泛基因组分析鲁氏芽孢杆菌属的物种多样性与潜在工业应用
作者:
作者单位:

1.四川轻化工大学 生物工程学院,四川 宜宾;2.宜宾五粮液股份有限公司,四川 宜宾

作者简介:

ZOU Wei: Conceptualization, formal analysis, supervision, methodology, writing–review & editing. YANG Lingling: Formal analysis, visualization, writing–review & editing. LIU Chaojie: Methodology, formal analysis, visualization, writing–original draft preparation, data curation. ZHENG Jia: validation. ZHANG Kaizheng: Investigation. QIAO Zongwei: Investigation.

通讯作者:

E-mail: weizou@suse.edu.cn.

基金项目:

中国轻工业浓香型白酒固态发酵重点实验室开放基金(2021JJ017)


Pangenome analysis of Rummeliibacillus sp. strains reveals their unexpected diversity and potential for industrial application
Author:
Affiliation:

1.College of Biological Engineering, Sichuan University of Science & Engineering, Yibin, Sichuan, China;2.Wuliangye Yibin Co., Ltd., Yibin, Sichuan, China

Fund Project:

This work was supported by the Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry (2021JJ017).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • | | | |
  • 文章评论
    摘要:

    目的 鲁氏芽孢杆菌属(Rummeliibacillus)包含3个种,即R. stabekisiiR. pycnusR. suwonensis,在生物降解、益生菌、动物饲料以及精氨酸、己酸等的生产方面具有一定的应用潜力。本研究旨在从基因组水平研究该属的遗传多样性。方法 对该属不同来源的12个菌株进行比较泛基因组分析,分析内容还包括菌株的系统发育分析、功能注释、基因组代谢途径分析以及可移动遗传元件预测。结果 泛基因组分析共鉴定出8 024个基因家族,核心基因组、附属基因组和菌株特异性基因分别包含1 550、3 941和2 533个基因家族。在核心基因组中,6个菌株的精氨酸循环是完整的,7个菌株具备完全生物合成乙偶姻的能力。然而,只有R. pycnusR. suwonensis 3B-1具有合成己酸的能力。通过系统发育树、DNA-DNA杂交(DNA-DNA hybridization, DDH)和平均核苷酸一致性(average nucleotide identity, ANI)分析发现,Rummeliibacillus sp. G93和Rummeliibacillus sp. TYF-LIM-RU47均属于R. stabekisiiRummeliibacillus sp. POC4和Rummeliibacillus sp. TYF005可能属于该属的一个新种。此外,在所有12个菌株中均鉴定出基因岛,其数量从4个(R. stabekisii DSM 25578和R. stabekisii NBRC 104870)到14个(Rummeliibacillus sp. SL167菌株和Rummeliibacillus sp. TYF005菌株)不等,并且在5个分析菌株发现了前噬菌体序列。结论 本研究提供了Rummeliibacillus sp.较为全面的基因家族谱,有助于对其进行进一步探索。

    Abstract:

    Objective Rummeliibacillus, a genus encompassing three known species, R. stabekisii, R. pycnus, and R. suwonensis, has a wide range of potential applications in biodegradation, probiotics, animal feed, and production of arginine, caproic acid, and other compounds. This study aims to explore the genetic diversity of this genus at the genomic level.Methods A comparative pangenome analysis of 12 strains isolated from different sources was conducted. In addition, the phylogenetic analysis, functional annotation, genomic metabolic pathway analysis, and prediction of mobile genetic elements were carried out.Results A total of 8 024 gene clusters were identified. The core genome, accessory genome, and strain-specific genes comprised 1 550, 3 941, and 2 533 gene clusters, respectively. In the core genome, the arginine cycle of six strains was complete. Seven strains had the ability to completely biosynthesize acetoin. However, only R. pycnus and R. suwonensis 3B-1 were able to completely biosynthesize caproic acid. The phylogenetic tree, DNA-DNA hybridization, and average nucleotide identity showed that Rummeliibacillus sp. G93 and Rummeliibacillus sp. TYF-LIM-RU47 were strains of R. stabekisii. Rummeliibacillus sp. POC4 and Rummeliibacillus sp. TYF005 may belong to a new species of this genus. In addition, genomic islands were identified in all the 12 strains, with the number ranging from four (R. stabekisii DSM 25578 and R. stabekisii NBRC 104870) to 14 (Rummeliibacillus sp. SL167 and Rummeliibacillus sp. TYF005), and prophage sequences were found in five of the 12 strains.Conclusion This study provides a genomic framework for Rummeliibacillus that could assist the further exploration of this genus.

    参考文献
    [1] VAISHAMPAYAN P, MIYASHITA M, OHNISHI A, SATOMI M, ROONEY A, DUC MT, VENKATESWARAN K. Description of Rummeliibacillus stabekisii gen. nov., sp. nov. and reclassification of Bacillus pycnus Nakamuraet al. 2002 as Rummeliibacillus pycnus comb. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(Pt5): 1094-1099.
    [2] HER J, KIM J. Rummeliibacillus suwonensis sp. nov., isolated from soil collected in a mountain area of Korea[J]. Journal of Microbiology, 2013, 51(2): 268-272.
    [3] LI M, LI Y, FAN XJ, QIN YH, HE YJ, LV YK. Draft genome sequence of Rummeliibacillus sp. strain TYF005, a physiologically recalcitrant bacterium with high ethanol and salt tolerance isolated from spoilage vinegar[J]. Microbiology Resource Announcements, 2019, 8(31): e00244-19.
    [4] HUANG K, ZHANG T, JIANG B, MU WM, MIAO M. Characterization of a thermostable arginase from Rummeliibacillus pycnus SK31. 001[J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 133: S68-S75.
    [5] HUANG K, ZHANG T, JIANG B, YAN X, MU WM, MIAO M. Overproduction of Rummeliibacillus pycnus arginase with multi-copy insertion of the argR.pyc cassette into the Bacillus subtilis chromosome[J]. Applied Microbiology and Biotechnology, 2017, 101(15): 6039-6048.
    [6] JUNPADIT P, SUKSAROJ TT, BOONSAWANG P. Transformation of palm oil mill effluent to terpolymer polyhydroxyalkanoate and biodiesel using Rummeliibacillus pycnus strain TS8[J]. Waste and Biomass Valorization, 2017, 8(4): 1247-1256.
    [7] MUDGIL D, BASKAR S, BASKAR R, PAUL D, SHOUCHE YS. Biomineralization potential of Bacillus subtilis, Rummeliibacillus stabekisii and Staphylococcus epidermidis strains in vitro isolated from speleothems, Khasi Hill Caves, Meghalaya, India[J]. Geomicrobiology Journal, 2018, 35(8): 675-694.
    [8] LIU CJ, DU YF, ZHENG J, QIAO ZW, LUO HB, ZOU W. Production of caproic acid by Rummeliibacillus suwonensis 3B-1 isolated from the pit mud of strong-flavor Baijiu[J]. Journal of Biotechnology, 2022, 358: 33-40.
    [9] ZHANG YY, PAN XR, ZUO JE, HU JM. Production of n-caproate using food waste through thermophilic fermentation without addition of external electron donors[J]. Bioresource Technology, 2022, 343: 126144.
    [10] FENG GY, FAN XJ, LIANG YN, LI C, XING JD, HE YJ. Genomic and transcriptional characteristics of strain Rummeliibacillus sp. TYF-LIM-RU47 with an aptitude of directly producing acetoin from lignocellulose[J]. Fermentation, 2022, 8(8): 414.
    [11] YANG G, HU YM, WANG JL. Biohydrogen production from co-fermentation of fallen leaves and sewage sludge[J]. Bioresource Technology, 2019, 285: 121342.
    [12] TINRAT S, SEDTANANUN S. Novel Rummeliibacillus sp. isolated from fermented vegetable products as the potential probiotics[J]. Journal of Microbiology, Biotechnology and Food Sciences, 2022, 11(5): e4194.
    [13] TAN HY, CHEN SW, HU SY. Improvements in the growth performance, immunity, disease resistance, and gut microbiota by the probiotic Rummeliibacillus stabekisii in Nile tilapia (Oreochromis niloticus)[J]. Fish & Shellfish Immunology, 2019, 92: 265-275.
    [14] LIVINGSTONE PG, MORPHEW RM, WHITWORTH DE. Genome sequencing and pan-genome analysis of 23 Corallococcus spp. strains reveal unexpected diversity, with particular plasticity of predatory gene sets[J]. Frontiers in Microbiology, 2018, 9: 3187.
    [15] LAND M, HAUSER L, JUN SR, NOOKAEW I, LEUZE MR, AHN TH, KARPINETS T, LUND O, KORA G, WASSENAAR T, POUDEL S, USSERY DW. Insights from 20 years of bacterial genome sequencing[J]. Functional & Integrative Genomics, 2015, 15(2): 141-161.
    [16] GOLICZ AA, BAYER PE, BHALLA PL, BATLEY J, EDWARDS D. Pangenomics comes of age: from bacteria to plant and animal applications[J]. Trends in Genetics, 2020, 36(2): 132-145.
    [17] MEDINI D, DONATI C, TETTELIN H, MASIGNANI V, RAPPUOLI R. The microbial pan-genome[J]. Current Opinion in Genetics & Development, 2005, 15(6): 589-594.
    [18] YIN ZQ, LIU XB, QIAN CQ, SUN L, PANG SQ, LIU JN, LI W, HUANG WW, CUI SY, ZHANG CK, SONG WX, WANG DD, XIE ZH. Pan-genome analysis of Delftia tsuruhatensis reveals important traits concerning the genetic diversity, pathogenicity, and biotechnological properties of the species[J]. Microbiology Spectrum, 2022, 10(2): e02072-21.
    [19] CHAUDHARI NM, GUPTA VK, DUTTA C. BPGA-an ultra-fast pan-genome analysis pipeline[J]. Scientific Reports, 2016, 6: 24373.
    [20] PERIWAL V, PATOWARY A, VELLARIKKAL SK, GUPTA A, SINGH M, MITTAL A, JEYAPAUL S, CHAUHAN RK, SINGH AV, SINGH PK, GARG P, KATOCH VM, KATOCH K, CHAUHAN DS, SIVASUBBU S, SCARIA V. Comparative whole-genome analysis of clinical isolates reveals characteristic architecture of Mycobacterium tuberculosis pangenome[J]. PLoS One, 2015, 10(4): e0122979.
    [21] ZHAO YB, JIA XM, YANG JH, LING YC, ZHANG Z, YU J, WU JY, XIAO JF. PanGP: a tool for quickly analyzing bacterial pan-genome profile[J]. Bioinformatics, 2014, 30(9): 1297-1299.
    [22] ZEB S, GULFAM SM, BOKHARI H. Comparative core/pan genome analysis of Vibrio cholerae isolates from Pakistan[J]. Infection, Genetics and Evolution, 2020, 82: 104316.
    [23] RICHTER M, ROSSELLO-MORA R, OLIVER GLOCKNER FO, PEPLIES J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison[J]. Bioinformatics, 2016, 32(6): 929-931.
    [24] AUCH AF, von JAN M, KLENK HP, GOKER M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison[J]. Standards in Genomic Sciences, 2010, 2: 117-134.
    [25] TAMURA K, STECHER G, KUMAR S. MEGA 11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.
    [26] HUERTA-CEPAS J, SZKLARCZYK D, HELLER D, HERNANDEZ-PLAZA A, FORSLUND SK, COOK H, MENDE DR, LETUNIC I, RATTEI T, JENSEN LJ, MERING CV, BORK P. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses[J]. Nucleic Acids Research, 2019, 47(D1): gD309-D314.
    [27] MORIYA Y, ITOH M, OKUDA S, YOSHIZAWA AC, KANEHISA M. KAAS: an automatic genome annotation and pathway reconstruction server[J]. Nucleic Acids Research, 2007, 35(suppl_2): W182-W185.
    [28] KANEHISA M, SATO Y. KEGG Mapper for inferring cellular functions from protein sequences[J]. Protein Science, 2020, 29(1): 28-35.
    [29] BERTELLI C, LAIRD MR, WILLIAMS KP, Simon Fraser University Research Computing Group, LAU BY, HOAD G, WINSOR GL, BRINKMAN FSL. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets[J]. Nucleic Acids Research, 2017, 45(W1): W30-W35.
    [30] ARNDT D, GRANT JR, MARCU A, SAJED T, PON A, LIANG YJ, WISHART DS. PHASTER: a better, faster version of the PHAST phage search tool[J]. Nucleic Acids Research, 2016, 44(W1): W16-W21.
    [31] MIRA A, MARTIN-CUADRADO AB, D’AURIA G, RODRGUEZ-VALERA F. The bacterial pan-genome: a new paradigm in microbiology[J]. International Microbiology, 2010, 13(2): 45-57.
    [32] TETTELIN H, MASIGNANI V, CIESLEWICZ MJ, DONATI C, MEDINI D, WARD NL, ANGIUOLI SV, CRABTREE J, JONES AL, DURKIN AS, DeBOY RT, DAVIDSEN TM, MORA M, SCARSELLI M, MARGARIT Y ROS I, PETERSON JD, HAUSER CR, SUNDARAM JP, NELSON WC, MADUPU R, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”[J]. Proceedings of the National Academy of Sciences, 2005, 102(39): 13950-13955.
    [33] CHARLIER D, BERVOETS I. Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli[J]. Amino Acids, 2019, 51(8): 1103-1127.
    [34] GINESY M, BELOTSERKOVSKY J, ENMAN J, ISAKSSON L, ROVA U. Metabolic engineering of Escherichia coli for enhanced arginine biosynthesis[J]. Microbial Cell Factories, 2015, 14: 29.
    [35] WANG YX, WU Y, ZHANG HL, QU XH, XIN YF. Driven by microbial metabolism of sulfur and its biological ecological relationship[J]. Journal of Microbiology, Biotechnology and Food Sciences, 2022, 62(3): 930-948.
    [36] WIDGREN S, FROSSLING J. Spatio-temporal evaluation of cattle trade in Sweden: description of a grid network visualization technique[J]. Geospatial Health, 2010, 5(1): 119-130.
    [37] BOBER M, MORGELIN M, OLIN AI, von PAWEL-RAMMINGEN U, COLLIN M. The membrane bound LRR lipoprotein Slr, and the cell wall-anchored M1 protein from Streptococcus pyogenes both interact with type I collagen[J]. PLoS One, 2011, 6(5): e20345.
    [38] XU SY, LIU Y, GAO J, ZHOU M, YANG JY, HE FM, KASTELIC JP, DENG ZJ, HAN B. Comparative genomic analysis of Streptococcus dysgalactiae subspecies dysgalactiae isolated from bovine mastitis in China[J]. Frontiers in Microbiology, 2021, 12: 751863.
    [39] HERMANS PWM, ADRIAN PV, ALBERT C, ESTEVAO S, HOOGENBOEZEM T, LUIJENDIJK IHT, KAMPHAUSEN T, HAMMERSCHMIDT S. The streptococcal lipoprotein rotamase A (SlrA) is a functional peptidyl-prolyl isomerase involved in pneumococcal colonization[J]. Journal of Biological Chemistry, 2006, 281(2): 968-976.
    [40] BAIDA GE, KUZMIN NP. Mechanism of action of hemolysin III from Bacillus cereus[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1996, 1284(2): 122-124.
    [41] CHEN YC, CHANG MC, CHUANG YC, JEANG CL. Characterization and virulence of hemolysin III from Vibrio vulnificus[J]. Current Microbiology, 2004, 49(3): 175-179.
    [42] JIA WJ, SONG LL, ZHANG LY, WANG XL. The latest research progress of Bacillus cereus toxin[J]. Chinese Journal of Antibiotics, 2022, 47(06):537-542.
    [43] OCHMAN H, LAWRENCE JG, GROISMAN EA. Lateral gene transfer and the nature of bacterial innovation[J]. Nature, 2000, 405(6784): 299-304.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邹伟,杨凌凌,刘超杰,郑佳,张楷正,乔宗伟. 泛基因组分析鲁氏芽孢杆菌属的物种多样性与潜在工业应用[J]. 微生物学报, 2025, 65(2): 781-795

复制
分享
文章指标
  • 点击次数:19
  • 下载次数: 61
  • HTML阅读次数: 15
  • 引用次数: 0
历史
  • 收稿日期:2024-09-19
  • 在线发布日期: 2025-02-18
文章二维码