黄河三角洲典型植被下真菌群落结构组成
作者:
作者单位:

1.山东师范大学 地理与环境学院,山东 济南;2.山东省黄河三角洲可持续发展研究院,山东 东营;3.山东师范大学 东营研究院,山东 东营

作者简介:

张婷:数据处理、研究撰写和修改;宗可金:协助实验操作,参与论文讨论;季银利:提供技术支持,参与论文讨论;宋宪锐:提供技术支持,参与论文讨论;赵聪聪:研究方法指导,参与论文讨论;纪明德:研究方法指导,参与论文讨论;孔强:研究构思和研究方法指导,参与论文讨论;王倩:研究构思和设计,参与论文讨论。

基金项目:

东营市市校合作资金(SXHZ-2023-01-6)


Structures of fungal communities in soil of typical plants in the Yellow River Delta
Author:
Affiliation:

1.College of Geography and Environment, Shandong Normal University, Jinan, Shandong, China;2.Shandong Yellow River Delta Sustainable Development Research Institute, Dongying, Shandong, China;3.Dongying Institute, Shandong Normal University, Dongying, Shandong, China

Fund Project:

This work was supported by the Dongying City School Cooperation Fund (SXHZ-2023-01-6).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • | | | |
  • 文章评论
    摘要:

    目的 微生物是潮间带地球化学元素迁移转化的重要执行者。真菌在碳、氮、磷循环及有机污染物降解等方面扮演重要角色。方法 选取黄河三角洲潮间带典型植被芦苇(Phragmites australis)、柽柳(Tamarix chinensis)、盐地碱蓬(Suaeda salsa) (潮间带盐地碱蓬和盐碱地盐地碱蓬)的根际和非根际土壤为研究对象,通过高通量测序技术研究不同植被下的真菌群落结构差异。结果 植物根际中,盐碱地盐地碱蓬的真菌丰度、丰富度及均匀度最高,与其他3种植物的真菌群落结构相似性最低。在植物非根际中,芦苇的真菌丰度最高,盐碱地盐地碱蓬的丰富度最高,柽柳的真菌分布最均匀;芦苇与盐碱地盐地碱蓬之间的真菌群落结构相似性最高。4种植物根际和非根际共有优势真菌门为子囊菌门(Ascomycota)、担子菌门(Basidiomycota)。不同植物的功能真菌存在差异,芦苇、柽柳、盐碱地盐地碱蓬的根际、非根际优势功能真菌主要为腐生真菌,如链格孢属、曲霉属,它们能够分解有机养料产生腐殖质,从而改善土壤通气性,改良土壤理化性质;以上3种植物根际中腐生真菌占比分别为13.60%、6.33%、20.16%,非根际土壤中分别为11.98%、24.25%、8.52%。在柽柳非根际中,还发现了能与植物共生且耐盐的短梗霉属(1.51%),这种真菌可与植物协同作用,有效防治土壤盐碱化。潮间带盐地碱蓬根际土壤中的优势功能真菌主要为篮状菌属(15.90%)、葡萄穗霉属(0.53%)等参与糖类分解的真菌,它们能够分解纤维素为葡萄糖,产生腐殖质,进而形成稳定的土壤团粒结构,改善土壤通气性。盐碱地盐地碱蓬根际土壤中还存在木霉属(0.13%),这种真菌可以促进土壤氮磷转化,避免土壤中无机磷含量过高造成土壤污染。在非根际土壤中,以上功能真菌的相对丰度均小于0.10%。此外,在植物非根际土壤中,还发现了能够降解持久性有机污染物(persistent organic pollutants, POPs)的原毛平革菌属(0.15%)和降解醌类物质的青霉属(1.16%),这些真菌为有机污染土壤的修复提供微生物资源;以上真菌在植物根际中未检测到。土壤环境因子与真菌群落结构关系表明,根际真菌的多样性、均匀度与电导率(electrical conductance, EC)、钙离子浓度、盐度呈正相关关系;非根际真菌群落的丰富度和多样性均与总氮呈正相关关系,而均匀度则与pH、盐度、氨氮呈正相关关系。结论 本研究为明确黄河三角洲潮间带真菌群落的分布结构和功能奠定了基础,为将来利用相关微生物资源来改善土壤结构、维持生物多样性、治理有机物污染以及盐碱地生态保护与修复等提供理论依据。

    Abstract:

    Objective Microorganisms are key executors of the migration and transformation of geochemical elements in intertidal zones. Fungi play an important role in the cycling of carbon, nitrogen, and phosphorus and the degradation of organic pollutants.Methods In this study, soil samples were collected from the rhizosphere and non-rhizosphere of Phragmites australis, Tamarix chinensis, and Suaeda salsa (intertidal zone and saline inland), which were the typical intertidal plants in the Yellow River Delta. The fungal community structures in different soil samples were investigated by high-throughput sequencing.Results In the rhizosphere, the soil sample of S. salsa in saline inland showed higher fungal abundance, richness, and evenness than other soil samples, with a distinct fungal community structure. In the non-rhizosphere, the fungal abundance, richness, and evenness were the highest in the soil samples of P. australis, S. salsa in saline inland, and T. chinensis, respectively, and the fungal community structure of P. australis was similar with that of S. salsa in saline inland. Ascomycota and Basidiomycota were the dominant fungal phyla in both the rhizosphere and non-rhizosphere. However, the functional fungi were different among plants. Saprophytic fungi such as Alternaria and Aspergillus were the dominant functional fungi in the rhizosphere and non-rhizosphere of P. australis, T. chinensis, and S. salsa in saline inland, with the relative abundance of 13.60%, 6.33%, and 20.16% in the rhizosphere and 11.98%, 24.25%, and 8.52% in the non-rhizosphere, respectively. Saprophytic fungi were essential for the production of humus by decomposition of organic matter and the improvement of soil aeration and physicochemical properties. Aureobasidium (1.51%) were identified in the non-rhizosphere of T. chinensis, and they were haloduric fungi and could work synergistically with plants to prevent soil salinization. The dominant functional fungi in the rhizosphere of S. salsa in intertidal zone were mainly Talaromyces (15.90%) and Stachybotrys (0.53%), which were involved in sugar degradation. They were able to break down cellulose into glucose, produce humus, and form a stable soil aggregate structure to improve soil aeration. Trichoderma (0.13%) were identified in the rhizosphere of S. salsa in saline inland, and they could promote soil nitrogen and phosphorus conversion and prevent the soil pollution caused by excessive inorganic phosphorus. The relative abundance of functional fungi was less than 0.10% in the non-rhizosphere. In addition, Phanerochaete (0.15%) capable of degrading persistent organic pollutants and Penicillium (1.16%) capable of degrading quinones were identified in the non-rhizosphere, providing microbial resources for the remediation of organic pollution in soil. However, they were not identified in the plant rhizosphere. The fungal diversity and evenness in the rhizosphere were positively correlated with soil factors such as electrical conductance (EC), calcium concentration, and salinity. In the non-rhizosphere, the fungal richness and diversity were positively correlated with total nitrogen, while the fungal evenness was positively correlated with pH, salinity, and ammonia nitrogen.Conclusion This study established a framework for understanding the structures and functions of fungal communities in the intertidal zone of the Yellow River Delta. Additionally, it provides a theoretical foundation for the future application of different functional fungi in soil structure improvement, biodiversity maintenance, organic pollution treatment, ecological protection, and saline-alkali land restoration.

    参考文献
    [1] WANG ZH, LI K, SHEN XY, YAN FF, ZHAO XK, XIN Y, JI LH, XIANG QY, XU XY, LI DJ, RAN JH, XU XY, CHEN QF. Soil nitrogen substances and denitrifying communities regulate the anaerobic oxidation of methane in wetlands of Yellow River Delta, China[J]. Science of the Total Environment, 2023, 857: 159439.
    [2] ZHU CM, ZHANG X, HUANG QH. Four decades of estuarine wetland changes in the Yellow River Delta based on landsat observations between 1973 and 2013[J]. Water, 2018, 10(7): 933.
    [3] WANG MJ, QI SZ, ZHANG XX. Wetland loss and degradation in the Yellow River Delta, Shandong Province of China[J]. Environmental Earth Sciences, 2012, 67(1): 185-188.
    [4] 白浩楠, 牛香, 王兵, 宋庆丰, 龙文兴. 菌根真菌对森林碳氮磷循环影响的研究进展[J]. 温带林业研究, 2020, 3(2): 22-26.BAI HN, NIU X, WANG B, SONG QF, LONG WX. Research progress on progress of the function of mycorrhizal fungi in the cycle of carbon, nitrogen and phosphorus[J]. Journal of Temperate Forestry Research, 2020, 3(2): 22-26 (in Chinese).
    [5] FREY SD. Mycorrhizal fungi as mediators of soil organic matter dynamics[J]. Annual Review of Ecology, Evolution, and Systematics, 2019, 50: 237-259.
    [6] 刘春雨, 杨智宇, 李丽丽, 杨洪一. 菌根真菌对植物氮素利用影响研究进展[J]. 华北农学报, 2023, 38(S1): 348-353.LIU CY, YANG ZY, LI LL, YANG HY. Effects of mycorrhizal fungi on plant nitrogen utilization[J]. Acta Agriculturae Boreali-Sinica, 2023, 38(S1): 348-353 (in Chinese).
    [7] 郭良栋, 田春杰. 菌根真菌的碳氮循环功能研究进展[J]. 微生物学通报, 2013, 40(1): 158-171.GUO LD, TIAN CJ. Progress of the function of mycorrhizal fungi in the cycle of carbon and nitrogen[J]. Microbiology China, 2013, 40(1): 158-171 (in Chinese).
    [8] SOUDZILOVSKAIA NA, van der HEIJDEN MG, CORNELISSEN JH, MAKAROV MI, ONIPCHENKO VG, MASLOV MN, AKHMETZHANOVA AA, van BODEGOM PM. Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling[J]. New Phytologist, 2015, 208(1): 280-293.
    [9] 张晗烁, 郑勇, 贺纪正. 土壤真菌生物地理学研究进展[J]. 生态学杂志, 2024. https://kns.cnki.net/kcms2/detail/21.1148.Q.20230712.1812.024.htmlZHANG HS, ZHENG Y, HE JZ. Research progress on the biogeography of soil fungi[J]. Chinese Journal of Ecology, 2024. https://kns.cnki.net/kcms2/detail/21.1148.Q.20230712.1812.024.html(in Chinese).
    [10] LI T, HU YJ, HAO ZP, LI H, WANG YS, CHEN BD. First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices[J]. New Phytologist, 2013, 197(2): 617-630.
    [11] 屈璐璐, 郭秀芳, 贾振宇, 张跃华, 杨占坤, 马怀林, 刘亚玲. 丛枝菌根真菌提高植物非生物逆境胁迫适应性研究进展[J]. 草学, 2024(1): 4-9.QU LL, GUO XF, JIA ZY, ZHANG YH, YANG ZK, MA HL, LIU YL. Review on the progress of adaptability to abiotic stress adversity by arbuscular mycorrhizal fungi in plants[J]. Journal of Grassland and Forage Science, 2024(1): 4-9 (in Chinese).
    [12] 段海霞, 师茜, 康生萍, 苟海青, 罗崇亮, 熊友才. 丛枝菌根真菌和根瘤菌与植物共生研究进展[J]. 草业学报, 2024, 33(5): 166-182.DUAN HX, SHI Q, KANG SP, GOU HQ, LUO CL, XIONG YC. Advances in research on the interactions among arbuscular mycorrhizal fungi, rhizobia, and plants[J]. Acta Prataculturae Sinica, 2024, 33(5): 166-182 (in Chinese).
    [13] YANG HL, LIAO YY, ZHANG J, WANG XL. Comparative transcriptome analysis of salt tolerance mechanism of Meyerozyma guilliermondii W2 under NaCl stress[J]. 3 Biotech, 2019, 9(7): 286.
    [14] 侯冠群, 来剑斌, 李静, 刘振, 公华锐, 王兵, 孙志刚, 欧阳竹, 侯瑞星. 成土时间对黄河三角洲植物及微生物演替的影响[J]. 生态学报, 2022, 42(21): 8839-8859.HOU GQ, LAI JB, LI J, LIU Z, GONG HR, WANG B, SUN ZG, OUYANG Z, HOU RX. Driving force of soil age on vegetation and microbial succession in the Yellow River Delta[J]. Acta Ecologica Sinica, 2022, 42(21): 8839-8859 (in Chinese).
    [15] 刘冉冉. 盐地碱蓬高亲和硝酸盐转运蛋白基因SsNRT2.1和SsNRT2.5的功能研究[D]. 济南: 山东师范大学博士学位论文, 2022.LIU RR. Functional study on high-affinity nitrate transporter genes SsNRT2.1 and SsNRT2.5 of Suaeda salsa[D]. Jinan: Doctoral Dissertation of Shandong Normal University, 2022 (in Chinese).
    [16] XIANG ZZ, CHEN X, BAI J, LI BH, LI H, HUANG X. Salt-tolerant heterotrophic nitrification and aerobic denitrification (HNAD) bacterium enhancing a pilot-scale moving bed biofilm reactor (MBBR) treating mariculture wastewater treatment with different COD/TN ratios[J]. Journal of Water Process Engineering, 2022, 50: 103278.
    [17] 胡此海, 杨絮, 郭全友, 郑尧, 李保国, 范逸文. 四川泡菜母水的微生物群落与理化特性分析[J]. 中国食品学报, 2024, 24(2): 281-291.HU CH, YANG X, GUO QY, ZHENG Y, LI BG, FAN YW. Analysis of microbial community and physicochemical characteristicsin Sichuan pickle brine[J]. Journal of Chinese Institute of Food Science and Technology, 2024, 24(2): 281-291 (in Chinese).
    [18] 陈炳铭, 冯文婷, 王玉刚, 陈园园, 李彦. 脱硫石膏在碱土改良中的无机固碳作用[J]. 土壤学报, 2024, 61(1): 247-257.CHEN BM, FENG WT, WANG YG, CHEN YY, LI Y. Inorganic carbon sequestration effect of desulfurized gypsum in alkaline soil improvement[J]. Acta Pedologica Sinica, 2024, 61(1): 247-257 (in Chinese).
    [19] 邢华. 亚热带森林真菌群落的驱动机制及与稀有树种百山祖冷杉关系的研究[D]. 上海: 华东师范大学博士学位论文, 2024.XING H. Driving mechanisms of fungal community and their relationships with the rare tree species Abies beshanzuensisin in a subtropical forest[D]. Shanghai: Doctoral Dissertation of East China Normal University, 2024 (in Chinese).
    [20] 李铁, 齐梦迪, 张克英, 王建萍, 白世平, 曾秋凤, 彭焕伟, 玄月, 吕莉, 丁雪梅. 育雏期饲粮中添加益生菌对蛋鸡育雏育成期生长发育、免疫功能和肠道微生物的影响[J]. 中国畜牧杂志, 2024, 60(5): 299-305.LI T, QI MD, ZHANG KY, WANG JP, BAI SP, ZENG QF, PENG HW, XUAN Y, Lü L, DING XM. Effects of probiotics on growth, immune function and intestinal microorganisms of laying hens during brooding period[J]. Chinese Journal of Animal Science, 2024, 60(5): 299-305 (in Chinese).
    [21] 刘璐佳, 杨阳, 景伟超, 王有鹏. 基于16S核糖体DNA基因测序技术探讨分消走泄法对支气管哮喘大鼠肠道菌群的影响[J]. 环球中医药, 2024, 17(2): 223-231.LIU LJ, YANG Y, JING WC, WANG YP. Study on the effect of dissipation and discharge method on intestinal microflora in bronchial asthmatic rats based on 16S rDNA gene sequencing technology[J]. Global Traditional Chinese Medicine, 2024, 17(2): 223-231 (in Chinese).
    [22] 李华军, 林杨, 王润哲, 王佑安, 汪晓亚. 土地利用对东洞庭湖湿地植物多样性及土壤性状的影响[J]. 南方农机, 2024, 55(6): 20-23.LI HJ, LIN Y, WANG RZ, WANG YA, WANG XY. Effects of land use on plant diversity and soil properties in East Dongting Lake wetland[J]. China Southern Agricultural Machinery, 2024, 55(6): 20-23 (in Chinese).
    [23] 王艳红, 郝兆, 薛文凯, 孟华旦尚, 德吉, 郭小芳. 纳木措不同水文期水体酵母菌影响因素分析[J]. 中国环境科学, 2023. 43(4): 2028-2038.WANG YH, HAO Z, XUE WK, MENG HDS, DE J, GUO XF. Environmental factors affecting yeast community structure during different hydrological periods in Nam Co Lake[J]. China Environmental Science, 2023, 43(4): 2028-2038 (in Chinese).
    [24] 李浩宇. 明永冰川及其退却地区垂直气候带的细菌群落多样性研究[D]. 昆明: 昆明理工大学博士学位论文, 2016.LI HY. Bacterial community diversity in the vertical climatic zones of Mingyong Glacier and retreat region[D]. Kunming: Doctoral Dissertation of Kunming University of Science and Technology, 2016 (in Chinese).
    [25] LIU Z, LI J, HOU RX, ZHANG YT, GONG HR, SUN YF, OUYANG Z, SUN ZG. Plant rhizospheres harbour specific fungal groups and form a stable co-occurrence pattern in the saline-alkali soil[J]. Agronomy, 2023, 13(4): 1036.
    [26] 王晓丽, 其勒格尔. 黄河内蒙古段表层沉积物细菌多样性及群落结构类型[J]. 生态学报, 2020, 40(2): 578-589.WANG XL, QI LGE. Bacterial diversity and community structure in surface sediments of Yellow River from Inner Mongolia section[J]. Acta Ecologica Sinica, 2020, 40(2): 578-589 (in Chinese).
    [27] 邹春景. 碱蓬对盐渍土壤中微生物降解PAHs的促进作用及机制研究[D]. 济南: 齐鲁工业大学硕士学位论文, 2024.ZOU CJ. Study on the promoting and mechanism of microbial degradation of PAHs by Suaeda glauca in saline soils[D]. Jinan: Master’s Thesis of Qilu University of Technology, 2024 (in Chinese).
    [28] 王明涛, 赵玉红, 苗彦军, 马素洁, 包赛很那, 徐雅梅, 雷变霞. 不同土地利用方式对藏东南典型草原土壤真菌群落的影响[J]. 草地学报, 2023, 31(4): 992-1000.WANG MT, ZHAO YH, MIAO YJ, MA SJ, BAO S, XU YM, LEI BX. Effects of different land use patterns on soil fungal community in typical steppe of southeastern Xizang[J]. Acta Agrestia Sinica, 2023, 31(4): 992-1000 (in Chinese).
    [29] KUZYAKOV Y, JONES DL. Glucose uptake by maize roots and its transformation in the rhizosphere[J]. Soil Biology and Biochemistry, 2006, 38(5): 851-860.
    [30] SUN XR, XU MY, KONG WL, WU F, ZHANG Y, XIE XL, LI DW, WU XQ. Fine identification and classification of a novel beneficial Talaromyces fungal species from Masson pine rhizosphere soil[J]. J Fungi (Basel), 2022, 8(2): 155.
    [31] NASCIMENTO MF, BARREIROS R, OLIVEIRA AC, FERREIRA FC, FARIA NT. Moesziomyces spp. cultivation using cheese whey: new yeast extract-free media, β-galactosidase biosynthesis and mannosylerythritol lipids production[J]. Biomass Conversion and Biorefinery, 2024, 14(5): 6783-6796.
    [32] BASOTRA N, KAUR B, di FALCO M, TSANG A, CHADHA BS. Mycothermus thermophilus (syn. Scytalidium thermophilum): repertoire of a diverse array of efficient cellulases and hemicellulases in the secretome revealed[J]. Bioresour Technol, 2016, 222: 413-421.
    [33] SAIBI W, AMOURI B, GARGOURI A. Purification and biochemical characterization of a transglucosilating β-glucosidase of Stachybotrys strain[J]. Applied Microbiology and Biotechnology, 2007, 77(2): 293-300.
    [34] 赵欣, 王怡霏, 王嘉嘉, 王佩瑶, 王桂端, 朱利霞, 李俐俐. 木霉菌对作物及土壤生态环境的影响[J]. 中国农业科技导报, 2023, 25(11): 166-172.ZHAO X, WANG YF, WANG JJ, WANG PY, WANG GD, ZHU LX, LI LL. Trichoderma affects crop growth and soil ecological environment[J]. Journal of Agricultural Science and Technology, 2023, 25(11): 166-172 (in Chinese).
    [35] DASKAYA-DIKMEN C, KARBANCIOGLU-GULER F, OZCELIK B. Cold active pectinase, amylase and protease production by yeast isolates obtained from environmental samples[J]. Extremophiles, 2018, 22(4): 599-606.
    [36] MOHARRAM AM, ABDEL-GALIL FA, HAFEZ WMM. On the enzymes’ actions of entomopathogenic fungi against certain indigenous and invasive insect pests[J]. Egyptian Journal of Biological Pest Control, 2021, 31(1): 51.
    [37] 刘邮洲, 沈佳慧, 乔俊卿, 左杨, 刘永锋. 芽孢杆菌嗜铁素研究进展[J]. 江苏农业学报, 2023, 39(1): 266-276.LIU YZ, SHEN JH, QIAO JQ, ZUO Y, LIU YF. Research progress of siderophore produced by Bacillus spp.[J]. Jiangsu Journal of Agricultural Sciences, 2023, 39(1): 266-276 (in Chinese).
    [38] di FRANCESCO A, ZAJC J, STENBERG JA. Aureobasidium spp.: diversity, versatility, and agricultural utility[J]. Horticulturae, 2023, 9(1): 59.
    [39] 马艺源, 张守梅, 冯春辉, 李伟. 菲律宾海盆沉积物可培养真菌及其温度、盐度适应性初步研究[J]. 菌物学报, 2020, 39(7): 1291-1300.MA YY, ZHANG SM, FENG CH, LI W. Fungi isolated from deep-sea sediments of the Philippine Sea Basin and their adaptation to temperature and salinity[J]. Mycosystema, 2020, 39(7): 1291-1300 (in Chinese).
    [40] REVERCHON F, MARíA del ORTEGA-LARROCEA P, PéREZ-MORENO J. Saprophytic fungal communities change in diversity and species composition across a volcanic soil chronosequence at Sierra del Chichinautzin, Mexico[J]. Annals of Microbiology, 2010, 60(2): 217-226.
    [41] KANG P, PAN YQ, RAN YC, LI WN, SHAO MX, ZHANG YQ, JI QB, DING XD. Soil saprophytic fungi could be used as an important ecological indicator for land management in desert steppe[J]. Ecological Indicators, 2023, 150: 110224.
    [42] MacDONALD J, SUZUKI H, MASTER ER. Expression and regulation of genes encoding lignocellulose-degrading activity in the genus Phanerochaete[J]. Applied Microbiology and Biotechnology, 2012, 94(2): 339-351.
    [43] CAMERON MD, TIMOFEEVSKI S, AUST SD. Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics[J]. Applied Microbiology and Biotechnology, 2000, 54(6): 751-758.
    [44] 赵玉鑫, 张铁, 赵玉晓, 华栋梁, 于合龙. 青霉菌对秸秆复合菌系好氧发酵的影响[J]. 可再生能源, 2022, 40(3): 285-291.ZHAO YX, ZHANG T, ZHAO YX, HUA DL, YU HL. Effect of Penicillium on the degradation of straw by compound bacterium agent[J]. Renewable Energy Resources, 2022, 40(3): 285-291 (in Chinese).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张婷,宗可金,季银利,宋宪锐,赵聪聪,纪明德,孔强,王倩. 黄河三角洲典型植被下真菌群落结构组成[J]. 微生物学报, 2025, 65(2): 808-827

复制
分享
文章指标
  • 点击次数:29
  • 下载次数: 56
  • HTML阅读次数: 19
  • 引用次数: 0
历史
  • 收稿日期:2024-09-08
  • 在线发布日期: 2025-02-18
文章二维码