微塑料对假单胞菌(Pseudomonas sp.) J-1参与下辉锑矿释放的影响
作者:
作者单位:

1.中国地质大学(武汉) 环境学院,湖北 武汉;2.华中科技大学 环境科学与工程学院,湖北 武汉;3.中国地质大学(武汉) 自然资源调查研究院,湖北 武汉;4.地球化学过程与资源环境效应湖南省重点实验室,湖南 长沙

作者简介:

仇静旋:数据分析、图表绘制、文章撰写;曾为一:实验设计、数据收集、数据分析;王兴杰:项目管理、审阅与修改、获取基金;陈礼然:执行调研、提供资源、审阅与修改;马丽媛:提出概念、数据分析与监管、审阅与修改。

基金项目:

地球化学过程与资源环境效应湖南省重点实验室(湖南省地球物理地球化学调查所)开放课题(GRE202305G)


Microplastics affect the stibnite dissolution with participation of Pseudomonas sp. J-1
Author:
Affiliation:

1.School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, Hubei, China;2.School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China;3.Institute of Natural Resources Survey, China University of Geosciences (Wuhan), Wuhan, Hubei, China;4.Hunan Provincial Key Laboratory of Geochemical Processes and Resource Environmental Effects, Changsha, Hunan, China

Fund Project:

This work was supported by the Hunan Provincial Key Laboratory of Geochemical Processes and Resource Environmental Effects (Hunan Institute of Geophysical and Geochemical Surveys) Open Topics Funded Subjects (GRE202305G).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • | | | |
  • 文章评论
    摘要:

    微塑料是一种新型污染物,在海洋、土壤和大气环境中广泛存在,可通过物理、化学或生物作用影响污染物的迁移转化过程。矿业开采活动导致锑矿区周边水土环境的污染程度逐年升高,然而,目前针对矿区环境中微塑料对锑迁移转化影响的研究却鲜有报道。目的 了解微塑料的种类、粒径以及浓度对微生物介导辉锑矿释放的影响。方法 以具有高浓度锑耐性且能够促进辉锑矿释放的假单胞菌(Pseudomonas sp.) J-1,以及使用较广泛的聚丙烯、聚氯乙烯、聚苯乙烯3种微塑料为研究对象,通过对菌种生长过程中pH、氧化还原电位和菌落生物量变化进行分析,并定期监测锑释放量,结合不同pH下微塑料对锑的吸附实验以及激光共聚焦显微镜(confocal laser scanning microscopy, CLSM)和扫描电子显微镜-能量色散X射线光谱仪(scanning electron microscope-energy dispersive X-ray spectroscopy, SEM-EDS)等表征手段,进一步揭示微塑料对锑的生物地球化学循环的影响机理。结果 粒径为13 μm、高浓度的聚丙烯对Pseudomonas sp. J-1参与下辉锑矿释放的抑制作用最强。微塑料通过抑制菌群生长从而导致对辉锑矿释放的促进效果减弱,高浓度的微塑料甚至可使Pseudomonas sp. J-1的生长被完全抑制。微塑料能够吸附锑,但其吸附能力与溶液pH无关。结论 微塑料的种类、粒径与浓度是影响Pseudomonas sp. J-1介导辉锑矿释放的关键因素,主要是通过影响微生物生长从而间接影响辉锑矿的释放。

    Abstract:

    Microplastics are novel pollutants that are widespread in the oceans, soil, and atmosphere, affecting the process of pollutant transport and transformation through physical, chemical or biological interactions. The heavy metal pollution caused by mining activities in the soil and water environment around antimony mining regions is increasing year by year. However, the effect of microplastics on the biogeochemical transformation of heavy metal contaminants in the mining regions has been rarely reported.Objective To understand the effects of microplastic type, size and concentration on microbially mediated antimony release from stibnite.Methods We took Pseudomonas sp. J-1 with strong antimony tolerance and promoting antimony release and widely used polypropylene, polyvinyl chloride, and polystyrene as the objects of the study. The changes in pH, redox potential (ORP), microbial biomass, and antimony concentration were analyzed. Furthermore, microplastic adsorption of antimony under different pH values was studied, and confocal laser scanning microscopy (CLSM) and scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS) were employed to reveal the mechanism by which microplastics affected the biogeochemical cycle of antimony.Results Polypropylene with a particle size of 13 μm and a high concentration had the strongest inhibitory effect on stibnite dissolution with the participation of Pseudomonas sp. J-1. Microplastics inhibited the growth of the bacterial colony, which led to weakened promoting effect on the release of antimony, and the growth of Pseudomonas sp. J-1 was even completely inhibited by the high concentration of microplastics. Microplastics were able to adsorb antimony, while the adsorption capacity was independent of solution pH.Conclusion The type, particle size, and concentration of microplastics are the key factors affecting the stibnite dissolution mediated by Pseudomonas sp. J-1 and they indirectly affect stibnite dissolution mainly by influencing microbial growth.

    参考文献
    [1] HE MC, WANG NN, LONG XJ, ZHANG CJ, MA CL, ZHONG QY, WANG AH, WANG Y, PERVAIZ A, SHAN J. Antimony speciation in the environment: recent advances in understanding the biogeochemical processes and ecological effects[J]. Journal of Environmental Sciences, 2019, 75: 14-39.
    [2] LI JX, WANG Q, OREMLAND RS, KULP TR, RENSING C, WANG GJ. Microbial antimony biogeochemistry: enzymes, regulation, and related metabolic pathways[J]. Applied and Environmental Microbiology, 2016, 82(18): 5482-5495.
    [3] KAUFMANN AB, LAZAROV M, HORN I, ?TEVKO M, DOR?EVI? T, KIEFER S, WEYER S, MAJZLAN J. Weathering-induced Sb isotope fractionation during leaching of stibnite and formation of secondary Sb minerals[J]. Chemical Geology, 2024, 662: 122253.
    [4] FILELLA M, BELZILE N, CHEN YW. Antimony in the environment: a review focused on natural waters I. occurrence[J]. Earth-Science Reviews, 2002, 57(1/2): 125-176.
    [5] HE MC, WANG XQ, WU FC, FU ZY. Antimony pollution in China[J]. Science of The Total Environment, 2012, 421: 41-50.
    [6] ABIN CA, HOLLIBAUGH JT. Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism[J]. Environmental Science & Technology, 2014, 48(1): 681-688.
    [7] HU XY, HE MC, LI SS, GUO XJ. The leaching characteristics and changes in the leached layer of antimony-bearing ores from China[J]. Journal of Geochemical Exploration, 2017, 176: 76-84.
    [8] LI YH, LIU ZH, LI QH, LIU FP, LIU ZY. Alkaline oxidative pressure leaching of arsenic and antimony bearing dusts[J]. Hydrometallurgy, 2016, 166: 41-47.
    [9] PAUL D, KAZY SK, BANERJEE T DAS, GUPTA AK, PAL T, SAR P. Arsenic biotransformation and release by bacteria indigenous to arsenic contaminated groundwater[J]. Bioresource Technology, 2015, 188: 14-23.
    [10] GUO HQ, YANG K, CUI L. Microbial degradation of environmental microplastics[J]. Progress in Chemistry, 2025, 37(1): 112-123.
    [11] PENG GY, XU P, ZHU BS, BAI MY, LI DJ. Microplastics in freshwater river sediments in Shanghai, China: a case study of risk assessment in mega-cities[J]. Environmental Pollution, 2018, 234: 448-456.
    [12] THOMPSON RC, OLSEN Y, MITCHELL RP, DAVIS A, ROWLAND SJ, JOHN AWG, McGONIGLE D, RUSSELL AE. Lost at sea: where is all the plastic[J]. Science, 2004, 304(5672): 838.
    [13] DRIS R, IMHOF H, SANCHEZ W, GASPERI J, GALGANI F, TASSIN B, LAFORSCH C. Beyond the ocean: contamination of freshwater ecosystems with (micro-) plastic particles[J]. Environmental Chemistry, 2015, 12(5): 539.
    [14] HORTON AA, WALTON A, SPURGEON DJ, LAHIVE E, SVENDSEN C. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of The Total Environment, 2017, 586: 127-141.
    [15] DRIS R, GASPERI J, SAAD M, MIRANDE C, TASSIN B. Synthetic fibers in atmospheric fallout: a source of microplastics in the environment[J]. Marine Pollution Bulletin, 2016, 104(1/2): 290-293.
    [16] BL?SING M, AMELUNG W. Plastics in soil: analytical methods and possible sources[J]. Science of The Total Environment, 2018, 612: 422-435.
    [17] PANNO SV, KELLY WR, SCOTT J, ZHENG W, McNEISH RE, HOLM N, HOELLEIN TJ, BARANSKI EL. Microplastic contamination in karst groundwater systems[J]. Ground Water, 2019, 57(2): 189-196.
    [18] BARNES DKA, GALGANI F, THOMPSON RC, BARLAZ M. Accumulation and fragmentation of plastic debris in global environments[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2009, 364(1526): 1985-1998.
    [19] K?GEL-KNABNER I, AMELUNG W. Dynamics, chemistry, and preservation of organic matter in soils[M]//Treatise on Geochemistry. Amsterdam: Elsevier, 2014: 157-215.
    [20] CHAE Y, AN YJ. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review[J]. Environmental Pollution, 2018, 240: 387-395.
    [21] LAW KL, THOMPSON RC. Microplastics in the seas[J]. Science, 2014, 345(6193): 144-145.
    [22] 骆永明, 周倩, 章海波, 潘响亮, 涂晨, 李连祯, 杨杰. 重视土壤中微塑料污染研究 防范生态与食物链风险[J]. 中国科学院院刊, 2018, 33(10): 1021-1030.LUO YM, ZHOU Q, ZHANG HB, PAN XL, TU C, LI LZ, YANG J. Pay attention to research on microplastic pollution in soil for prevention of ecological and food chain risks[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(10): 1021-1030 (in Chinese).
    [23] 张金棚. 采煤沉陷区土壤中微塑料与重金属污染状况及吸附行为研究[D]. 淮南: 安徽理工大学, 2020.ZHANG JP. Study on the pollution status and adsorption behavior of microplastics and heavy metals in the soil of coal mining subsidence area[D]. Huainan: Anhui University of Science & Technology, 2020 (in Chinese).
    [24] HU J, ZHANG LQ, ZHANG WY, MUHAMMAD I, YIN CY, ZHU YX, LI C, ZHENG LG. Significant influence of land use types and anthropogenic activities on the distribution of microplastics in soil: a case from a typical mining-agricultural city[J]. Journal of Hazardous Materials, 2024, 477: 135253.
    [25] WANG J, HUANG MK, WANG Q, SUN YZ, ZHAO YR, HUANG Y. LDPE microplastics significantly alter the temporal turnover of soil microbial communities[J]. Science of The Total Environment, 2020, 726: 138682.
    [26] SEELEY ME, SONG B, PASSIE R, HALE RC. Microplastics affect sedimentary microbial communities and nitrogen cycling[J]. Nature Communications, 2020, 11: 2372.
    [27] 刘洁, 李娟娟, 马香, 迟雪, 唐燕琼, 刘柱, 李宏. 微塑料对中国土壤微生物群落结构影响的综合分析[J/OL]. 江苏农业科学, 2025: 1-7. (2025-03-19). https://kns.cnki.net/KCMS/detail/detail.aspx filename=JSNY20250318001&dbname=CJFD&dbcode=CJFQ(in Chinese).
    [28] OREN A, GARRITY GM. Valid publication of the names of forty-two Phyla of prokaryotes[J]. International Journal of Systematic and Evolutionary Microbiology, 2021, 71(10). DOI: 10.1099/ijsem.0.005056.
    [29] SJOLLEMA SB, REDONDO-HASSELERHARM P, LESLIE HA, KRAAK MHS, VETHAAK AD. Do plastic particles affect microalgal photosynthesis and growth[J]. Aquatic Toxicology, 2016, 170: 259-261.
    [30] ZHANG C, CHEN XH, WANG JT, TAN LJ. Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae[J]. Environmental Pollution, 2017, 220: 1282-1288.
    [31] 郭瑞阳, 薄录吉, 李冰, 金维政, 李彦, 柴超, 王艳芹. 农田土壤微塑料与镉污染、迁移特征及生态效应的研究进展[J]. 江西农业学报, 2025, 37(3): 63-71.GUO RY, BO LJ, LI B, JIN WZ, LI Y, CHAI C, WANG YQ. Advance on combined pollution, migration characteristics and ecological effects of microplastics and cadmium in farmland soils[J]. Acta Agriculturae Jiangxi, 2025, 37(3): 63-71 (in Chinese).
    [32] CHEN CC, ZHU XS, XU H, CHEN FY, MA J, PAN K. Copper adsorption to microplastics and natural particles in seawater: a comparison of kinetics, isotherms, and bioavailability[J]. Environmental Science & Technology, 2021, 55(20): 13923-13931.
    [33] SUN Y, WANG XJ, XIA SQ, ZHAO JF. Cu(II) adsorption on poly(lactic acid) microplastics: significance of microbial colonization and degradation[J]. Chemical Engineering Journal, 2022, 429: 132306.
    [34] HE JS, CHEN JP. A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools[J]. Bioresource Technology, 2014, 160: 67-78.
    [35] JIA XC, KAUFMANN A, LAZAROV M, WEN B, WEYER S, ZHOU JW, MA LY, MAJZLAN J. Antimony isotope fractionation during kinetic Sb(III) oxidation by antimony-oxidizing bacteria Pseudomonas sp. J1[J]. Environmental Science & Technology, 2024, 58(26): 11411-11420.
    [36] GYUNG YOON M, JEONG JEON H, KIM M NAM. Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell[J]. Journal of Bioremediation & Biodegradation, 2012, 3(4): 145. DOI: 10.4172/2155-6199.1000145.
    [37] ZAMPOLLI J, ORRO A, MANCONI A, AMI D, NATALELLO A, di GENNARO P. Transcriptomic analysis of Rhodococcus opacus R7 grown on polyethylene by RNA-seq[J]. Scientific Reports, 2021, 11: 21311.
    [38] EVANGELOU VP, ZHANG YL. A review: pyrite oxidation mechanisms and acid mine drainage prevention[J]. Critical Reviews in Environmental Science and Technology, 1995, 25(2): 141-199.
    [39] LONI PC, WU M, WANG WQ, WANG HM, MA LY, LIU CY, SONG YY, TUOVINEN O H. Mechanism of microbial dissolution and oxidation of antimony in stibnite under ambient conditions[J]. Journal of Hazardous Materials, 2020, 385: 121561.
    [40] 严馨, 赵建. 医用口罩原材料聚丙烯的生物降解研究进展[J]. 微生物前沿, 2021(2): 91-97.YAN X, ZHAO J. Research progress on the biodegradation of polypropylene, the material for medical masks[J]. Advances in Microbiology, 2021(2): 91-97 (in Chinese).
    [41] 蔡寅诺, 刘丽, 陈国炜, 钟疏影. 氯对细菌与管材间交互作用及附着行为的影响[J]. 中国环境科学, 2023, 43(10): 5188-5195.CAI YN, LIU L, CHEN GW, ZHONG SY. Effect of chlorine on cell-surface interaction and bacterial adhesion behavior[J]. China Environmental Science, 2023, 43(10): 5188-5195 (in Chinese).
    [42] 陈雅兰, 孙可, 高博. 微塑料吸附机制研究进展[J]. 环境化学, 2021, 40(8): 2271-2287.CHEN YL, SUN K, GAO B. Sorption behavior, mechanisms, and models of organic pollutants and metals on microplastics: a review[J]. Environmental Chemistry, 2021, 40(8): 2271-2287 (in Chinese).
    [43] ALIMI OS, FARNER BUDARZ J, HERNANDEZ LM, TUFENKJI N. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018, 52(4): 1704-1724.
    [44] ZHOU YF, YANG YY, LIU GH, HE G, LIU WZ. Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: the roles of water pH, lead ions, natural organic matter and phenanthrene[J]. Water Research, 2020, 184: 116209.
    [45] MORE TT, YADAV JSS, YAN S, TYAGI RD, SURAMPALLI RY. Extracellular polymeric substances of bacteria and their potential environmental applications[J]. Journal of Environmental Management, 2014, 144: 1-25.
    [46] MANN S. Molecular recognition in biomineralization[J]. Nature, 1988, 332(6160): 119-124.
    [47] JIA XC, MA LY, LIU J, LIU P, YU L, ZHOU JW, LI WY, ZHOU WQ, DONG ZC. Reduction of antimony mobility from Sb-rich smelting slag by Shewanella oneidensis: integrated biosorption and precipitation[J]. Journal of Hazardous Materials, 2022, 426: 127385.
    [48] CHUBARENKO I, BAGAEV A, ZOBKOV M, ESIUKOVA E. On some physical and dynamical properties of microplastic particles in marine environment[J]. Marine Pollution Bulletin, 2016, 108(1/2): 105-112.
    [49] SHEN MC, YE SJ, ZENG GM, ZHANG YX, XING L, TANG WW, WEN XF, LIU SH. Can microplastics pose a threat to ocean carbon sequestration[J]. Marine Pollution Bulletin, 2020, 150: 110712.
    [50] 张李婷, 张博, 许维东, 崔中利, 曹慧. 聚乙烯塑料生物降解研究进展[J]. 生物工程学报, 2023, 39(5): 1949-1962.ZHANG LT, ZHANG B, XU WD, CUI ZL, CAO H. Polyethylene biodegradation: current status and perspectives[J]. Chinese Journal of Biotechnology, 2023, 39(5): 1949-1962 (in Chinese).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

仇静旋,曾为一,王兴杰,陈礼然,马丽媛. 微塑料对假单胞菌(Pseudomonas sp.) J-1参与下辉锑矿释放的影响[J]. 微生物学报, 2025, 65(6): 2705-2717

复制
分享
文章指标
  • 点击次数:9
  • 下载次数: 124
  • HTML阅读次数: 98
  • 引用次数: 0
历史
  • 收稿日期:2025-04-15
  • 在线发布日期: 2025-06-05
文章二维码