定向驯化高抗糠醛和对羟基苯甲酸的酵母菌株
作者:
基金项目:

广东省新能源和可再生能源研究开发与应用重点实验室项目(E439kf0201)


Directed domestication of yeast strains with high tolerance to furfural and p-hydroxybenzoic acid
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在木质纤维素原料预处理过程中不可避免地形成抑制剂,包括糖降解产物(如5-羟甲基糠醛、糠醛)以及木质素降解的酚类化合物(如4-羟基苯甲酸、香兰素)等,这些化合物会降低发酵效率。【目的】提高酵母对纤维素水解液中的抑制物耐受性对工业生物质乙醇高效生产至关重要。【方法】采用浓度较高的糠醛和对羟基苯甲酸对模式菌株W303-1A进行梯度驯化,对比驯化菌株和出发菌株在不同抑制物浓度下的生长曲线及发酵乙醇性能;对驯化后菌株和出发菌株进行高通量基因组重测序,分析其糖代谢途径和耐药性相关的变异点基因,对与耐抑制物有关的变异点进行分析挖掘。【结果】在含有2.0 g/L糠醛的培养基中,F-2菌的乙醇产量为19.40 g/L,比原始菌株高2倍。在含有1.6 g/L糠醛和对羟基苯甲酸的培养基中,B-2菌的最高乙醇产量为20.22 g/L,是原始菌株的7.6倍。通过对出发菌株和驯化后菌株进行高通量基因组重测序发现,糖代谢途径中编码乙醇脱氢酶、果糖-1,6-二磷酸醛缩酶和丙酮酸脱氢酶的基因发生部分突变,而YAP1(参与氧化应激反应和氧化还原稳态的转录激活剂)、PDR5(耐多种化学物质的多效ABC外运载体)和RPN4(锌指蛋白)基因的部分突变对酿酒酵母的耐抑制物具有重要作用。【结论】研究结果为进一步优化和构建模式菌株提供更多的操作靶点。

    Abstract:

    Inhibitors including sugar degradation products (e.g., 5-hydroxymethylfurfural and furfural) and phenols (e.g., 4-hydroxybenzoic acid and vanillin) from lignin degradation are inevitably formed in the pretreatment process of lignocellulose raw materials, exerting a negative impact on the fermentation efficiency. [Objective] To improve the tolerance of yeast to inhibitors in cellulose hydrolysates and ensure the efficient production of industrial biomass ethanol. [Methods] The model strain W303-1A was domesticated with the inhibitor furfural and p-hydroxybenzoic acid alone or in combination. The growth curves and ethanol fermentation performance of the domesticated strain and the original strain were compared under different inhibitor concentrations. We then conducted high-throughput genome resequencing of both the domesticated and original strains to identify the mutations in genes related to the glucose metabolism and drug resistance, thereby analyzing the variation points related to inhibitor tolerance. [Results] In the medium containing 2.0 g/L furfural, the ethanol yield of F-2 was 19.40 g/L, which was 2 times higher than that of the original strain. In the medium containing 1.6 g/L furfural and p-hydroxybenzoic acid, the highest ethanol yield of B-2 was 20.22 g/L, 7.6 times that of the original strain. Then, high-throughput genome resequencing of the original and domesticated strains revealed several mutations in the genes encoding ethanol dehydrogenase, fructose-1,6-diphosphate aldolase, and pyruvate dehydrogenase in the glucose metabolism pathway. The mutations of YAP1 (transcriptional activator involved in oxidative stress response and REDOX homeostasis), PDR5 (pleiotropic ABC transporter tolerant to multiple chemicals), and RPN4 (zinc finger protein) genes played an important role in the inhibitor tolerance of Saccharomyces cerevisiae. [Conclusion] The findings provide more targets for further optimization and construction of model strains.

    参考文献
    [1] LI YC, MITSUMASU K, GOU ZX, GOU M, TANG YQ, LI GY, WU XL, AKAMATSU T, TAGUCHI H, KIDA K. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37[J]. Applied Microbiology Biotechnology, 2016, 100: 1531-1542.
    [2] ZABED H, SAHU JN, SUELY A, BOYCE AN, FARUQ G. Bioethanol production from renewable sources: current perspectives and technological progress[J]. Renewable and Sustainable Energy Reviews, 2017, 71: 475-501.
    [3] JÖNSSON LJ, MARTÍN C. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects[J]. Bioresource Technology, 2016, 199: 103-112.
    [4] PARAWIRA W, TEKERE M. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review[J]. Critical Reviews in Biotechnology, 2011, 31(1): 20-31.
    [5] CHUNDAWAT SP, BECKHAM GT, HIMMEL ME, DALE BE. Deconstruction of lignocellulosic biomass to fuels and chemicals[J]. Annual Review of Chemical and Biomolecular Engineering, 2011, 2: 121-145.
    [6] van DIJK M, ERDEI B, GALBE M, NYGÅRD Y, OLSSON L. Strain-dependent variance in short-term adaptation effects of two xylose-fermenting strains of Saccharomyces cerevisiae[J]. Bioresource Technology, 2019, 292: 121922.
    [7] SHAO LY, CHEN H, LI YL, LI JN, CHEN G, WANG G. Pretreatment of corn stover via sodium hydroxide-urea solutions to improve the glucose yield[J]. Bioresource Technology, 2020, 307: 123191.
    [8] JÖNSSON LJ, ALRIKSSON B, NILVEBRANT NO. Bioconversion of lignocellulose: inhibitors and detoxification[J]. Biotechnology for Biofuels, 2013, 6(1): 16.
    [9] NIEVES LM, PANYON LA, WANG X. Engineering sugar utilization and microbial tolerance toward lignocellulose conversion[J]. Frontiers in Bioengineering and Biotechnology, 2015, 3: 17.
    [10] ZHA J, LI BZ, SHEN MH, HU ML, SONG H, YUAN YJ. Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae[J]. Plos One, 2013, 8(7): e68317.
    [11] SENATHAM S, CHAMDUANG T, KAEWCHINGDUANG Y, THAMMASITTIRONG A, SRISODSUK M, ELLISTON A, ROBERTS IN, WALDRON KW, THAMMASITTIRONG SNR. Enhanced xylose fermentation and hydrolysate inhibitor tolerance of Scheffersomyces shehatae for efficient ethanol production from non-detoxified lignocellulosic hydrolysate[J]. SpringerPlus, 2016, 5(1): 1040.
    [12] LI WC, ZHU JQ, ZHAO X, QIN L, XU T, ZHOU X, LI X, LI BZ, YUAN YJ. Improving co-fermentation of glucose and xylose by adaptive evolution of engineering xylose-fermenting Saccharomyces cerevisiae and different fermentation strategies[J]. Renewable Energy, 2019, 139: 1176-1183.
    [13] LUO P, ZHANG YN, SUO YK, LIAO ZP, MA Y, FU HX, WANG JF. The global regulator IrrE from Deinococcus radiodurans enhances the furfural tolerance of Saccharomyces cerevisiae[J]. Biochemical Engineering Journal, 2018, 136: 69-77.
    [14] PEREIRA SR, SÀNCHEZ I NOGUÉ V, FRAZÃO CJR, SERAFIM LS, GORWA-GRAUSLUND MF, XAVIER AMRB. Adaptation of Scheffersomyces stipitis to hardwood spent sulfite liquor by evolutionary engineering[J]. Biotechnology for Biofuels, 2015, 8: 50.
    [15] OSHOMA CE, GREETHAM D, LOUIS EJ, SMART KA, PHISTER TG, POWELL C, DU C. Screening of non-Saccharomyces cerevisiae strains for tolerance to formic acid in bioethanol fermentation[J]. PLoS One, 2015, 10(8): e0135626.
    [16] KLINKE HB, AHRING BK, SCHMIDT AS, THOMSEN AB. Characterization of degradation products from alkaline wet oxidation of wheat straw[J]. Bioresource Technology, 2002, 82(1): 15-26.
    [17] PALMQVIST E, GRAGE H, MEINANDER NQ, HAHN-HÄGERDAL B. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts[J]. Biotechnology and Bioengineering, 1999, 63(1): 46-55.
    [18] THOMPSON OA, HAWKINS GM, GORSICH SW, DORAN-PETERSON J. Phenotypic characterization and comparative transcriptomics of evolved Saccharomyces cerevisiae strains with improved tolerance to lignocellulosic derived inhibitors[J]. Biotechnology for Biofuels, 2016, 9(1): 200.
    [19] LI CJ, CHU CY, HUANG LH, WANG MH, SHEU LF, YEH JI, HSU HY. Synergistic anticancer activity of triptolide combined with cisplatin enhances apoptosis in gastric cancer in vitro and in vivo[J]. Cancer Letters, 2012, 319(2): 203-213.
    [20] LIU ZL, MA MG. Pathway-based signature transcriptional profiles as tolerance phenotypes for the adapted industrial yeast Saccharomyces cerevisiae resistant to furfural and HMF[J]. Applied Microbiology and Biotechnology, 2020, 104(8): 3473-3492.
    [21] 顾翰琦, 邵玲智, 刘冉, 刘晓光, 李玲, 刘倩, 李洁, 张雅丽. 酿酒酵母酚类抑制物耐受性脂质组学研究[J]. 生物技术通报, 2021, 37(1): 15-23. GU HQ, SHAO LZ, LIU R, LIU XG, LI L, LIU Q, LI J, ZHANG YL. Lipidomics analysis of Saccharomyces cerevisiae with tolerance to phenolic inhibitors[J]. Biotechnology Bulletin, 2021, 37(1): 15-23(in Chinese).
    [22] WANG SZ, HE ZJ, YUAN QP. Xylose enhances furfural tolerance in Candida tropicalis by improving NADH recycle[J]. Chemical Engineering Science, 2017, 158: 37-40.
    [23] GU HQ, ZHANG J, BAO J. High tolerance and physiological mechanism of Zymomonas mobilis to ph?慮湯慬汩祣猠楩獮?潩晢??楯?偳椠捩桮椠慥?灨慡獮瑯潬爠楦獥??楥??牡整癩敯慮氠獯?椠瑣獯?牮散獯灢漠湲獥敳?瑤潵?汛楊杝渮漠捂敩汯汴略汣潨獮敯?摯敧特椠癡敮摤?楂湩桯楥扮楧瑩潮牥獥孲?嵮??????攵砬瀠爱攱猲猨??呼????‰???????扢? ̄??戴?㈠??戺爬?嬹??崬?摟旽????併??????俖仑?产??????告??嘠????丬????匵???伴琨楓氱搩攺??匰??????剉??佑刬??卅?????倠桊祉獁楎潇氠潚杈椮挠慅汦?慥湣摴?洠潯汦攠捦略汲慭牥?慴湡慴汩祯獮椠獩?潨晩?瑩桴敯?獳琠牯敮猠獥?牨敡獮灯潬渠獰敲?潤晵??楩?卮愠捯捦栠慧牬潵浣祯捳敥猠?捥敲牭敥癮楴獡楴慩敯??楊??椠浃灨潥獭敩摣?扬礠?獮瑤牵潳湴杲?椠湡潮牤朠慅湮楧捩?慥捥楲摩?睧椠瑐桲?楧浲灥汳楳挬愠琲椰漱渵?琠漳?椨湓搱甩猺琠爸椰愭永?昨敩牮洠敃湨瑩慮瑥楳潥温献嬼?嵲???漵畝爠湍慅汒?潅晍??灂瀬氠楋效摁??楌挠牙漬戠楈潅汒潓杅祎??水??ぁ??????ㄠ???????????c stress response memory is modulated by gene positioning in yeast[J]. Colloids and Surfaces B, Biointerfaces, 2019, 8(6): E582.
    [26] AL-SHAHIB A, UNDERWOOD A. snp-search: simple processing, manipulation and searching of SNPs from high-throughput sequencing[J]. BMC Bioinformatics, 2013, 14(1): 326.
    [27] DU PLESSIS L, SKUNCA N, DESSIMOZ C. The what, where, how and why of gene ontology: a primer for bioinformaticians[J]. Briefings in Bioinformatics, 2011, 12(6): 723-735.
    [28] KANEHISA M, SATO Y. KEGG Mapper for inferring cellular functions from protein sequences[J]. Protein Science, 2019, 29: 28-35.
    [29] MATHESON K, PARSONS L, GAMMIE A. Whole-genome sequence and variant analysis of W303, a widely-used strain of Saccharomyces cerevisiae[J]. G3, 2017, 7(7): 2219-2226.
    [30] DU J, LIANG JR, ZHANG XJ, WANG JL, LI W, SONG PX, FENG XH. Identifying the negative cooperation between major inhibitors of cellulase activity and minimizing their inhibitory potential during hydrolysis of acid-pretreated corn stover[J]. Bioresource Technology, 2022, 343: 126113.
    [31] KIM D. Physico-chemical conversion of lignocellulose: inhibitor effects and detoxification strategies: a mini review[J]. Molecules, 2018, 23(2): 309.
    [32] LIU ZL, MOON J. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion[J]. Gene, 2009, 446: 1-10.
    [33] PAES BG, STEINDORFF AS, FORMIGHIERI EF, PEREIRA IS, ALMERIDA JRM. Physiological characterization and transcriptome
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

樊美杉,卢圣捷,张红丹,钟春梅,谢君. 定向驯化高抗糠醛和对羟基苯甲酸的酵母菌株[J]. 微生物学报, 2025, 65(1): 371-388

复制
分享
文章指标
  • 点击次数:47
  • 下载次数: 126
  • HTML阅读次数: 84
  • 引用次数: 0
历史
  • 收稿日期:2024-08-07
  • 在线发布日期: 2025-01-04
  • 出版日期: 2025-01-04
文章二维码