基于专利视角下人工智能在合成生物学中的应用
作者:
作者单位:

1.中国科学技术大学,安徽 合肥;2.中国科学院武汉文献情报中心,湖北 武汉;3.国家知识产权局知识产权发展研究中心,北京

作者简介:

相强宇:文稿撰写、方法论的设计以及数据的整理,包括形式分析与概念化、可视化等;马丽丽:主要参与方法论审查、验证以及前期的调研;高婉莹:主要参与审编、辅助分析以及前期的调研;吴宗震:主要参与审编以及前期的调研;左锟澜:主要参与审编以及前期的调研;张璐:主要参与论文返修的审编;陈泽欣:主要参与该文的背景分析及结果讨论;李骏:主要参与该文的背景分析及结果讨论;刘欢:主要参与包括完成概念的定义、方法论讨论与审编等工作。

基金项目:

合成生物学国家重点研发计划(2024YFA0917200);中国科学院高质量数据池和数据产品服务体系建设项目(2019WQZX012);国家知识产权局合成生物学关键核心技术专利分析研究项目(FX202309)


Application of artificial intelligence in synthetic biology from the patent perspective
Author:
Affiliation:

1.University of Science and Technology of China, Hefei, Anhui, China;2.National Science Library (Wuhan), Chinese Academy of Sciences, Wuhan, Hubei, China;3.Intellectual Property Development and Research Center, China National Intellectual Property Administration, Beijing, China

Fund Project:

This work was supported by Synthetic Biology National Key Research and Development Program (2024YFA0917200), the Construction Project of High-quality Data Pool and Data Product Service System of Chinese Academy of Sciences (2019WQZX012), and the China National Intellectual Property Administration Synthetic Biology Program (FX202309).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    目的 通过专利分析挖掘人工智能在合成生物学中的应用趋势与分布特征,为该领域的技术创新、研发方向以及产业布局提供实践参考和理论支持。方法 本研究概述了合成生物学的研究内容和方法,借助专利网络进行深入挖掘,并结合文献分析的角度,探究人工智能在合成生物学领域的发展态势。结果 检索并分析相关专利数据,揭示了人工智能在合成生物学领域的申请和公开趋势,以及主要国家和申请人的分布情况。进一步地,从专利角度分析了生物合成基因簇、蛋白质结构分析以及转录因子结合位点等3个技术分支的发展情况。此外,本研究还讨论了人工智能在合成生物学应用中面临的挑战,并针对这些挑战提出了一些应对建议。结论 本研究结果有助于深入了解人工智能在合成生物学领域的技术发展脉络,为相关企业和科研机构的研发决策提供参考,强调了人工智能技术在合成生物学领域的重要性,以及其在推动该领域发展中的关键作用。同时,本研究还针对进一步加强人工智能在合成生物学领域的研究和应用,提出了一系列建议,旨在为全球科技竞争态势下的国家科技情报体系建设,特别是合成生物学的发展提供更多创新性的思路和技术支撑。

    Abstract:

    Objective To analyze the application trends and distribution of artificial intelligence in synthetic biology from the patent perspective, providing practical insights and theoretical support for technological innovation, research and development (R&D) direction, and industrial layout of this field.Methods The paper presents a comprehensive overview of the research contents and methodologies of synthetic biology, and delves into the evolving landscape of artificial intelligence in synthetic biology by extensive patent network mining and literature analysis.Results Through thorough examination of pertinent patent data, this study unveils the application patterns and disclosure trends of artificial intelligence in synthetic biology alongside the major countries involved and key applicants. Furthermore, it analyzes the advancements in biosynthetic gene clusters, protein structure analysis, and transcription factor binding sites from the patent perspective. Additionally, this paper expounds the challenges confronting the integration of artificial intelligence into synthetic biology while offering recommendations to address them.Conclusion The findings presented herein offer valuable insights into understanding the technical developmental context surrounding artificial intelligence in synthetic biology while serving as a reference for relevant enterprises and research institutions when making R&D decisions. Moreover, this paper underscores the pivotal role played by artificial intelligence in advancing development of synthetic biology while emphasizing its significance. Simultaneously, it provides suggestions to further bolster research efforts on integrating artificial intelligence into synthetic biology with an aim to generate innovative ideas and technical support for constructing national science and technology information systems in global science and technology competition scenarios—particularly concerning advances in synthetic biology.

    参考文献
    [1] WONG F, deLa FUENTE-NUNEZ C, COLLINS JJ. Leveraging artificial intelligence in the fight against infectious diseases[J]. Science, 2023, 381(6654): 164-170.
    [2] TANG TC, AN BL, HUANG YY, VASIKARAN S, WANG YY, JIANG XY, LU TK, ZHONG C. Materials design by synthetic biology[J]. Nature Reviews Materials, 2021, 6: 332-350.
    [3] RADIVOJEVI? T, COSTELLO Z, WORKMAN K, GARCIA MARTIN H. A machine learning automated recommendation tool for synthetic biology[J]. Nature Communications, 2020, 11(1): 4879.
    [4] HUTCHISON III CA, CHUANG RY, NOSKOV VN, ASSAD GN, DEERINCK TJ, ELLISMAN MH, GILL J, KANNAN K, KARAS BJ, MA L, PELLETIER JF, QI ZQ, RICHTER A, STRYCHALSKI EA, SUN LJ, SUZUKI Y, TSVETANOVA B, WISE KS, SMITH HO, GLASS JI, et al. Design and synthesis of a minimal bacterial genome[J]. Science, 2016, 351(6280): aad6253.
    [5] KANNAN K, TSVETANOVA B, CHUANG RY, NOSKOV VN, GARCIA NA, MA L, HUTCHISON III CA, HAMILTON OS, GLASS JI, MERRYMAN C, VENTER JC, GIBSON DG. One step engineering of the small-subunit ribosomal RNA using CRISPR/Cas9[J]. Scientific Reports, 2016, 6(1): 30714.
    [6] 赵国屏. 合成生物学: 开启生命科学“会聚”研究新时代[J]. 中国科学院院刊, 2018, 33(11): 1135-1149.ZHAO GP. Synthetic biology: unsealing the convergence era of life science research[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 1135-1149 (in Chinese).
    [7] 陈大明, 周光明, 刘晓, 范月蕾, 王跃, 毛开云, 张学博, 熊燕. 从全球专利分析看合成生物学技术发展趋势[J]. 合成生物学, 2020, 1(3): 372-384.CHEN DM, ZHOU GM, LIU X, FAN YL, WANG Y, MAO KY, ZHANG XB, XIONG Y. Analysis of global patents for the trend of synthetic biology inventions[J]. Synthetic Biology Journal, 2020, 1(3): 372-384 (in Chinese).
    [8] CARBONELL P, RADIVOJEVIC T, GARCíA MARTíN H. Opportunities at the intersection of synthetic biology, machine learning, and automation[J]. ACS Synthetic Biology, 2019, 8(7): 1474-1477.
    [9] 李敏, 林子杰, 廖文斌, 陈廷柏, 李坚强, 陈杰, 肖敏凤. 人工智能在合成生物学的应用[J]. 集成技术, 2021, 10(5): 43-56.LI M, LIN ZJ, LIAO WB, CHEN TB, LI JQ, CHEN J, XIAO MF. Application of artificial intelligence in synthetic biology: a review[J]. Journal of Integration Technology, 2021, 10(5): 43-56 (in Chinese).
    [10] DIXON TA, CURACH NC, PRETORIUS IS. Bio-informational futures: the convergence of artificial intelligence and synthetic biology[J]. EMBO Reports, 2020, 21(3): e50036.
    [11] STANO P, KURUMA Y, DAMIANO L. Synthetic biology and (embodied) artificial intelligence: opportunities and challenges[J]. Adaptive Behavior, 2018, 26(1): 41-44.
    [12] ESLAMI M, ADLER A, CACERES RS, DUNN JG, KELLEY-LOUGHNANE N, VARALJAY VA, MARTIN HG. Artificial intelligence for synthetic biology[J]. Communications of the ACM, 2022, 65(5): 88-97.
    [13] 熊燕, 马雪晴, 陈大明, 刘晓, 赵国屏. 合成生物学赋能: 从学科发展到产业转化[J]. 中国科学院院刊, 2024, 39(5): 851-861.XIONG Y, MA XQ, CHEN DM, LIU X, ZHAO GP. Synthetic biology enablement: from academic development to industrial transformation[J]. Bulletin of Chinese Academy of Sciences, 2024, 39(5): 851-861 (in Chinese).
    [14] FAULON JL, MISRA M, MARTIN S, KEN SL, SAPRA R. Genome scale enzyme-metabolite and drug-target interaction predictions using the signature molecular descriptor[J]. Bioinformatics, 2008, 24(2): 225-233.
    [15] de JONGH RPH, van DIJK ADJ, JULSING MK, SCHAAP PJ, de RIDDER D. Designing eukaryotic gene expression regulation using machine learning[J]. Trends in Biotechnology, 2020, 38(2): 191-201.
    [16] HENG E, TAN L, TAY DWP, LIM YH, YANG LK, SEOW DCS, LEONG CY, NG V, NG SB, KANAGASUNDARAM Y, WONG FT, KODURU L. Cost-effective hybrid long-short read assembly delineates alternative GC-rich Streptomyces hosts for natural product discovery[J]. Synthetic and Systems Biotechnology, 2023, 8(2): 253-261.
    [17] BLIN K, SHAW S, STEINKE K, VILLEBRO R, ZIEMERT N, LEE SY, MEDEMA MH, WEBER T. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline[J]. Nucleic Acids Research, 2019, 47(W1): W81-W87.
    [18] NETT M, IKEDA H, MOORE BS. Genomic basis for natural product biosynthetic diversity in the actinomycetes[J]. Natural Product Reports, 2009, 26(11): 1362-1384.
    [19] ZHAO HM, MEDEMA MH. Standardization for natural product synthetic biology[J]. Natural Product Reports, 2016, 33(8): 920-924.
    [20] 刘海燕. 人工智能: 开启生物体系计算设计的新篇章[J]. 合成生物学, 2023, 4(3): 419-421.LIU HY. Artificial intelligence: opening a new chapter in computational design of biological systems[J]. Synthetic Biology Journal, 2023, 4(3): 419-421 (in Chinese).
    [21] Wid?ak W. Protein structure and function[M]//Molecular Biology: Not Only for Bioinformaticians. Berlin,Heidelberg: Springer Berlin Heidelberg,2013: 15-29.
    [22] MAKAM P, YAMIJALA SSRKC, TAO K, SHIMON LJW, EISENBERG DS, SAWAYA MR, WONG BM, GAZIT E. Non-proteinaceous hydrolase comprised of a phenylalanine metallo-supramolecular amyloid-like structure[J]. Nature Catalysis, 2019, 2(11): 977-985.
    [23] PEARCE EL, POFFENBERGER MC, CHANG CH, JONES RG. Fueling immunity: insights into metabolism and lymphocyte function[J]. Science, 2013, 342(6155): 1242454.
    [24] JUMPER J, EVANS R, PRITZEL A, GREEN T, FIGURNOV M, RONNEBERGER O, TUNYASUVUNAKOOL K, BATES R, ?íDEK A, POTAPENKO A, BRIDGLAND A, MEYER C, KOHL SAA, BALLARD AJ, COWIE A, ROMERA-PAREDES B, NIKOLOV S, JAIN R, ADLER J, BACK T, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589.
    [25] TOWNSHEND RJL, BEDI R, SURIANA PA, DROR RO. End-to-end learning on 3D protein structure for interface prediction[EB/OL]. [2019-12-26].https://arxiv.org/abs/1807.01297v5.
    [26] 陈志航, 季梦麟, 戚逸飞. 人工智能蛋白质结构设计算法研究进展[J]. 合成生物学, 2023, 4(3): 464-487.CHEN ZH, JI ML, QI YF. Research progress of artificial intelligence in desiging protein structures[J]. Synthetic Biology Journal, 2023, 4(3): 464-487 (in Chinese).
    [27] LAMBERT SA, JOLMA A, CAMPITELLI LF, DAS PK, YIN YM, ALBU M, CHEN XT, TAIPALE J, HUGHES TR, WEIRAUCH MT. The human transcription factors[J]. Cell, 2018, 172(4): 650-665.
    [28] TRUJILLO-OCHOA JL, KAZEMIAN M, AFZALI B. The role of transcription factors in shaping regulatory T cell identity[J]. Nature Reviews Immunology, 2023, 23(12): 842-856.
    [29] KUMAR DK, JONAS F, JANA T, BRODSKY S, CARMI M, BARKAI N. Complementary strategies for directing in vivo transcription factor binding through DNA binding domains and intrinsically disordered regions[J]. Molecular Cell, 2023, 83(9): 1462-1473.e5.
    [30] MALIK S, ROEDER RG. Regulation of the RNA polymerase II pre-initiation complex by its associated coactivators[J]. Nature Reviews Genetics, 2023, 24(11): 767-782.
    [31] LIU H, GONG X, LIU Z,ZUO K,CHENG H. Medicine has no borders, health unites us all: Henry Norman Bethune as a pioneer, medical scientist, and internationalist[J]. hLife, 2024, 2(3): 97-99.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

相强宇,马丽丽,高婉莹,吴宗震,左锟澜,张璐,陈泽欣,李骏,刘欢. 基于专利视角下人工智能在合成生物学中的应用[J]. 微生物学报, 2025, 65(2): 828-845

复制
分享
文章指标
  • 点击次数:25
  • 下载次数: 56
  • HTML阅读次数: 13
  • 引用次数: 0
历史
  • 收稿日期:2024-09-17
  • 在线发布日期: 2025-02-18
文章二维码