产物最新研究进展[J]. 微生物学杂志, 2018, 38(3): 103-113.JIN J, ZHAO Q, ZHANG XM, LI WJ. Research progress on bioactive products from endophytes[J]. Journal of Microbiology, 2018, 38(3): 103-113 (in Chinese).
    [9] SANTOYO G, MORENO-HAGELSIEB G, del CARMEN OROZCO-MOSQUEDA M, GLICK BR. Plant growth-promoting bacterial endophytes[J]. Microbiological Research, 2016, 183: 92-99.
    [10] PAN XY, QIN Y, YUAN ZL. Potential of a halophyte-associated endophytic fungus for sustaining Chinese white poplar growth under salinity[J]. Symbiosis, 2018, 76(2): 109-116.
    [11] HUANG LQ, NIU YC, SU L, DENG H, LYU H. The potential of endophytic fungi isolated from cucurbit plants for biocontrol of soilborne fungal diseases of cucumber[J]. Microbiological Research, 2020, 231: 126369.
    [12] RADHAKRISHNAN R, HASHEM A, ALLAH EF ABD. Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments[J]. Frontiers in Physiology, 2017, 8: 667.
    [13] HASHEM A, TABASSUM B, FATHI ABD_ALLAH E. Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress[J]. Saudi Journal of Biological Sciences, 2019, 26(6): 1291-1297.
    [14] 赵龙飞, 徐亚军, 邵璇, 杨静雅. 两株内生芽孢杆菌对盐胁迫下大豆幼苗超氧化物歧化酶和过氧化物酶活性影响[J]. 微生物学通报, 2022, 49(5): 1664-1677.ZHAO LF, XU YJ, SHAO X, YANG JY. Two endophytic Bacillus strains from soybean nodules affect superoxide dismutase and peroxidase activities in soybean seedlings under salt stress[J]. Microbiology China, 2022, 49(5): 1664-1677 (in Chinese).
    [15] ZHAO LF, XU YJ, LAI XH, SHAN CJ, DENG ZS, JI YL. Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters[J]. Brazilian Journal of Microbiology, 2015, 46(4): 977-989.
    [16] ZHANG R, LIU RT, ZONG WS. Bisphenol S interacts with catalase and induces oxidative stress in mouse liver and renal cells[J]. Journal of Agricultural and Food Chemistry, 2016, 64(34): 6630-6640.
    [17] DIAO QN, SONG YJ, QI HY. Exogenous spermidine enhances chilling tolerance of tomato (Solanum lycopersicum L.) seedlings via involvement in polyamines metabolism and physiological parameter levels[J]. Acta Physiologiae Plantarum, 2015, 37(11): 230.
    [18] KOUAKOU JL, GONEDELé-BI S, ASSAMOI JB, ASSANVO N, GUETTA SP. Optimization of the Cetyltrimethylammonium bromide (CTAB) DNA extraction protocol using forest elephant dung samples[J]. MethodsX, 2022, 9: 101867.
    [19] 董璐, 杨春洪, 陈林, 宋丽. 大豆CAT基因家族生物信息学分析及非生物逆境胁迫响应研究[J]. 大豆科学, 2022, 41(6): 663-671.DONG L, YANG CH, CHEN L, SONG L. Bioinformatics analysis of soybean catalase family and the response to abiotic stress[J]. Soybean Science, 2022, 41(6): 663-671 (in Chinese).
    [20] 沈金玲, 钟镇芬, 黄永健, 蔡冠龙, 周淑霞, 黄真池. 盐胁迫对桉树(Eucalyptus)活性氧代谢和CAT基因表达的影响[J]. 分子植物育种, 2020, 18(5): 1661-1665.SHEN JL, ZHONG ZF, HUANG YJ, CAI GL, ZHOU SX, HUANG ZC. Effects of salt stress on the metabolism of reactive oxygen and the transcription of CAT genes in Eucalyptus[J]. Molecular Plant Breeding, 2020, 18(5): 1661-1665 (in Chinese).
    [21] 周莹, 赵永娟, 黄丽瑾, 唐楠煜, 唐晓清, 王康才. 荆芥幼苗对盐胁迫的生理响应[J]. 核农学报, 2019, 33(1): 166-175.ZHOU Y, ZHAO YJ, HUANG LJ, TANG NY, TANG XQ, WANG KC. Physiological responses of Schizonepeta tenuifolia Briq. seedlings to salt stress[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(1): 166-175 (in Chinese).
    [22] 朱金方, 刘京涛, 陆兆华, 夏江宝, 柳海宁, 金悦. 盐胁迫对中国柽柳幼苗生理特性的影响[J]. 生态学报, 2015, 35(15): 5140-5146.ZHU JF, LIU JT, LU ZH, XIA JB, LIU HN, JIN Y. Effects of salt stress on physiological characteristics of Tamarix chinensis Lour. seedlings[J]. Acta Ecologica Sinica, 2015, 35(15): 5140-5146 (in Chinese).
    [23] 赵欣桐, 陈晓东, 李子吉, 张巨明, 刘天增. 植物内生肠杆菌对狗牙根耐盐性的调控研究[J]. 草业学报, 2021, 30(9): 127-136.ZHAO XT, CHEN XD, LI ZJ, ZHANG JM, LIU TZ. An evaluation of the effects of the plant endophyte Enterobacter on the salt tolerance of bermudagrass[J]. Acta Prataculturae Sinica, 2021, 30(9): 127-136 (in Chinese).
    [24] 佐长赓, 王静怡, 牛新湘, 刘萍, 管力慧, 党文芳, 杨红梅, 楚敏, 王宁, 林青, 王有武, 娄恺, 史应武. 内生菌与根际细菌对棉花的促生与诱导抗病作用[J]. 西南农业学报, 2022, 35(4): 757-763.ZUO CG, WANG JY, NIU XX, LIU P, GUAN LH, DANG WF, YANG HM, CHU M, WANG N, LIN Q, WANG YW, LOU K, SHI YW. Effects of endophytes and rhizosphere bacteria on cotton growth promotion and disease resistance induction[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(4): 757-763 (in Chinese).
    [25] 董芮萌, 王佳瑶, 朱梦卓, 赵晓妍, 朱淼, 汪雅楠, 王泽, 马莲菊. 内生菌对镉和盐单一及复合胁迫下水稻幼苗生长及生理特性的影响[J]. 安徽农业科学, 2021, 49(19): 31-34, 37.DONG RM, WANG JY, ZHU MZ, ZHAO XY, ZHU M, WANG YN, WANG Z, MA LJ. Effects of endophytes on growth and physiological characteristics of rice seedlings under single and combined stresses of cadmium and salt[J]. Journal of Anhui Agricultural Sciences, 2021, 49(19): 31-34, 37 (in Chinese).
    [26] MEHTA P, WALIA A, KULSHRESTHA S, CHAUHAN A, SHIRKOT CK. Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions[J]. Journal of Basic Microbiology, 2015, 55(1): 33-44.
    [27] 商成慧, 周泽宇, 崔文雪, 郭卫冷, 杨敬华, 白琰, 郭长虹. 大豆脯氨酸积累相关基因家族鉴定及干旱胁迫表达分析[J]. 植物遗传资源学报, 2022, 23(6): 1793-1806.SHANG CH, ZHOU ZY, CUI WX, GUO WL, YANG JH, BAI Y, GUO CH. Identification and expression analysis of proline accumulation related gene families in soybean under drought stress[J]. Journal of Plant Genetic Resources, 2022, 23(6): 1793-1806 (in Chinese).
    [28] GUO SQ, MA XX, CAI WQ, WANG Y, GAO XQ, FU BZ, LI SX. Exogenous proline improves salt tolerance of alfalfa through modulation of antioxidant capacity, ion homeostasis, and proline metabolism[J]. Plants, 2022, 11(21): 2994.
    [29] 陈奋奇, 方鹏, 白明兴, 姬祥卓, 庄泽龙, 彭云玲. 外源脯氨酸缓解玉米幼苗盐胁迫的效应[J]. 草业科学, 2022, 39(4): 747-755.CHEN FQ, FANG P, BAI MX, JI XZ, ZHUANG ZL, PENG YL. Mitigation of salt stress in maize seedlings by exogenous proline application[J]. Pratacultural Science, 2022, 39(4): 747-755 (in Chinese).
    [30] GYAWALI S, PARKIN IAP, STEPPUHN H, BUCHWALDT M, ADHIKARI B, WOOD R, WALL K, BUCHWALDT L, SINGH M, BEKKAOUI D, HEGEDUS DD. Seedling, early vegetative, and adult plant growth of oilseed rapes (Brassica napus L.) under saline stress[J]. Canadian Journal of Plant Science, 2019, 99(6): 927-941.
    [31] GHAID JA, SADDAM AA, MUSTAFA SA. Proline and agronomic production responses of different barley cultivars to salinity stress: a correlation analysis[J]. Research on Crops, 2019, 20(3): 483-487.
    [32] 钟华, 董洁, 董宽虎. 盐胁迫对扁蓿豆幼苗脯氨酸积累及其代谢关键酶活性的影响[J]. 草业学报, 2018, 27(4): 189-194.ZHONG H, DONG J, DONG KH. Effect of salt stress on proline accumulation and the activities of the key enzymes involved in proline metabolism in Medicago ruthenica seedlings[J]. Acta Prataculturae Sinica, 2018, 27(4): 189-194 (in Chinese).
    [33] 徐亚军, 赵龙飞, 邢鸿福, 罗云霄, 魏正欣. 内生细菌对盐胁迫下小麦幼苗脯氨酸和丙二醛的影响[J]. 生态学报, 2020, 40(11): 3726-3737.XU YJ, ZHAO LF, XING HF, LUO YX, WEI ZX. Effects of endophytic bacteria on proline and malondialdehyde of wheat seedlings under salt stress[J]. Acta Ecologica Sinica, 2020, 40(11): 3726-3737 (in Chinese).
    [34] 杜欣, 杨林美, 姜梦柯, 曾忠秀, 李梦霜, 李中源, 李淑英. 内生细菌对NaCl胁迫下小麦幼苗的缓解作用[J]. 安徽农学通报, 2022, 28(1): 15-18.DU X, YANG LM, JIANG MK, ZENG ZX, LI MS, LI ZY, LI SY. Alleviating effect of endophytic bacteria on wheat seedlings under NaCl stress[J]. Anhui Agricultural Science Bulletin, 2022, 28(1): 15-18 (in Chinese).
    [35] LASTOCHKINA O, PUSENKOVA L, YULDASHEV R, BABAEV M, GARIPOVA S, BLAGOVA D, KHAIRULLIN R, ALINIAEIFARD S. Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L. (wheat) under salinity[J]. Plant Physiology and Biochemistry, 2017, 121: 80-88.
    [36] YOOLONG S, KRUASUWAN W, THANH PHM HT, JAEMSAENG R, JANTASURIYARAT C, THAMCHAIPENET A. Modulation of salt tolerance in Thai jasmine rice (Oryza sativa L. cv. KDML105) by Streptomyces venezuelae ATCC 10712 expressing ACC deaminase[J]. Scientific Reports, 2019, 9(1): 1275.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵龙飞,徐亚军,杨静雅,黄雪珍,宋唯一,杜丽平. 内生菌72146对盐胁迫下大豆幼苗过氧化氢酶活性和脯氨酸含量的影响[J]. 微生物学报, 2025, 65(4): 1726-1741

复制
分享
文章指标
  • 点击次数:41
  • 下载次数: 46
  • HTML阅读次数: 24
  • 引用次数: 0
历史
  • 收稿日期:2024-05-04
  • 在线发布日期: 2025-04-12
文章二维码