基于Kraken2扩展标准数据库对反刍动物消化道微生物分类能力
作者:

Classification ability of extended Kraken2 standard database for digestive tract microbiota in ruminants
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    宏基因组学技术的应用丰富了对动物消化道中微生物组成以及功能的认识。当前,基于宏基因组测序读长(reads)水平的物种组成的分类比对水平普遍在15%−45%。因此,提高宏基因组测序reads水平微生物的比对率,可进一步挖掘宏基因数据中的微生物信息。【目的】通过扩展Kraken2标准数据库来提高反刍动物消化道微生物的分类能力,从而进一步挖掘宏基因组数据中的微生物信息。【方法】本研究共收集了来自牛、绵羊和山羊瘤胃液、粪便以及消化道中14 827个宏基因组组装基因组(metagenome-assembled genomes,MAGs),经质控过滤后,保留了3 095个物种级基因组箱(species-level genome bins,SGBs),经物种分类以及功能预测后,SGBs被整合进Kraken2标准数据库,并对其分类效果予以评估。【结果】在SGBs在基因组分类数据库(genome taxonomy database,GTDB)物种分类中,3 053个SGBs为细菌,可归类为28门782属;42个SGBs为古菌,可归类为2门8属。基于eggNOG软件功能预测,SGBs在蛋白相邻类的聚簇(cluster of orthologous groups of proteins,COG)功能分类中可注释到26种分类;在京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)功能预测中,前25个直系同源物(KEGG orthology,KO)通路号可归类为14种通路类型;碳水化合物酶(carbohydrate-active enzymes,CAZy)预测中,593个SGBs可注释到6类碳水化合物酶,分别是辅助氧化还原酶类(auxiliary activities,AA)、碳水化合物酯酶(carbohydrate esterases,CE)、糖苷转移酶(glycosyltransferases,GT)、碳水化合物结合模块(carbohydrate-binding modules,CBM)、糖苷水解酶(glycoside hydrolases,GH)、多糖裂解酶(polysaccharide lyases,PL);其中,GH是最为广泛的碳水化合物酶种类。3 095个SGBs加入Kraken2标准数据库(2024年5月)后,使得数据库中物种数量增加了5.00%,数据库大小从87.2 Gb提升为98.2 Gb。通过对一项基于宏基因组技术解析日粮精粗比对荷斯坦奶牛瘤胃微生物组成影响的研究再评估,加入SGBs的数据库使得该研究中瘤胃液宏基因组reads水平的物种比对率从(19.35±1.81)%提升到(51.04±2.05)%,种水平主成分(principal components analysis,PCA)分析结果表明,扩展的数据库增强了区分2种不同日粮精粗比水平下的瘤胃微生物结构的能力,线性判别丰度差异分析(linear discriminant analysis effect size,LEfSe)结果表明,在标准数据库中,Xylanibacter ruminicolaAristaeella hokkaidonensis分别是低粗料和高粗料日粮条件下的微生物标志物;而在扩展后的数据库中,Prevotellasp.902800365和Prevotellasp.900316445分别是低粗料和高粗料日粮条件下的微生物标志物。【结论】通过引入SGBs扩展Kraken2标准数据库,可进一步增加数据库中物种覆盖度,提高宏基因组reads水平物种比对率,从而增进对宏基因数据中微生物的理解。

    Abstract:

    Metagenomics has enriched our understanding about the composition and functions of digestive tract microbiota in animals. Currently, metagenomic sequencing can generally achieve the classification rate of species between 15% and 45% at the read level. Therefore, improving the alignment rate of microbial reads in metagenomics can help to further mine microbial information from metagenome data. [Objective] To enhance the classification ability for digestive tract microbiota in ruminants by extending the Kraken2 standard database, thereby deeply mining the microbial information from metagenome data. [Methods] A total of 14 827 metagenome-assembled genomes (MAGs) of the rumen fluid, feces, and digestive tracts of cattle, sheep, and goats were collected. After quality control and filtering, 3 095 species-level genome bins (SGBs) were retained. These SGBs were integrated into the Kraken2 standard database following taxonomic classification and functional prediction, and the classification effect was evaluated. [Results] In the genome taxonomy database (GTDB), the 3 095 SGBs were identified as bacteria belonging to 782 genera of 28 phyla (3 053 SGBs) and archaea belonging to 8 genera of 2 phyla (42 SGBs). The functional prediction based on eggNOG annotated the SGBs into 26 clusters of orthologous groups of proteins (COGs). The Kyoto encyclopedia of genes and genomes (KEGG) enrichment categorized the top 25 ortholog groups (KO entries) into 14 pathways. The prediction of carbohydrate-active enzymes (CAZy) showed that 593 SGBs were annotated into six classes of CAZymes: auxiliary activities (AA), carbohydrate esterases (CE), glycosyltransferases (GT), carbohydrate-binding modules (CBM), glycoside hydrolases (GH), and polysaccharide lyases (PL). Among them, GH was the most common class. The addition of 3 095 SGBs to the Kraken2 standard database (May 2024) increased the number of species in the database by 5.00%, extending the size from 87.2 Gb to 98.2 Gb. Furthermore, a study about the effect of diet fiber-to-concentrate ratio on the rumen microbiota of Holstein cows by metagenomics was reassessed, which showed that the integration of SGBs into the database raised the species alignment rate of rumen metagenome reads from (19.35±1.81)% to (51.04±2.05)%. The principal component analysis results at the species level indicated that the extended database enhanced the ability to distinguish rumen microbiota structures under two different diet fiber-to-concentrate ratios. The linear discriminant analysis effect size results indicated that the microbial markers for low-fiber and high-fiber diets were Xylanibacter ruminicola and Aristaeella hokkaidonensis, respectively, in the standard database, whereas they were Prevotella sp. 902800365 and Prevotella sp. 900316445, respectively, in the extended database. [Conclusion] In summary, introducing SGBs to extend the Kraken2 standard database can increase species coverage and improve the alignment rate of species at the metagenome read level, thereby enhancing the understanding of microbial information in metagenome data.

    参考文献
    [1] XUE MY, XIE YY, ZANG XW, ZHONG YF, MA XJ, SUN HZ, LIU JX. Deciphering functional groups of rumen microbiome and their underlying potentially causal relationships in shaping host traits[J]. iMeta, 2024, 3(4): e225.
    [2] HESS MK, ZETOUNI L, HESS AS, BUDEL J, DODDS KG, HENRY HM, BRAUNING R, McCULLOCH AF, HICKEY SM, JOHNSON PL, ELMES S, WING J, BRYSON B, KNOWLER K, HYNDMAN D, BAIRD H, McRAE KM, JONKER A, JANSSEN PH, McEWAN JC, ROWE SJ. Combining host and rumen metagenome profiling for selection in sheep: prediction of methane, feed efficiency, production, and health traits[J]. Genetics, Selection, Evolution, 2023, 55(1): 53.
    [3] XIE F, JIN W, SI HZ, YUAN Y, TAO Y, LIU JH, WANG XX, YANG CJ, LI QS, YAN XT, LIN LM, JIANG Q, ZHANG L, GUO CZ, GREENING C, HELLER R, GUAN LL, POPE PB, TAN ZL, ZHU WY, et al. An integrated gene catalog and over 10, 000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants[J]. Microbiome, 2021, 9(1): 137.
    [4] CHAI JM, ZHUANG YM, CUI K, BI YL, ZHANG NF. Metagenomics reveals the temporal dynamics of the rumen resistome and microbiome in goat kids[J]. Microbiome, 2024, 12(1): 14.
    [5] DENG J, LIU YJ, WEI WT, HUANG QX, ZHAO LP, LUO LY, ZHU Q, ZHANG L, CHEN Y, REN YL, JIA SG, LIN YL, YANG J, LV FH, ZHANG HP, LI FG, LI L, LI MH. Single-cell transcriptome and metagenome profiling reveals the genetic basis of rumen functions and convergent developmental patterns in ruminants[J]. Genome Research, 2023, 33(10): 1690-1707.
    [6] WANG DD, CHEN LY, TANG GF, YU JJ, CHEN J, LI ZJ, CAO YC, LEI XJ, DENG L, WU SR, GUAN LL, YAO JH. Multi-omics revealed the long-term effect of ruminal keystone bacteria and the microbial metabolome on lactation performance in adult dairy goats[J]. Microbiome, 2023, 11(1): 215.
    [7] ZHANG BY, JIANG XZ, YU Y, CUI YM, WANG W, LUO HL, STERGIADIS S, WANG B. Rumen microbiome-driven insight into bile acid metabolism and host metabolic regulation[J]. The ISME Journal, 2024, 18(1): wrae098.
    [8] GHARECHAHI J, VAHIDI MF, BAHRAM M, HAN JL, DING XZ, SALEKDEH GH. Metagenomic analysis reveals a dynamic microbiome with diversified adaptive functions to utilize high lignocellulosic forages in the cattle rumen[J]. The ISME Journal, 2021, 15(4): 1108-1120.
    [9] JING RX, YAN YY. Metagenomic analysis reveals antibiotic resistance genes in the bovine rumen[J]. Microbial Pathogenesis, 2020, 149: 104350.
    [10] AUFFRET MD, DEWHURST RJ, DUTHIE CA, ROOKE JA, JOHN WALLACE R, FREEMAN TC, STEWART R, WATSON M, ROEHE R. The rumen microbiome as a reservoir of antimicrobial resistance and pathogenicity genes is directly affected by diet in beef cattle[J]. Microbiome, 2017, 5(1): 159.
    [11] EDWIN NR, FITZPATRICK AH, BRENNAN F, ABRAM F, O’SULLIVAN O. An in-depth evaluation of metagenomic classifiers for soil microbiomes[J]. Environmental Microbiome, 2024, 19(1): 19.
    [12] TAMAMES J, COBO-SIMÓN M, PUENTE-SÁNCHEZ F. Assessing the performance of different approaches for functional and taxonomic annotation of metagenomes[J]. BMC Genomics, 2019, 20(1): 960.
    [13] McINTYRE ABR, OUNIT R, AFSHINNEKOO E, PRILL RJ, HÉNAFF E, ALEXANDER N, MINOT SS, DANKO D, FOOX J, AHSANUDDIN S, TIGHE S, HASAN NA, SUBRAMANIAN P, MOFFAT K, LEVY S, LONARDI S, GREENFIELD N, COLWELL RR, ROSEN GL, MASON CE. Comprehensive benchmarking and ensemble approaches for metagenomic classifiers[J]. Genome Biology, 2017, 18(1): 182.
    [14] SZÓSTAK N, SZYMANEK A, HAVRÁNEK J, TOMELA K, RAKOCZY M, SAMELAK-CZAJKA A, SCHMIDT M, FIGLEROWICZ M, MAJTA J, MILANOWSKA-ZABEL K, HANDSCHUH L, PHILIPS A. The standardisation of the approach to metagenomic human gut analysis: from sample collection to microbiome profiling[J]. Scientific Reports, 2022, 12(1): 8470.
    [15] KIESER S, ZDOBNOV EM, TRAJKOVSKI M. Comprehensive mouse microbiota genome catalog reveals major difference to its human counterpart[J]. PLoS Computational Biology, 2022, 18(3): e1009947.
    [16] SMITH RH, GLENDINNING L, WALKER AW, WATSON M. Investigating the impact of database choice on the accuracy of metagenomic read classification for the rumen microbiome[J]. Animal Microbiome, 2022, 4(1): 57.
    [17] STEWART RD, AUFFRET MD, WARR A, WALKER AW, ROEHE R, WATSON M. Compendium of 4, 941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery[J]. Nature Biotechnology, 2019, 37(8): 953-961.
    [18] CAO YH, FENG T, WU YJ, XU YX, DU L, WANG T, LUO YH, WANG Y, LI ZP, XUAN ZY, CHEN SM, YAO N, GAO NL, XIAO Q, HUANG KW, WANG XB, CUI KQ, REHMAN SU, TANG XF, LIU DW, et al. The multi-Kingdom microbiome of the goat gastrointestinal tract[J]. Microbiome, 2023, 11(1): 219.
    [19] ZHANG K, HE C, WANG L, SUO LD, GUO MM, GUO JZ, ZHANG T, XU YB, LEI Y, LIU GW, QIAN Q, MAO YR, KALDS P, WU YJ, CUOJI AW, YANG YX, BRUGGER D, GAN SQ, WANG ML, WANG XL, ZHAO FQ, CHEN YL. Compendium of 5810 genomes of sheep an慤氠?杯敡湴漠浧敵獴??扩楣潲獯祢湩瑯桭敥瑳椠捰?杯敶湩敤?捳氠畮獥瑷攠物獮??慧湨摴?漠瑩桮整牯?杴敨湥攠瑧楬捹?摡楮瘠敡牮獤椠瑭祵季?嵮??浴卩祬獩瑺敡浴獩???お??????????敯ね?????有???戱爲?嬱㈩?崠?夰?丮??? ̄奛唲‰婝吠??噎楇爠界獊攬猠?捈潁湎瑇爠楇扎甬琠敘?琠潈?洬椠捘牉潎戠楈慓氬?摚楈癁敎片猠楙晇椮挠慍瑥楴潡湧?楮湯?瑩档攠?牮畡浬敹湳?敳挠潯獦礠獭瑩散浲?慢湩摡?愠牡敮?愠獣獡潲换楯慨瑹敤摲?睴楥琭桡?捴敩牶瑥愠楥湮?慹湭楥浳愠汩?瀠牴潨摥甠捲瑵業潥湮?瑯牦愠楈瑯獬孳?嵥???楣捯牷潳戠楦潥浤攠???て?????㈠??????木??戭牣?孮?づ嵮????????啴??女??坝?丠??奯???奥啲??坩??婍??佲?????塯啧??删?‰刱?丬?????嘶?堹???偲?乛′刱???婈??丠??????婈?唬?奃???堠啚???????本攠湚潈浕椠捆?挬愠瑃慈汅潎朠畈攬?潍晅?獇漠楘汚?洠楌捉牕漠扑楗漬洠敌獉?戠潐漬猠瑚獈?济楇渠楌湈本?潌晉?托楘漬搠楄癏敎片猠楊瑌礬?慌湉摁?杇攠湃敚琬椠捗?牎敇猠潔甮爠捔敨獥嬠?嵨??乭慯瑳畯牭敥??潥浶浥畬渠楧捥慮瑯業潥渠獳???づ?????????????????扴牲?孰??嵩???剬剦?呬呦??????乲????????佩獮汧愠獯桦?剣卯呲?丠??????佡????佰????坤???啥乮??偩????女?創??卥???桯慲渠条敬獦?楬湦?琠桲敥?浥敡瑲慣杨敛湊潝洮攠?敯湬捥潣摵敬摡???婬祡浮整猬?漲昰′琰栬攠?爳用洹攩渺?洱椲挵爰漭戱椲漶洱攮?慢牲放?氲椲湝欠敌摏?瑇潒?晓敓敏搠?椬渠摆畏捒敔搠?爬攠摍畁捈瑄楉潚湁獄?楈渠?浆攬琠桍慁湇敎?敎浉椠獁猬椠潍湏?晅牎潎浉??漮氠獇瑥敮楥湲?捬潩睺獥孤?嵬???牳潴湩瑣椠敭牯獤?楬渠??椠换牡潣扴楥潲汩潡杬礠???ぷ?????????????ち??扣牡?嬠??嵤??????????卍副????????佯呦匠?剹??????婬删????????砠瀲氰漲爳椬渠朲?琨栱攩?戠漱瘶椹渭攱?爵甮洼敢湲 ̄扛愲挳瑝攠牌楁慇汉?捒漠浊浃甬渠楅瑄祏?晁牒潄洠?戬椠牐瑁桇?瑉潅?愠摉甬氠瑍桅潄潉摁孎?嵉??呖栠敏??卄????潏畕牒湔愠汍???ぁ???????????ひ???ㄠち????扡牳?嬠??嵲????剩??????????噴??????????卵??删????????剣????乩?????卯????乛??堮娠????乩?????卩?????????????楶杩湥潷捳攬氠氲田氱漵猬攠′搸攨朱爩愺搠愲琰椸漭渲″戶礮?牢畲派敛渲?扝愠捂瑒敏牗楎慅氠?捐漬洠浆畏湒楓瑔楅敒猠??測攠睁?楏湎獙楅朠桂瑏猬?晋牕潍流?洠敎琬愠李故湖潉浌敌?愠湂慁氬礠獓敔獁孒?嵓???測瘠楇牏潕湌浄敉湎瑇愠汄?删敌獁敗慌牅捙栠??金?至????????ㄠ???????扵牬?孵??嵢???吠?乵?啡剮??啩剣???佩???????啥???删???剥??慴捡畸瑡攠?乮?匠????佮噳???????楲?偬牡整癩潯瑮敛汊汝愮??楡???慥?欠攲礰?瀶氬愠礵攳爳?椷渶‰爴甩洺椠渵愴氳?洵攴琶愮戼潢汲椾獛洲嬵?崠???楉捅牒漠潊牃本愠湄楕獂浏獕??㈠ぇ水㈠????????????扁牄?孒??崠?夬?乂????倠前?吠????????匠但??卌啅乖??剓???匠?????婌??????丬??奏??华啉???噐?丬?????奌啔?婄吮???湬瑴敵牲物潮杧愠瑴楨湥朠?瑵桭敡?瘠業物慣汲?摢慩牯歴?洠慡瑮瑤攠牣?潬晴?瑲桯敭?牣畳浛敊湝?攠捎潡獴祵獲瑥攠浒?睶楩瑥桷?愠?杩汣潲扯慢汩?癬楯牧潹洬攠′搰愱琸愬戠愱猶攺嬠?崴??丵愵琰甮爼敢??潛洲洶畝渠楐捕慓瑁楄潋湁獒??水?休???ㄠ????????????扫物?孧??嵥?卡佧?佮?佭乩?删??坡??乩?呩????噯奮?????卬????匠???剩佥剮?删??剤??卯卤?噲??婭???噧??呯???唠剤??乡?佊????婩剣??????????????‰倲爳漬琠漱稱漨愱‰瀩漺瀠甲水愷琸椮漼湢獲 ̄慛爲攷?攠捌潉獕礠獙瑌攬洠?效湁杆楆湁敒敉爠獍?琬栠慍瑁?獔栬愠灔敕?灙爮漠歉慭牰祡潣瑴椠捯?挠潤浡浴畡湢楡瑳祥?獣瑨牯畩捣瑥甠牡敮?愠湣摯?晦畩湤捥瑮楣潥渠?潣景?瑥栠敯?爠畴浨敥渠?浥楲捦牯潲扭楡慮汣?攠捯潦猠祴獡瑸敯浮孯?嵩??呣桬敡??卩????潴畩牯湮愠汵???で㈠???????????ㄠ?????????戠爲?嬲??崠″吱伨夷??删?????唼??刾?刲??????????剕畔洠敎湄?瀠牤潥瑌潡稠潃慕?慓牔敁?慚?桌畕扁?晁漠牊?搠楒癅敉牓獃效?桒礠摇版漬朠敄湁潕瑓牅潒瀠桓椬挠?晃畈湕捓瑔楅潒渠獎嬬?嵗???湅癒椠牃漬渠浓敔湁瑌慄汅??楇挬爠潆扁楒潎汌潅杉祔?剅敒瀠潁版琬猠???????????????散???????扡牧?孮??嵥?坡啳?奥?????佲?乶??卬啳丠??其????乮??呡????啳?兣奩?????乭?坣?????挀漀洀瀀攀渀搀椀甀洀?漀昀?爀甀洀椀渀愀渀琀?最愀猀琀爀漀椀渀琀攀猀琀椀渀愀氀?瀀栀愀最攀?最攀渀漀洀攀猀?爀攀瘀攀愀氀攀搀?愀?栀椀最栀攀爀?瀀爀漀瀀漀爀琀椀漀渀?漀昀?氀礀琀椀挀?瀀栀愀最攀猀?琀栀愀渀?椀渀?愀渀礀?漀琀栀攀爀?攀渀瘀椀爀漀渀洀攀渀琀猀嬀?崀???椀挀爀漀戀椀漀洀攀??? ??????????????
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

翁玉楠,甄永康,王梦芝,王洪荣. 基于Kraken2扩展标准数据库对反刍动物消化道微生物分类能力[J]. 微生物学报, 2025, 65(1): 402-415

复制
分享
文章指标
  • 点击次数:81
  • 下载次数: 125
  • HTML阅读次数: 84
  • 引用次数: 0
历史
  • 收稿日期:2024-08-03
  • 在线发布日期: 2025-01-04
  • 出版日期: 2025-01-04
文章二维码