南方离子型稀土矿山垂直剖面微生物群落结构特征及其对环境因子的响应
作者:
作者单位:

1.福建师范大学 环境与资源学院,福建省污染控制与资源循环利用重点实验室,福建 福州;2.福建师范大学 生命科学学院,福建 福州;3.中稀(福建)稀土矿业有限公司长汀分公司,福建 龙岩;4.福建师范大学 地理科学学院,湿润亚热带山地生态国家重点实验室培育基地,福建 福州

作者简介:

陈娴:样本采集,实验操作,数据采集、分析及论文初稿撰写;崔熙雯:协助数据采集、分析及绘图;韩海斌:协助数据采集、分析;陈涵冰:协助数据采集、分析;江仰龙:协助样本采集;王小闽:协助数据采集、分析;陈志彪:项目资源协调与工作支持;张勇:协助指导实验开展,参与论文讨论;张虹:协助指导实验开展,参与论文讨论;韩永和:研究方案构思与设计,实验指导,论文审阅及全面修订。

基金项目:

福建师范大学科技创新团队培育计划(Y0720409B06);福建师范大学“宝琛计划”青年英才项目


Microbial community structure characteristics in the vertical profile of an ion-adsorbed rare earth mine in southern China and their responses to environmental factors
Author:
Affiliation:

1.Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, China;2.College of Life Science, Fujian Normal University, Fuzhou, Fujian, China;3.Changting Branch of Zhongxi (Fujian) Rare Earth Mining Co., Ltd., China Rare Earth Group, Longyan, Fujian, China;4.State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, China

Fund Project:

This work was supported by the Science and Technology Innovation Team Training Program of Fujian Normal University (Y0720409B06) and the “Bao-Chen Plan” for Young Talents of Fujian Normal University.

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    离子型稀土矿是国际上备受关注的战略资源,对我国多个产业的发展至关重要。然而,大规模的开采活动引发了土壤退化、营养流失和重金属污染等问题。目的 分析离子型稀土矿山垂直剖面上微生物的群落结构特征及其对环境因子的响应,了解微生物群落沿垂直剖面的深度分异规律及其与环境因子的关系,为污染矿区土壤的生态修复提供参考。方法 以离子型稀土矿山1?15 m深的土壤样品为研究对象,分析土壤的理化性质;采用高通量测序技术探究矿山垂直剖面上土壤微生物的分布规律并构建环境因子与微生物群落演替的关系。结果 伴随矿山深度的增加,土壤pH值和总碳(total carbon, TC)逐渐降低;氨氮(ammonia nitrogen, NH3-N)是矿山土壤的主要氮素存在形态,在中深层土壤中可达13.0 mg/kg;铁(iron, Fe)、镁(magnesium, Mg)和总稀土元素(total rare earth elements, TREEs)含量颇丰,且在深层土壤中聚集程度较高。微生物群落在矿山垂直剖面上呈现出明显的演替规律;其中,α多样性指数Chao1 (丰富性指数)和Shannon (多样性指数)等提示土壤微生物群落多样性随深度增加而降低,而β多样性指数如主成分分析(principal component analysis, PCA)和主坐标轴分析(principal co-ordinates analysis, PCoA)表明各层级间聚类差异显著。相关性分析结果显示,环境因子可调控微生物群落结构分异,土壤各剖面层级间存在不同的土壤养分循环特征。绿屈挠菌门(Chloroflexota)、假单胞菌门(Pseudomonadota)、放线菌门(Actinomycetota)和酸杆菌门(Acidobacteriota)是矿区土壤的优势细菌门类,在生物地球化学循环过程中可能发挥着重要作用。矿山土壤微生物存在层级演替规律:浅层土壤的优势菌群为绿屈挠菌门、酸杆菌门和放线菌门;中间层绿屈挠菌门的相对丰度下降,假单胞菌门逐渐占据优势地位,其相对丰度达60%;在深层极度厌氧环境中,假单胞菌门通过代谢适应性在寡营养条件下演替为优势菌群(相对丰度达70%)。上述微生物在土壤碳氮循环过程中发挥了重要作用。在碳循环方面,浅层土壤微生物以卡尔文循环主导固碳过程;中间层呈现出微氧-厌氧过渡带环境,促进微生物以糖酵解途径和三羧酸循环为主代谢途径以满足生长需求;深层土壤的厌氧环境促使微生物以发酵为主代谢方式。在氮循环方面,浅层土壤微生物以异化硝酸盐还原成铵(dissimilatory nitrate reduction to ammonium, DNRA)为主代谢方式,中间过渡层微生物在反硝化过程中占据重要地位,而深层厌氧环境的微生物以DNRA过程为主和反硝化作用为辅的双重代谢体系维持生长,其氮转化强度远高于浅层土壤。结论 离子型稀土矿山垂直剖面的微生物群落呈现明显的分异规律且与多个环境因子密切相关,提示其在矿区土壤物质循环中的潜在作用,可为未来调控稀土矿区污染修复提供科学依据。

    Abstract:

    Ion-adsorbed rare earth ore is a strategically important resource of global concern, playing a vital role in developing multiple industries in China. However, large-scale mining activities have led to soil degradation, nutrient losses, and heavy metal pollution.Objective To analyze the microbial community structure in the vertical profile of an ion-adsorbed rare earth mine and its response to environmental factors, exploring the depth-dependent variation pattern of microbial communities and their relationship with environmental variables. The findings will provide a scientific basis for the ecological restoration of polluted mining areas.Methods The soil samples were collected from an ion-adsorbed rare earth mine within the depth range of 1–15 m, and the physicochemical properties of the soil were analyzed. High-throughput sequencing was employed to investigate the distribution patterns of soil microorganisms along the vertical profile of the mine and to establish the relationships between environmental factors and microbial community succession.Results As the mining depth increased, soil pH and total carbon (TC) gradually decreased. Ammonia nitrogen (NH3-N) was the dominant N form in the mine soil, reaching up to 13.0 mg/kg in the intermediate soil layers. Iron (Fe), magnesium (Mg), and total rare earth elements (TREEs) were abundant, with higher accumulation levels in deeper soil layers. The microbial communities exhibited a distinct succession pattern along the vertical profile of the mine. Alpha diversity indexes (e.g., Chao1 for richness and Shannon for diversity) indicated a decline in soil microbial diversity with the increase in depth. In contrast, beta diversity analyses such as principal component analysis (PCA) and principal co-ordinates analysis (PCoA) revealed significant clustering differences among soil layers. Correlation analysis demonstrated that environmental factors regulated microbial community differentiation, and the soil nutrient cycling characteristics were distinct across different depth layers. The dominant bacterial phyla in the mine soil included Chloroflexota, Pseudomonadota, Actinomycetota, and Acidobacteriota, which likely played crucial roles in biogeochemical cycles. The microbial succession in the mine soil followed a depth-dependent pattern. Specifically, Chloroflexota, Acidobacteriota, and Actinomycetota predominated in the surface soil. In intermediate layers, the relative abundance of Chloroflexota declined, while Pseudomonadota became dominant with a relative abundance of 60%. In deep layers with extreme anaerobic environments, Pseudomonadota adapted metabolically to oligotrophic conditions, emerging as the dominant group with a relative abundance of 70%. These microorganisms play vital roles in the cycling of soil carbon (C) and nitrogen (N). For C cycling, surface microorganisms primarily relied on the Calvin cycle for C fixation. Microorganisms adopt a glycolysis strategy and the TCA cycle to meet metabolic demands in intermediate layers, where a microaerobic-anaerobic transition occurs. Deep-layer anaerobic conditions drove microorganisms to employ fermentation as the main metabolic pathway. As for N cycling, surface microorganisms mainly adopted dissimilatory nitrate reduction to ammonium (DNRA); microorganisms in intermediate layers were pivotal in denitrification; deep-layer anaerobic microorganisms employed a dual metabolic system of DNRA (primary) and denitrification (secondary), exhibiting significantly higher N transformation intensity than surface microorganisms.Conclusion The microbial communities in the vertical profile of the ion-adsorbed rare earth mine exhibit a distinct differentiation pattern and are closely correlated with multiple environmental factors, suggesting their potential role in the nutrient cycling of the mine soil. The findings provide a scientific basis for future regulation and remediation of pollution in rare earth mining areas.

    参考文献
    [1] LI YHM, ZHAO WW, ZHOU MF. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: an integrated genetic model[J]. Journal of Asian Earth Sciences, 2017, 148: 65-95.
    [2] DUSHYANTHA N, BATAPOLA N, ILANKOON IMSK, ROHITHA S, PREMASIRI R, ABEYSINGHE B, RATNAYAKE N, DISSANAYAKE K. The story of rare earth elements (REEs): occurrences, global distribution, genesis, geology, mineralogy and global production[J]. Ore Geology Reviews, 2020, 122: 103521.
    [3] SHUAI J, PENG XJ, ZHAO YJ, WANG YL, XU W, CHENG JH, LU Y, WANG JJ. A dynamic evaluation on the international competitiveness of China’s rare earth products: an industrial chain and tech-innovation perspective[J]. Resources Policy, 2022, 75: 102444.
    [4] PENG XX, WANG MX, ZHANG JL. Emerging frontiers in rare-earth element chemical biology[J]. Coordination Chemistry Reviews, 2024, 519: 216096.
    [5] DUTTA T, KIM KH, UCHIMIYA M, KWON EE, JEON BH, DEEP A, YUN ST. Global demand for rare earth resources and strategies for green mining[J]. Environmental Research, 2016, 150: 182-190.
    [6] LI LY, WANG HT, HU JG, FANG Y, ZHOU F, YU JX, CHI R, XIAO CQ. Comparison of microbial communities in unleached and leached ionic rare earth mines[J]. Environmental Science and Pollution Research, 2024, 31(11): 17511-17523.
    [7] 师慧, 张力夫, 闫奥, 龚梦梦, 武波亨, 吕泽华, 张瑞. 双壳层包覆稀土离子掺杂CsPbCl3纳米晶的多色荧光防伪[J]. 福建师范大学学报(自然科学版), 2025, 41(2): 96-103.SHI H, ZHANG LF, YAN A, GONG MM, WU BH, Lü ZH, ZHANG R. Multicolor fluorescent anti-counterfeiting of rare earth ion-doped CsPbCl3 nanocrystals with double-shell layers[J]. Journal of Fujian Normal University (Natural Science Edition), 2025, 41(2): 96-103 (in Chinese).
    [8] ZHANG QY, REN FT, LI FD, CHEN GL, YANG G, WANG JQ, DU K, LIU SB, LI Z. Ammonia nitrogen sources and pollution along soil profiles in an in situ leaching rare earth ore[J]. Environmental Pollution, 2020, 267: 115449.
    [9] ZHOU LB, WANG XJ, HUANG CG, WANG H, YE HC, HU KJ, ZHONG W. Development of pore structure characteristics of a weathered crust elution-deposited rare earth ore during leaching with different valence cations[J]. Hydrometallurgy, 2021, 201: 105579.
    [10] OU XL, CHEN ZB, CHEN XL, LI XF, WANG J, REN TJ, CHEN HB, FENG LJ, WANG YK, CHEN ZQ, LIANG MX, GAO PC. Redistribution and chemical speciation of rare earth elements in an ion-adsorption rare earth tailing, southern China[J]. Science of The Total Environment, 2022, 821: 153369.
    [11] JUNG H, SU ZH, INABA Y, WEST AC, BANTA S. Genetic modification of Acidithiobacillus ferrooxidans for rare-earth element recovery under acidic conditions[J]. Environmental Science & Technology, 2023, 57(48): 19902-19911.
    [12] YANG WY, WU KJ, CHEN H, HUANG J, YU Z. Emerging role of rare earth elements in biomolecular functions[J]. The ISME Journal, 2025, 19(1): wrae241.
    [13] MATTOCKS JA, JUNG JJ, LIN CY, DONG ZY, YENNAWAR NH, FEATHERSTON ER, KANG-YUN CS, HAMILTON TA, PARK DM, BOAL AK, COTRUVO JA. Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer[J]. Nature, 2023, 618(7963): 87-93.
    [14] PHILIPPOT L, RAAIJMAKERS JM, LEMANCEAU P, van der PUTTEN WH. Going back to the roots: the microbial ecology of the rhizosphere[J]. Nature Reviews Microbiology, 2013, 11(11): 789-799.
    [15] CUI XW, XU ZN, CHEN X, CHEN ZB, LI JB, XIE RR, ZHANG H, ZHANG Y, HAN YH. Dicranopteris pedata improves soil quality by enhancing nutrient deposition, decreasing metal concentration, and boosting microbial diversity on abandoned rare earth elements mining sites[J]. Journal of Environmental Chemical Engineering, 2024, 12(5): 113842.
    [16] LIU JJ, LI C, MA WD, WU ZX, LIU W, WU WX. Exploitation alters microbial community and its co-occurrence patterns in ionic rare earth mining sites[J]. Science of The Total Environment, 2023, 898: 165532.
    [17] ZHANG B, WU JL, HUANG MY, ZHANG Y, ZHAO J, HE CT, YANG ZY. Changes of nutrients and microbial communities in recovery process of abandoned rare earth tailings[J]. Pedosphere, 2024, 34(4): 826-836.
    [18] ZHANG B, WU JL, MOU GP, XIAO MR, CHU SS, YANG ZY. Evaluation on rare earth elements and microbial communities in abandoned rare earth tailings[J]. Journal of Geochemical Exploration, 2025, 272: 107715.
    [19] GUO MN, ZHONG X, LIU WS, WANG GB, CHAO YQ, HUOT H, QIU RL, MOREL JL, WATTEAU F, SéRé G, TANG YT. Biogeochemical dynamics of nutrients and rare earth elements (REEs) during natural succession from biocrusts to pioneer plants in REE mine tailings in southern China[J]. Science of The Total Environment, 2022, 828: 154361.
    [20] BREWER TE, ARONSON EL, AROGYASWAMY K, BILLINGS SA, BOTTHOFF JK, CAMPBELL AN, DOVE NC, FAIRBANKS D, GALLERY RE, HART SC, KAYE J, KING G, LOGAN G, LOHSE KA, MALTZ MR, MAYORGA E, O’NEILL C, OWENS SM, PACKMAN A, PETT-RIDGE J, et al. Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons[J]. mBio, 2019, 10(5): e01318-19.
    [21] YANG MJ, LIANG XL, MA LY, HUANG J, HE HP, ZHU JX. Adsorption of REEs on kaolinite and halloysite: a link to the REE distribution on clays in the weathering crust of granite[J]. Chemical Geology, 2019, 525: 210-217.
    [22] 张元莎. 钼酸铵分光光度法测定水质总磷的方法研究[J]. 绿色科技, 2024, 26(16): 164-169.ZHANG YS. Study on spectrophotometric determination of total phosphorus in water quality with ammonium molybdate[J]. Journal of Green Science and Technology, 2024, 26(16): 164-169 (in Chinese).
    [23] 温启浩, 钱藏藏, 杨柳荫, 黎小明, 谢树敏. ICP-OES法测定铁铬液流电解液中17种杂质元素[J]. 福建分析测试, 2024, 33(5): 33-39, 43.WEN QH, QIAN CC, YANG LY, LI XM, XIE SM. Determination of 17 impurities in the iron-chromium redox flow electrolyte by ICP-OES method[J]. Fujian Analysis & Testing, 2024, 33(5): 33-39, 43 (in Chinese).
    [24] LI WX, HE EK, van GESTEL CAM, PEIJNENBURG WJGM, CHEN GQ, LIU XR, ZHU D, QIU H. Pioneer plants enhance soil multifunctionality by reshaping underground multitrophic community during natural succession of an abandoned rare earth mine tailing[J]. Journal of Hazardous Materials, 2024, 472: 134450.
    [25] ZHANG JJ, KOBERT K, FLOURI T, STAMATAKIS A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR[J]. Bioinformatics, 2014, 30(5): 614-620.
    [26] EDGAR RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998.
    [27] 顾亚宁, 吴琳芳, 林德宝, 邹秉章, 王思荣, 周鲁宏, 贺纪正. 福建省典型亚热带森林土壤细菌群落结构特征[J]. 福建师范大学学报(自然科学版), 2024, 40(1): 52-59.GU YN, WU LF, LIN DB, ZOU BZ, WANG SR, ZHOU LH, HE JZ. Soil bacterial community composition of typical subtropical forests in Fujian Province[J]. Journal of Fujian Normal University (Natural Science Edition), 2024, 40(1): 52-59 (in Chinese).
    [28] DOUGLAS GM, MAFFEI VJ, ZANEVELD JR, YURGEL SN, BROWN JR, TAYLOR CM, HUTTENHOWER C, LANGILLE MGI. PICRUSt2 for prediction of metagenome functions[J]. Nature Biotechnology, 2020, 38(6): 685-688.
    [29] XUE CX, LIN HY, ZHU XY, LIU JW, ZHANG YH, ROWLEY G, TODD JD, LI M, ZHANG XH. DiTing: a pipeline to infer and compare biogeochemical pathways from metagenomic and metatranscriptomic data[J]. Frontiers in Microbiology, 2021, 12: 698286.
    [30] LAUBER CL, HAMADY M, KNIGHT R, FIERER N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J]. Applied and Environmental Microbiology, 2009, 75(15): 5111-5120.
    [31] HUANG WG, KUZYAKOV Y, NIU SL, LUO Y, SUN B, ZHANG JB, LIANG YT. Drivers of microbially and plant-derived carbon in topsoil and subsoil[J]. Global Change Biology, 2023, 29(22): 6188-6200.
    [32] ALMARAZ M, WANG C, WONG MY. Deep soil contributions to global nitrogen budgets[J]. Nature Communications, 2025, 16: 966.
    [33] HARMAND JM, áVILA H, OLIVER R, SAINT-ANDRé L, DAMBRINE E. The impact of kaolinite and oxi-hydroxides on nitrate adsorption in deep layers of a Costarican Acrisol under coffee cultivation[J]. Geoderma, 2010, 158(3/4): 216-224.
    [34] 卢培利, 杨涵, 丁阿强, 李朝洋, 全林. 碳源与氮源限制下细菌代谢调节研究进展[J]. 微生物学报, 2023, 63(3): 946-962.LU PL, YANG H, DING AQ, LI CY, QUAN L. Metabolic regulation of bacteria with limited carbon and nitrogen sources[J]. Acta Microbiologica Sinica, 2023, 63(3): 946-962 (in Chinese).
    [35] WANG MY, LI JN, LIU HC, HUANG SY, LIU XY, LIU Y, AWAIS M, WANG J. Rare earth element extraction from ionic rare earth ores by two typical acidogenic microorganisms, Aspergillus niger and Acidithiobacillus ferrooxidans[J]. International Journal of Molecular Sciences, 2025, 26(5): 1986.
    [36] ZHAO NL, DING H, ZHOU XJ, GUILLEMOT T, ZHANG ZT, ZHOU N, WANG H. Dissimilatory iron-reducing microorganisms: the phylogeny, physiology, applications and outlook[J]. Critical Reviews in Environmental Science and Technology, 2025, 55(2): 73-98.
    [37] FARHAT N, ELKHOUNI A, ZORRIG W, SMAOUI A, ABDELLY C, RABHI M. Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning[J]. Acta Physiologiae Plantarum, 2016, 38(6): 145.
    [38] M?LLER K. Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. a review[J]. Agronomy for Sustainable Development, 2015, 35(3): 1021-1041.
    [39] LAND M, ?HLANDER B, INGRI J, THUNBERG J. Solid speciation and fractionation of rare earth elements in a spodosol profile from northern Sweden as revealed by sequential extraction[J]. Chemical Geology, 1999, 160(1/2): 121-138.
    [40] 黄志强, 邱景璇, 李杰, 许东坡, 刘箐. 基于16S rRNA基因测序分析微生物群落多样性[J]. 微生物学报, 2021, 61(5): 1044-1063.HUANG ZQ, QIU JX, LI J, XU DP, LIU Q. Exploration of microbial diversity based on 16S rRNA gene sequence analysis[J]. Acta Microbiologica Sinica, 2021, 61(5): 1044-1063 (in Chinese).
    [41] STONE BWG, DIJKSTRA P, FINLEY BK, FITZPATRICK R, FOLEY MM, HAYER M, HOFMOCKEL KS, KOCH BJ, LI J, LIU XJA, MARTINEZ A, MAU RL, MARKS J, MONSAINT-QUEENEY V, MORRISSEY EM, PROPSTER J, PETT-RIDGE J, PURCELL AM, SCHWARTZ E, HUNGATE BA. Life history strategies among soil bacteria-dichotomy for few, continuum for many[J]. The ISME Journal, 2023, 17(4): 611-619.
    [42] HAN YH, CUI XW, WANG HY, LAI XB, ZHU Y, LI JB, XIE RR, ZHANG Y, ZHANG H, CHEN ZB. Recruitment of copiotrophic and autotrophic bacteria by hyperaccumulators enhances nutrient cycling to reclaim degraded soils at abandoned rare earth elements mining sites[J]. Journal of Hazardous Materials, 2025, 488: 137351.
    [43] HAN JR, LI S, LI WJ, DONG L. Mining microbial and metabolic dark matter in extreme environments: a roadmap for harnessing the power of multi-omics data[J]. Advanced Biotechnology, 2024, 2(3): 26.
    [44] SHU WS, HUANG LN. Microbial diversity in extreme environments[J]. Nature Reviews Microbiology, 2021, 20(4): 219-235.
    [45] DELGADO-BAQUERIZO M, OLIVERIO AM, BREWER TE, BENAVENT-GONZáLEZ A, ELDRIDGE DJ, BARDGETT RD, MAESTRE FT, SINGH BK, FIERER N. A global atlas of the dominant bacteria found in soil[J]. Science, 2018, 359(6373): 320-325.
    [46] 汤明芳, 盛光遥, 李长鑫, 丁静. 基于细胞色素c的胞外电子传递过程[J]. 微生物学报, 2023, 63(2): 509-522.TANG MF, SHENG GY, LI CX, DING J. The process of extracellular electron transfer based on cytochrome c[J]. Acta Microbiologica Sinica, 2023, 63(2): 509-522 (in Chinese).
    [47] ZHOU X, TAHVANAINEN T, MALARD L, CHEN L, PéREZ-PéREZ J, BERNINGER F. Global analysis of soil bacterial genera and diversity in response to pH[J]. Soil Biology and Biochemistry, 2024, 198: 109552.
    [48] TANG S, MA QX, MARSDEN KA, CHADWICK DR, LUO Y, KUZYAKOV Y, WU LH, JONES DL. Microbial community succession in soil is mainly driven by carbon and nitrogen contents rather than phosphorus and sulphur contents[J]. Soil Biology and Biochemistry, 2023, 180: 109019.
    [49] RAO MPN, LUO ZH, DONG ZY, LI Q, LIU BB, GUO SX, NIE GX, LI WJ. Metagenomic analysis further extends the role of Chloroflexi in fundamental biogeochemical cycles[J]. Environmental Research, 2022, 209: 112888.
    [50] BEHERA S, DAS S. Potential and prospects of Actinobacteria in the bioremediation of environmental pollutants: cellular mechanisms and genetic regulations[J]. Microbiological Research, 2023, 273: 127399.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈娴,崔熙雯,韩海斌,陈涵冰,江仰龙,王小闽,陈志彪,张勇,张虹,韩永和. 南方离子型稀土矿山垂直剖面微生物群落结构特征及其对环境因子的响应[J]. 微生物学报, 2025, 65(6): 2736-2755

复制
分享
文章指标
  • 点击次数:28
  • 下载次数: 136
  • HTML阅读次数: 128
  • 引用次数: 0
历史
  • 收稿日期:2025-04-22
  • 在线发布日期: 2025-06-05
文章二维码