冻融对燕麦青贮有氧暴露阶段细菌和真菌演替的影响
作者:
作者单位:

1.青海师范大学 生命科学学院,青海 西宁;2.西南民族大学,四川若尔盖高寒湿地生态系统国家野外科学观测研究站,四川 成都;3.青海大学,青海省青藏高原优良牧草种质资源利用重点实验室,青海 西宁

作者简介:

李海萍:研究构思和设计,论文撰写和修改;贾志锋:数据收集和处理;刘文辉:数据收集和处理;马祥:数据收集与处理;周青平:论文修改;关皓:研究构思和设计。

基金项目:

国家自然科学基金(32460360);青海省基础研究计划自然科学基金(2024-ZJ-978)


Effects of freeze-thaw on bacterial and fungal succession during aerobic exposure stage of oat silage
Author:
Affiliation:

1.School of Life Sciences, Qinghai Normal University, Xining, Qinghai, China;2.Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, Sichuan, China;3.Key Laboratory of Superior Forage Germplasm in the Qinghai-Xizang Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, China

Fund Project:

This work was supported by the National Natural Science Foundation of China (32460360) and the Natural Science Foundation Project of Qinghai Provincial Basic Research Program (2024-ZJ-978).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    目的 为探索冻融条件对燕麦青贮在有氧暴露阶段的影响。方法 将燕麦在冻融条件(20 ℃和-5 ℃每12 h交替1次,S组)下青贮60 d后进行有氧暴露监测,并以恒温20 ℃ (20组)作为对照。分别在青贮60 d和有氧暴露1、3、5 d取样进行发酵品质和营养品质的测定,同时进行16S rRNA基因和ITS测序。结果 随着有氧暴露时间的延长pH值升高。与原冻融温度下的有氧暴露相比,室温下的有氧暴露导致pH值和氨态氮含量上升更快,乳酸和乙酸含量下降也更快。S组,特别是室温下的有氧暴露条件下,丙酸和丁酸的生成速度更快。随着有氧暴露的推进,肠杆菌和酵母菌数量不断增加,而乳酸菌数量不断减少(P<0.05)。细菌的Shannon指数和Simpson指数随着有氧暴露时间的延长而增加,乳酸菌的丰度不断降低。有氧暴露第3天时,细菌群落结构出现明显差异。与原温度下的有氧暴露相比,室温下的有氧暴露加速了微生物的更替。S组中指征腐败的酵母菌和霉菌的种类及数量更多。结论 冻融条件加速了燕麦青贮在有氧暴露阶段的变败过程,尤其是在室温下进行有氧暴露时。本研究为高寒区燕麦青贮的高品质调制及存放提供理论指导。

    Abstract:

    Objective To explore the effects of freeze-thaw on oat silage during the aerobic exposure stage.Methods Oat silage was stored at a constant temperature (20 ℃, group 20, control) and freeze-thaw conditions (20 ℃ and -5 ℃ alternating every 12 h, group S) for 60 days and then subjected to aerobic exposure. Samples were collected on day 60 of ensiling and after aerobic exposure for 1, 3, and 5 days, respectively, for the determination of fermentation quality and nutritional quality as well as for 16S rRNA gene and ITS sequencing.Results The pH rose as the aerobic exposure was prolonged. The samples subjected to aerobic exposure at room temperature showed more rapid increases in ammonia nitrogen content and pH and more rapid decreases in lactic acid and acetic acid content than those subjected to aerobic exposure at freeze-thaw temperatures. Propionic acid and butyric acid were produced more rapidly in the S group, especially in the case of aerobic exposure at room temperature. Enterobacteria and yeast increased while lactic acid bacteria decreased as the aerobic exposure was prolonged (P<0.05). Shannon and Simpson indices of bacteria increased during aerobic exposure, and the relative abundance of lactic acid bacteria kept decreasing. The bacterial community structure presented a significant difference on days 3 of aerobic exposure, and microbial succession was accelerated by aerobic exposure at room temperature compared with that at the freeze-thaw temperature, with more species and higher counts of yeast and molds indicative of spoilage in the S group.Conclusion Freeze-thaw accelerated aerobic deterioration, especially aerobic exposure at room temperature. This study provides theoretical guidance for high-quality modulation and storage of oat silage in alpine areas.

    参考文献
    [1] LI HP, GUAN H, JIA ZF, LIU WH, MA X, LIU Y, WANG H, ZHOU QP. Freeze-thaw condition limits the fermentation process and accelerates the aerobic deterioration of oat (Avena sativa) silage in the Qinghai-Xizang Plateau[J]. Frontiers in Microbiology, 2022, 13: 944945.
    [2] PAHLOW G, MUCK R, DRIEHUIS F, OUDE ELFERINK S, SPOELSTRA SF. Microbiology of Ensiling[M]. Agronomy Publication No. 42. Madison, WI: American Society of Agronomy, 2003: 31-93.
    [3] WOOLFORD MK. The detrimental effects of air on silage[J]. The Journal of Applied Bacteriology, 1990, 68(2): 101-116.
    [4] BOLSEN KK, DICKERSON JT, BRENT BE, SONON RN, DALKE BS, LIN C, BOYER JE. Rate and extent of top spoilage losses in horizontal silos[J]. Journal of Dairy Science, 1993, 76(10): 2940-2962.
    [5] KUNG L, SHEPERD AC, SMAGALA AM, ENDRES KM, BESSETT CA, RANJIT NK, GLANCEY JL. The effect of preservatives based on propionic acid on the fermentation and aerobic stability of corn silage and a total mixed ration[J]. Journal of Dairy Science, 1998, 81(5): 1322-1330.
    [6] LINDGREN S, PAHLOW G, OLDENBURG E. Influence of microbes and their metabolites on feed and food quality[c]. In Proceedings of the 19th General Meeting of the EGF, La Rochelle, France, 2002, 503-511.
    [7] JUN SM, TAKAGI H. Stress-tolerance of baker’s-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance[J]. Biotechnology and Applied Biochemistry, 2009, 53(Pt 3): 155-164.
    [8] JI XM, LIU MH, YANG JL, FENG FJ. Meta-analysis of the impact of freeze-thaw cycles on soil microbial diversity and C and N dynamics[J]. Soil Biology and Biochemistry, 2022, 168: 108608.
    [9] DONG ZH, LI JF, CHEN L, WANG SR, SHAO T. Effects of freeze-thaw event on microbial community dynamics during red clover ensiling[J]. Frontiers in Microbiology, 2019, 10: 1559.
    [10] RANJIT NK, KUNG L. The effect of Lactobacillus buchneri, Lactobacillus plantarum, or a chemical preservative on the fermentation and aerobic stability of corn silage[J]. Journal of Dairy Science, 2000, 83(3): 526-535.
    [11] LEE MH. Official methods of analysis of AOAC International (16th edn)[J]. Trends in Food Science and Technology, 1995, 6(11):382.
    [12] Van SOEST PJ, ROBERTSON JB, LEWIS BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science, 1991, 74(10): 3583-3597.
    [13] BRODERICK GA, KANG JH. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media[J]. Journal of Dairy Science, 1980, 63(1): 64-75.
    [14] BEUCHAT LR, COPELAND F, CURIALE MS, DANISAVICH T, GANGAR V, KING BW, LAWLIS TL, LIKIN RO, OKWUSOA J, SMITH CF, TOWNSEND DE. Comparison of the SimPlateTM total plate count method with PetrifilmTM, RedigelTM, and conventional pour-plate methods for enumerating aerobic microorganisms in foods[J]. Journal of Food Protection, 1998, 61(1): 14-18.
    [15] ALI M, CONE JW, KHAN NA, HENDRIKS WH, STRUIK PC. Effect of temperature and duration of ensiling on in vitro degradation of maize silages in rumen fluid[J]. Journal of Animal Physiology and Animal Nutrition, 2015, 99(2): 251-257.
    [16] OHYAMA Y, HARA S, MASAKI S. Analysis of factors affecting aerobic deterioration of grass silages[C]. Forage Conservation in the 80s BGS Occasional Symposium No 11, United Kingdom, 1980: 257-261.
    [17] áVILA CLS, CARVALHO BF. Silage fermentation-updates focusing on the performance of micro-organisms[J]. Journal of Applied Microbiology, 2020, 128(4): 966-984.
    [18] DUNIERE L, XU SW, LONG J, ELEKWACHI C, WANG YX, TURKINGTON K, FORSTER R, McALLISTER TA. Bacterial and fungal core microbiomes associated with small grain silages during ensiling and aerobic spoilage[J]. BMC Microbiology, 2017, 17(1): 50.
    [19] DAVID B. Feigin and cherry’s textbook of pediatric infectious diseases[J]. Journal of Paediatrics and Child Health, 2011, 47(5): 319-320.
    [20] KUSHWAHA K, BABU D, JUNEJA VK. Proteus[M]//Encyclopedia of Food Microbiology. Oxford: Academic Press, 2014: 238-243.
    [21] KAVITAKE D, DEVI PB, DELATTRE C, REDDY GB, SHETTY PH. Exopolysaccharides produced by Enterococcus genus: an overview[J]. International Journal of Biological Macromolecules, 2023, 226: 111-120.
    [22] GIRAFFA G. Lactic acid bacteria: enterococcus in milk and dairy products[M]//Encyclopedia of Dairy Sciences (Third Edition). Oxford: Academic Press, 2022: 151-159.
    [23] BAI J, XU DM, XIE DM, WANG MS, LI ZQ, GUO XS. Effects of antibacterial peptide-producing Bacillus subtilis and Lactobacillus buchneri on fermentation, aerobic stability, and microbial community of alfalfa silage[J]. Bioresource Technology, 2020, 315: 123881.
    [24] 刘巧云. 干香菇中热噬淀粉芽孢杆菌耐热性的研究[J]. 食品安全导刊, 2024, (13): 47-50.
    [25] DRIEHUIS F. Silage and the safety and quality of dairy foods: a review[J]. Agricultural and Food Science, 2013, 22: 16-34.
    [26] SILVA VP, PEREIRA OG, LEANDRO ES, da SILVA TC, RIBEIRO KG, MANTOVANI HC, SANTOS SA. Effects of lactic acid bacteria with bacteriocinogenic potential on the fermentation profile and chemical composition of alfalfa silage in tropical conditions[J]. Journal of Dairy Science, 2016, 99(3): 1895-1902.
    [27] WANG SR, LI JF, ZHAO J, DONG ZH, DONG D, SHAO T. Silage fermentation characteristics and microbial diversity of alfalfa (Medicago sativa L.) in response to exogenous microbiota from temperate grasses[J]. World Journal of Microbiology & Biotechnology, 2021, 37(12): 204.
    [28] ROOKE J, HATFIELD R. Biochemistry of ensiling[M]//Silage Science and Technology. vol. 42. Madison: Amer Society of Agronomy, 2003: 95-139.
    [29] 宋丽丽, 张雪, 张更新, 魏鑫丽, 王先平. 类芽孢杆菌(Paenibacillus sp.)蛋白质组学研究中三种蛋白提取方法的比较分析[J]. 微生物学报, 2024, 64(2): 623-632.SONG LL, ZHANG X, ZHANG GX, WEI XL, WANG XP. Comparison of three protein extraction methods for the proteomics research on Paenibacillus sp.[J]. Acta Microbiologica Sinica, 2024, 64(2): 623-632 (in Chinese).
    [30] BORREANI G, DOLCI P, TABACCO E, COCOLIN L. Aerobic deterioration stimulates outgrowth of spore-forming Paenibacillus in corn silage stored under oxygen-barrier or polyethylene films[J]. Journal of Dairy Science, 2013, 96(8): 5206-5216.
    [31] BORREANI G, FERRERO F, NUCERA D, CASALE M, PIANO S, TABACCO E. Dairy farm management practices and the risk of contamination of tank milk from Clostridium spp. and Paenibacillus spp. spores in silage, total mixed ration, dairy cow feces, and raw milk[J]. Journal of Dairy Science, 2019, 102(9): 8273-8289.
    [32] GUO FJ, MA Y, XU HM, WANG XH, CHI ZM. A novel killer toxin produced by the marine-derived yeast Wickerhamomyces anomalus YF07b[J]. Antonie Van Leeuwenhoek, 2013, 103(4): 737-746.
    [33] ORSI RB, CORRêA B, POSSI CR, SCHAMMASS EA, NOGUEIRA JR, DIAS SMC, MALOZZI MAB. Mycoflora and occurrence of fumonisins in freshly harvested and stored hybrid maize[J]. Journal of Stored Products Research, 2000, 36(1): 75-87.
    [34] BOYSEN ME, BJ?RNEHOLM S, SCHNüRER J. Effect of the biocontrol yeast Pichia Anomala on interactions between Penicillium roqueforti, Penicillium carneum, and Penicillium paneum in moist grain under restricted air supply[J]. Postharvest Biology and Technology, 2000, 19(2): 173-179.
    [35] MULLAN WMA. STARTER CULTURES. | Importance of Selected Genera[M]//Encyclopedia of Food Microbiology (Second Edition). Oxford: Academic Press, 2014: 515-521.
    [36] De NIJS M. Mycotoxins[M]//Encyclopedia of Food Microbiology. Oxford: Academic Press, 1999: 1520-1526.
    [37] ALONSO VA, PEREYRA CM, KELLER LAM, DALCERO AM, ROSA CAR, CHIACCHIERA SM, CAVAGLIERI LR. Fungi and mycotoxins in silage: an overview[J]. Journal of Applied Microbiology, 2013, 115(3): 637-643.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李海萍,贾志锋,刘文辉,马祥,周青平,关皓. 冻融对燕麦青贮有氧暴露阶段细菌和真菌演替的影响[J]. 微生物学报, 2025, 65(3): 1301-1318

复制
分享
文章指标
  • 点击次数:6
  • 下载次数: 21
  • HTML阅读次数: 8
  • 引用次数: 0
历史
  • 收稿日期:2024-08-23
  • 在线发布日期: 2025-03-10
文章二维码