南方离子型稀土矿山垂直剖面微生物群落结构特征及其对环境因子的响应
作者:
作者单位:

1.福建师范大学 环境与资源学院,福建省污染控制与资源循环利用重点实验室,福建 福州;2.福建师范大学 生命科学学院,福建 福州;3.中稀(福建)稀土矿业有限公司长汀分公司,福建 龙岩;4.福建师范大学 地理科学学院,湿润亚热带山地生态国家重点实验室培育基地,福建 福州

作者简介:

陈娴:样本采集,实验操作,数据采集、分析及论文初稿撰写;崔熙雯:协助数据采集、分析及绘图;韩海斌:协助数据采集、分析;陈涵冰:协助数据采集、分析;江仰龙:协助样本采集;王小闽:协助数据采集、分析;陈志彪:项目资源协调与工作支持;张勇:协助指导实验开展,参与论文讨论;张虹:协助指导实验开展,参与论文讨论;韩永和:研究方案构思与设计,实验指导,论文审阅及全面修订。

基金项目:

福建师范大学科技创新团队培育计划(Y0720409B06);福建师范大学“宝琛计划”青年英才项目


Microbial community structure characteristics in the vertical profile of an ion-adsorbed rare earth mine in southern China and their responses to environmental factors
Author:
Affiliation:

1.Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, China;2.College of Life Science, Fujian Normal University, Fuzhou, Fujian, China;3.Changting Branch of Zhongxi (Fujian) Rare Earth Mining Co., Ltd., China Rare Earth Group, Longyan, Fujian, China;4.State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, China

Fund Project:

This work was supported by the Science and Technology Innovation Team Training Program of Fujian Normal University (Y0720409B06) and the “Bao-Chen Plan” for Young Talents of Fujian Normal University.

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    离子型稀土矿是国际上备受关注的战略资源,对我国多个产业的发展至关重要。然而,大规模的开采活动引发了土壤退化、营养流失和重金属污染等问题。目的 分析离子型稀土矿山垂直剖面上微生物的群落结构特征及其对环境因子的响应,了解微生物群落沿垂直剖面的深度分异规律及其与环境因子的关系,为污染矿区土壤的生态修复提供参考。方法 以离子型稀土矿山1?15 m深的土壤样品为研究对象,分析土壤的理化性质;采用高通量测序技术探究矿山垂直剖面上土壤微生物的分布规律并构建环境因子与微生物群落演替的关系。结果 伴随矿山深度的增加,土壤pH值和总碳(total carbon, TC)逐渐降低;氨氮(ammonia nitrogen, NH3-N)是矿山土壤的主要氮素存在形态,在中深层土壤中可达13.0 mg/kg;铁(iron, Fe)、镁(magnesium, Mg)和总稀土元素(total rare earth elements, TREEs)含量颇丰,且在深层土壤中聚集程度较高。微生物群落在矿山垂直剖面上呈现出明显的演替规律;其中,α多样性指数Chao1 (丰富性指数)和Shannon (多样性指数)等提示土壤微生物群落多样性随深度增加而降低,而β多样性指数如主成分分析(principal component analysis, PCA)和主坐标轴分析(principal co-ordinates analysis, PCoA)表明各层级间聚类差异显著。相关性分析结果显示,环境因子可调控微生物群落结构分异,土壤各剖面层级间存在不同的土壤养分循环特征。绿屈挠菌门(Chloroflexota)、假单胞菌门(Pseudomonadota)、放线菌门(Actinomycetota)和酸杆菌门(Acidobacteriota)是矿区土壤的优势细菌门类,在生物地球化学循环过程中可能发挥着重要作用。矿山土壤微生物存在层级演替规律:浅层土壤的优势菌群为绿屈挠菌门、酸杆菌门和放线菌门;中间层绿屈挠菌门的相对丰度下降,假单胞菌门逐渐占据优势地位,其相对丰度达60%;在深层极度厌氧环境中,假单胞菌门通过代谢适应性在寡营养条件下演替为优势菌群(相对丰度达70%)。上述微生物在土壤碳氮循环过程中发挥了重要作用。在碳循环方面,浅层土壤微生物以卡尔文循环主导固碳过程;中间层呈现出微氧-厌氧过渡带环境,促进微生物以糖酵解途径和三羧酸循环为主代谢途径以满足生长需求;深层土壤的厌氧环境促使微生物以发酵为主代谢方式。在氮循环方面,浅层土壤微生物以异化硝酸盐还原成铵(dissimilatory nitrate reduction to ammonium, DNRA)为主代谢方式,中间过渡层微生物在反硝化过程中占据重要地位,而深层厌氧环境的微生物以DNRA过程为主和反硝化作用为辅的双重代谢体系维持生长,其氮转化强度远高于浅层土壤。结论 离子型稀土矿山垂直剖面的微生物群落呈现明显的分异规律且与多个环境因子密切相关,提示其在矿区土壤物质循环中的潜在作用,可为未来调控稀土矿区污染修复提供科学依据。

    Abstract:

    Ion-adsorbed rare earth ore is a strategically important resource of global concern, playing a vital role in developing multiple industries in China. However, large-scale mining activities have led to soil degradation, nutrient losses, and heavy metal pollution.Objective To analyze the microbial community structure in the vertical profile of an ion-adsorbed rare earth mine and its response to environmental factors, exploring the depth-dependent variation pattern of microbial communities and their relationship with environmental variables. The findings will provide a scientific basis for the ecological restoration of polluted mining areas.Methods The soil samples were collected from an ion-adsorbed rare earth mine within the depth range of 1–15 m, and the physicochemical properties of the soil were analyzed. High-throughput sequencing was employed to investigate the distribution patterns of soil microorganisms along the vertical profile of the mine and to establish the relationships between environmental factors and microbial community succession.Results As the mining depth increased, soil pH and total carbon (TC) gradually decreased. Ammonia nitrogen (NH3-N) was the dominant N form in the mine soil, reaching up to 13.0 mg/kg in the intermediate soil layers. Iron (Fe), magnesium (Mg), and total rare earth elements (TREEs) were abundant, with higher accumulation levels in deeper soil layers. The microbial communities exhibited a distinct succession pattern along the vertical profile of the mine. Alpha diversity indexes (e.g., Chao1 for richness and Shannon for diversity) indicated a decline in soil microbial diversity with the increase in depth. In contrast, beta diversity analyses such as principal component analysis (PCA) and principal co-ordinates analysis (PCoA) revealed significant clustering differences among soil layers. Correlation analysis demonstrated that environmental factors regulated microbial community differentiation, and the soil nutrient cycling characteristics were distinct across different depth layers. The dominant bacterial phyla in the mine soil included Chloroflexota, Pseudomonadota, Actinomycetota, and Acidobacteriota, which likely played crucial roles in biogeochemical cycles. The microbial succession in the mine soil followed a depth-dependent pattern. Specifically, Chloroflexota, Acidobacteriota, and Actinomycetota predominated in the surface soil. In intermediate layers, the relative abundance of Chloroflexota declined, while Pseudomonadota became dominant with a relative abundance of 60%. In deep layers with extreme anaerobic environments, Pseudomonadota adapted metabolically to oligotrophic conditions, emerging as the dominant group with a relative abundance of 70%. These microorganisms play vital roles in the cycling of soil carbon (C) and nitrogen (N). For C cycling, surface microorganisms primarily relied on the Calvin cycle for C fixation. Microorganisms adopt a glycolysis strategy and the TCA cycle to meet metabolic demands in intermediate layers, where a microaerobic-anaerobic transition occurs. Deep-layer anaerobic conditions drove microorganisms to employ fermentation as the main metabolic pathway. As for N cycling, surface microorganisms mainly adopted dissimilatory nitrate reduction to ammonium (DNRA); microorganisms in intermediate layers were pivotal in denitrification; deep-layer anaerobic microorganisms employed a dual metabolic system of DNRA (primary) and denitrification (secondary), exhibiting significantly higher N transformation intensity than surface microorganisms.Conclusion The microbial communities in the vertical profile of the ion-adsorbed rare earth mine exhibit a distinct differentiation pattern and are closely correlated with multiple environmental factors, suggesting their potential role in the nutrient cycling of the mine soil. The findings provide a scientific basis for future regulation and remediation of pollution in rare earth mining areas.

    参考文献
    相似文献
    引证文献
引用本文

陈娴,崔熙雯,韩海斌,陈涵冰,江仰龙,王小闽,陈志彪,张勇,张虹,韩永和. 南方离子型稀土矿山垂直剖面微生物群落结构特征及其对环境因子的响应[J]. 微生物学报, 2025, 65(6): 2736-2755

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-22
  • 在线发布日期: 2025-06-05
文章二维码