基于文献计量学的菌丝球及其在环境领域的应用研究现状及发展趋势
作者:
作者单位:

1.河北建筑工程学院,河北省水质工程与水资源综合利用重点实验室,河北 张家口;2.黑龙江省农垦科学院,黑龙江 哈尔滨

作者简介:

王博涵:实施研究过程、设计论文框架、起草论文、修订论文;汪宇:调研文献、数据处理;张斯:设计研究方案、终审论文;迟超:修改、审阅论文;王深研:调研文献、修订论文。

基金项目:

黑龙江省自然科学基金(LH2022E110);河北建筑工程学院研究生创新基金(XY2024001)


Research status and trends of mycelial pellets and their application in the field of environment based on bibliometrics
Author:
Affiliation:

1.Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou, Hebei, China;2.Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China

Fund Project:

This work was supported by theFoundation: Natural Science Foundation of Heilongjiang Province (LH2022E110) and the Graduate Innovation Fund of Hebei University of Architecture (XY2024001).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [78]
  • | | | |
  • 文章评论
    摘要:

    菌丝球的发酵培养、形态分析、代谢产物纯化,以及在污水处理和能源回收等领域的应用研究获得了环境和生物领域学者的广泛关注。全面了解菌丝球相关研究的进展和未来的热点趋势。基于Web of Science数据库,筛选出近20年与菌丝球环境应用相关的1 337篇科技文献,采用可视化方法,进行了关键词聚类、关键词时间趋势分析和关键词国家、作者、发文机构共现分析。发现总发文量总体呈上升趋势,共涉及97个学科类别,跨多学科文章较多,也往往具有更高的引用价值,我国在此领域取得的成果显示出明显的优势,并与其他国家保持密切的合作。热门研究关键词一直保持稳定(growth, morphology, fermentation, removal, degradation, mycelial pellets, biological control, fungi, culture, optimization, biodegradation, biosorption),近年来热度上升和新兴关键词出现了明显的变化。菌丝球在水处理领域的应用研究越来越热,与此相关的关键词(waste water, performance)热度上升;与菌丝球作为生物质载体处理污水(biomass, bacteria)、菌丝球生物合成(biosynthesis)、菌丝球和藻类共生处理污水(Chlorella vulgaris, microalgae)等领域相关的新兴关键词陆续出现并保持热度,表明菌丝球在水处理领域的相关研究逐步划分出更系统的研究方向,成为菌丝球未来的研究热点和机遇。

    Abstract:

    The fermentation, morphological observation, and metabolite purification of mycelial pellets and the application of mycelial pellets in sewage treatment and energy recovery have gained widespread attention from researchers in the fields of environment and biology. To get a full picture of the research hotspots and trends of mycelial pellets. We screened 1 337 scientific articles related to the application of mycelial pellets that were published in the past 20 years from the Web of Science. The clustering and temporal trends of keywords and the co-occurrence of countries, authors or institutions were visually analyzed. The annual number of published articles was on the rise, involving a total of 97 topics, and interdisciplinary articles were abundant and tended to have higher cited frequency. China’s achievements in this field kept a leading position and China maintained close cooperation with other countries. The hot keywords remained stable (growth, morphology, fermentation, removal, degradation, mycelial pellets, biological control, fungi, culture, optimization, biodegradation, and biosorption), and the uptrending and emerging keywords changed in recent years. The application of mycelial pellets in water treatment had been increasingly studied, with the related keywords (waste water, performance) becoming increasingly frequent. Emerging keywords related to wastewater treatment with mycelial pellets as carriers (biomass, bacteria), synthesis by mycelial pellets (biosynthesis), and water treatment with both mycelial pellets and algae (Chlorella vulgaris, microalgae) remained hot. This result indicates that research on the application of mycelial pellets in water treatment has gradually evolved into more systematic research directions, which will become future research hotspots and opportunities.

    参考文献
    [1] BINUPRIYA AR, SATHISHKUMAR M, SWAMINATHAN K, KU CS, YUN SE. Comparative studies on removal of Congo red by native and modified mycelial pellets of Trametes versicolor in various reactor modes[J]. Bioresource Technology, 2008, 99(5): 1080-1088.
    [2] MATHUR A, DUBEY S, PRASAD R, SINGH RP. Mycelial and secretome proteomic dynamics of L. squarrosulus AF5 in azo dye degradation[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109374.
    [3] LU T, ZHANG QL, YAO SJ. Efficient decolorization of dye-containing wastewater using mycelial pellets formed of marine-derived Aspergillus niger[J]. Chinese Journal of Chemical Engineering, 2017, 25(3): 330-337.
    [4] WANG MX, ZHANG QL, YAO SJ. A novel biosorbent formed of marine-derived Penicillium janthinellum mycelial pellets for removing dyes from dye-containing wastewater[J]. Chemical Engineering Journal, 2015, 259: 837-844.
    [5] ZHAO M, WANG W, YANG CP. Property of Curvularia lunata with mycelial pellet form and its use in dye decolorization[J]. Journal of Biotechnology, 2008, 136: S326.
    [6] BALDRIAN P. Purification and characterization of laccase from the white-rot fungus Daedalea quercina and decolorization of synthetic dyes by the enzyme[J]. Applied Microbiology and Biotechnology, 2004, 63(5): 560-563.
    [7] MURUGESAN K, YANG IH, KIM YM, JEON JR, CHANG YS. Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds[J]. Applied Microbiology and Biotechnology, 2009, 82(2): 341-350.
    [8] LI LX, LIANG TJ, ZHAO MJ, LV Y, SONG ZW, SHENG T, MA F. A review on mycelial pellets as biological carriers: wastewater treatment and recovery for resource and energy[J]. Bioresource Technology, 2022, 355: 127200.
    [9] XU XG, YANG Y, JIN H, PANG B, YANG RR, YAN L, JIANG CM, SHAO DY, SHI JL. Fungal in situ assembly gives novel properties to CdSxSe1–x quantum dots for sensitive label-free detection of chloramphenicol[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(17): 6806-6814.
    [10] WANG L, YU TM, MA F, VITUS T, BAI SS, YANG JX. Novel self-immobilized biomass mixture based on mycelium pellets for wastewater treatment: a review[J]. Water Environment Research, 2019, 91(2): 93-100.
    [11] YU TM, WANG L, MA F, YANG JX, BAI SS, YOU JY. Trazine in water: a bio-functions integration system[J]. Science of The Total Environment, 2019, 689: 875-882.
    [12] HAN XS, NIU XY, JIN Y, YU JG. Rapid cultivation of aerobic granular sludge for shale gas flowback water treatment by bioaugmentation with inoculation multifunctional fungal pellets[J]. Journal of Cleaner Production, 2024, 457: 142483.
    [13] LIM WM, KUMAR S, DONTHU N. How to combine and clean bibliometric data and use bibliometric tools synergistically: guidelines using metaverse research[J]. Journal of Business Research, 2024, 182: 114760.
    [14] van ECK NJ, WALTMAN L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2): 523-538.
    [15] ZHAO L, YANG JW, LIU T, CAO H, LIANG Y, WANG BS. Comparison of clinical research trends and hotspots in allergic rhinitis and asthma from 2013 to 2023 based on bibliometric analysis[J]. Heliyon, 2024, 10(12): e32829.
    [16] 王啸宇, 张亚辉, 张瑾, 陶勇, 梁宏仪. 基于文献计量学的新烟碱类农药毒性研究进展[J]. 环境科学研究, 2024, 37(9): 2042-2053.WANG XY, ZHANG YH, ZHANG J, TAO Y, LIANG HY. Progress in research on toxicity of neonicotinoid insecticides based on bibliometrics[J]. Research of Environmental Sciences, 2024, 37(9): 2042-2053 (in Chinese).
    [17] YU TM, WANG L, MA F, WANG YJ, BAI SS. A bio-functions integration microcosm: self-immobilized biochar-pellets combined with two strains of bacteria to remove atrazine in water and mechanisms[J]. Journal of Hazardous Materials, 2020, 384: 121326.
    [18] PAPAGIANNI M. Fungal morphology and metabolite production in submerged mycelial processes[J]. Biotechnology Advances, 2004, 22(3): 189-259.
    [19] LI K, WEI Z, JIA JY, XU Q, LIU H, ZHONG C, HUANG H. Engineered living materials grown from programmable Aspergillus niger mycelial pellets[J]. Materials Today Bio, 2023, 19: 100545.
    [20] FARKAS V, FELINGER A, HEGED?SOVA A, DéKáNY I, PERNYESZI T. Comparative study of the kinetics and equilibrium of phenol biosorption on immobilized white-rot fungus Phanerochaete chrysosporium from aqueous solution[J]. Colloids and Surfaces B: Biointerfaces, 2013, 103: 381-390.
    [21] GOU M, QU YY, ZHOU JT, MA F, TAN L. Azo dye decolorization by a new fungal isolate, Penicillium sp. QQ and fungal-bacterial cocultures[J]. Journal of Hazardous Materials, 2009, 170(1): 314-319.
    [22] BIZUKOJC M, LEDAKOWICZ S. The morphological and physiological evolution of Aspergillus terreus mycelium in the submerged culture and its relation to the formation of secondary metabolites[J]. World Journal of Microbiology & Biotechnology, 2010, 26(1): 41-54.
    [23] KURAKAKE M, HIROTSU S, SHIBATA M, TAKENAKA Y, KAMIOKA T, SAKAMOTO T. Effects of nonionic surfactants on pellet formation and the production of β-fructofuranosidases from Aspergillus oryzae KB[J]. Food Chemistry, 2017, 224: 139-143.
    [24] ZHANG K, YU C, YANG ST. Effects of soybean meal hydrolysate as the nitrogen source on seed culture morphology and fumaric acid production by Rhizopus oryzae[J]. Process Biochemistry, 2015, 50(2): 173-179.
    [25] IKRAM-UL H, ALI S, QADEER MA, IQBAL J. Citric acid production by selected mutants of Aspergillus niger from cane molasses[J]. Bioresource Technology, 2004, 93(2): 125-130.
    [26] LV J, ZHANG BB, LIU XD, ZHANG C, CHEN L, XU GR, CHEUNG PCK. Enhanced production of natural yellow pigments from Monascus purpureus by liquid culture: the relationship between fermentation conditions and mycelial morphology[J]. Journal of Bioscience and Bioengineering, 2017, 124(4): 452-458.
    [27] SARASWATHY A, HALLBERG R. Mycelial pellet formation by Penicillium ochrochloron species due to exposure to pyrene[J]. Microbiological Research, 2005, 160(4): 375-383.
    [28] PAPAGIANNI M, MATTEY M. Morphological development of Aspergillus niger in submerged citric acid fermentation as a function of the spore inoculum level. Application of neural network and cluster analysis for characterization of mycelial morphology[J]. Microbial Cell Factories, 2006, 5(1): 3.
    [29] NEGI BB, DAS C. Mycoremediation of wastewater, challenges, and current status: a review[J]. Bioresource Technology Reports, 2023, 22: 101409.
    [30] KELLY S, GRIMM LH, HENGSTLER J, SCHULTHEIS E, KRULL R, HEMPEL DC. Agitation effects on submerged growth and product formation of Aspergillus niger[J]. Bioprocess and Biosystems Engineering, 2004, 26(5): 315-323.
    [31] SUPRAMANI S, JAILANI N, RAMARAO K, ZAIN NAM, KLAUS A, AHMAD R, WAAQI WAN-MOHTAR. Pellet diameter and morphology of European Ganoderma pfeifferi in a repeated-batch fermentation for exopolysaccharide production[J]. Biocatalysis and Agricultural Biotechnology, 2019, 19: 101118.
    [32] NAIR RB, LENNARTSSON PR, TAHERZADEH MJ. Mycelial pellet formation by edible ascomycete filamentous fungi, Neurospora intermedia[J]. AMB Express, 2016, 6(1): 31.
    [33] LIN PJ, SCHOLZ A, KRULL R. Effect of volumetric power input by aeration and agitation on pellet morphology and product formation of Aspergillus niger[J]. Biochemical Engineering Journal, 2010, 49(2): 213-220.
    [34] WALDHERR P, BLIATSIOU C, B?HM L, KRAUME M. Fragmentation of Aspergillus niger pellets in stirred tank bioreactors due to hydrodynamic stress[J]. Chemical Engineering Research and Design, 2023, 195: 116-131.
    [35] HUARTE-BONNET C, PAIX?O FRS, PONCE JC, SANTANA M, PRIETO ED, PEDRINI N. Alkane-grown Beauveria bassiana produce mycelial pellets displaying peroxisome proliferation, oxidative stress, and cell surface alterations[J]. Fungal Biology, 2018, 122(6): 457-464.
    [36] ZHANG JG, ZHANG JN. The filamentous fungal pellet and forces driving its formation[J]. Critical Reviews in Biotechnology, 2016, 36(6): 1066-1077.
    [37] KELLY S, GRIMM LH, JONAS R, HEMPEL DC, KRULL R. Investigations of the morphogenesis of filamentous microorganisms[J]. Engineering in Life Sciences, 2006, 6(5): 475-480.
    [38] WUCHERPFENNIG T, KIEP KA, DRIOUCH H, WITTMANN C, KRULL R. Morphology and rheology in filamentous cultivations[J]. Advances in Applied Microbiology, 2010, 72: 89-136.
    [39] RüHL M, LANGE K, KüES U. Laccase production and pellet morphology of Coprinopsis cinerea transformants in liquid shake flask cultures[J]. Applied Microbiology and Biotechnology, 2018, 102: 7849-7863.
    [40] ZACCHETTI B, SMITS P, CLAESSEN D. Dynamics of pellet fragmentation and aggregation in liquid-grown cultures of Streptomyces lividans[J]. Frontiers in Microbiology, 2018, 9: 943.
    [41] LóPEZ JLC, PéREZ JAS, SEVILLA JMF, PORCEL EMR, CHISTI Y. Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus[J]. Journal of Biotechnology, 2005, 116(1): 61-77.
    [42] NAIR RB, GMOSER R, LENNARTSSON PR, TAHERZADEH MJ. Does the second messenger cAMP have a more complex role in controlling filamentous fungal morphology and metabolite production?[J]. MicrobiologyOpen, 2018, 7(4): e00627.
    [43] ZHANG C, WU DJ, YANG HQ, REN HX. Production of ethanol from Jerusalem artichoke by mycelial pellets[J]. Scientific Reports, 2019, 9: 18510.
    [44] LIN LC, SUN ZY, LI JG, CHEN Y, LIU Q, SUN WL, TIAN CG. Disruption of gul-1 decreased the culture viscosity and improved protein secretion in the filamentous fungus Neurospora crassa[J]. Microbial Cell Factories, 2018, 17(1): 96.
    [45] VEITER L, RAJAMANICKAM V, HERWIG C. The filamentous fungal pellet-relationship between morphology and productivity[J]. Applied Microbiology and Biotechnology, 2018, 102(7): 2997-3006.
    [46] MENG Q, CHUAI SC, CHEN L, WANG LL, CAI GL, MAO JS, GU ZH, SHI GY, DING ZY. Effect of surfactants on the production of polysaccharides from Schizophyllum commune through submerged fermentation[J]. International Journal of Biological Macromolecules, 2021, 192: 210-218.
    [47] UDDANDARAO P, BALAKRISHNAN RM. Thermal and optical characterization of biologically synthesized ZnS nanoparticles synthesized from an endophytic fungus Aspergillus flavus: a colorimetric probe in metal detection[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 175: 200-207.
    [48] VIJAYANANDAN AS, BALAKRISHNAN RM. Biosynthesis of cobalt oxide nanoparticles using endophytic fungus Aspergillus nidulans[J]. Journal of Environmental Management, 2018, 218: 442-450.
    [49] ZHOU J, YANG Y, ZHANG CY. Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application[J]. Chemical Reviews, 2015, 115(21): 11669-11717.
    [50] KADAM VV, ETTIYAPPAN JP, BALAKRISHNAN RM. Mechanistic insight into the endophytic fungus mediated synthesis of protein capped ZnO nanoparticles[J]. Materials Science and Engineering: B, 2019, 243: 214-221.
    [51] XU XG, YANG Y, JIN H, PANG B, JIANG CM, SHAO DY, SHI JL. Filamentous fungal in situ biosynthesis of heterogeneous Au/Cd0.5Zn0.5S nano-photocatalyst: a macroscopic assembly strategy for preparing composite mycelial pellets with visible light degradation ability[J]. Journal of Hazardous Materials, 2021, 406: 124797.
    [52] ZHU WK, CONG HP, GUAN QF, YAO WT, LIANG HW, WANG W, YU SH. Coupling microbial growth with nanoparticles: a universal strategy to produce functional fungal hyphae macrospheres[J]. ACS Applied Materials & Interfaces, 2016, 8(20): 12693-12701.
    [53] DAI LL, XIE Y, ZHANG YK, WANG YB. Fe2P/N-doped biocarbon composite derived from mycelial pellet for bisphenol AF removal through peroxymonosulfate activation[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109130.
    [54] ZOU JJ, DAI CM, HU JJ, TONG WK, GAO MT, ZHANG YL, LEONG KH, FU RB, ZHOU L. A novel mycelial pellet applied to remove polycyclic aromatic hydrocarbons: high adsorption performance & its mechanisms[J]. Science of The Total Environment, 2024, 922: 171201.
    [55] WU KL, PAN XM, ZHANG JQ, ZHANG XM, SALAH ZENE A, TIAN YQ. Biosorption of Congo red from aqueous solutions based on self-immobilized mycelial pellets: kinetics, isotherms, and thermodynamic studies[J]. ACS Omega, 2020, 5(38): 24601-24612.
    [56] CAO YQ, WANG L, WANG YJ, WANG X, WEI JY, YU TM, MA F. Functional fungal pellets self-immobilized by mycelium fragments of Irpex lacteus WRF-IL for efficient degradation of sulfamethazine as the sole carbon source[J]. Bioresource Technology, 2023, 385: 129376.
    [57] LIU YX, HU TT, ZHAO J, LV YK, REN RP. Simultaneous removal of carbon and nitrogen by mycelial pellets of a heterotrophic nitrifying fungus-Penicillium sp. L1[J]. Journal of Bioscience and Bioengineering, 2017, 123(2): 223-229.
    [58] ZHANG QL, LU T, BAI DM, LIN DQ, YAO SJ. Self-immobilization of a magnetic biosorbent and magnetic induction heated dye adsorption processes[J]. Chemical Engineering Journal, 2016, 284: 972-978.
    [59] BAI SS, WANG L, MA F, ZHU SS, XIAO T, YU TM, WANG YJ. Self-assembly biochar colloids mycelial pellet for heavy metal removal from aqueous solution[J]. Chemosphere, 2020, 242: 125182.
    [60] ZHANG S, WANG Y, WANG BH, WANG SY. A review on superiority of mycelial pellets as bio-carriers: structure, surface properties, and bioavailability[J]. Journal of Water Process Engineering, 2024, 58: 104745.
    [61] WANG HL, YU GL, LIU GS, PAN F. A new way to cultivate aerobic granules in the process of papermaking wastewater treatment[J]. Biochemical Engineering Journal, 2006, 28(1): 99-103.
    [62] WANG HL, LI L, LI P, LI H, LIU GS, YAO JM. The acceleration of sludge granulation using the chlamydospores of Phanerochaete sp. HSD[J]. Journal of Hazardous Materials, 2011, 192(3): 963-969.
    [63] WANG HL, LI P, JIN QL, QIN G. Specific aerobic granules can be developed in a completely mixed tank reactor by bioaugmentation using micro-mycelial pellets of Phanerochaete chrysosporium[J]. Applied Microbiology and Biotechnology, 2014, 98(6): 2687-2697.
    [64] CHEN YY, GE JY, WANG SJ, SU HJ. Insight into formation and biological characteristics of Aspergillus tubingensis-based aerobic granular sludge (AT-AGS) in wastewater treatment[J]. Science of The Total Environment, 2020, 739: 140128.
    [65] GENG MY, YOU SJ, GUO HJ, MA F, XIAO X, ZHANG JN. Impact of fungal pellets dosage on long-term stability of aerobic granular sludge[J]. Bioresource Technology, 2021, 332: 125106.
    [66] HAN XS, TANG R, LIU CS, YUE JX, JIN Y, YU JG. Rapid, stable, and highly-efficient development of salt-tolerant aerobic granular sludge by inoculating magnetite-assisted mycelial pellets[J]. Chemosphere, 2023, 339: 139645.
    [67] XIAO X, GUO HJ, MA F, ZHANG JN, MA XP, YOU SJ. New insights into mycelial pellets for aerobic sludge granulation in membrane bioreactor: bio-functional interactions among metazoans, microbial communities and protein expression[J]. Water Research, 2023, 228: 119361.
    [68] CUI PQ, WANG SJ, SU HJ. Enhanced biohydrogen production of anaerobic fermentation by the Fe3O4 modified mycelial pellets-based anaerobic granular sludge[J]. Bioresource Technology, 2022, 366: 128144.
    [69] GENG MY, MA F, GUO HJ, SU DL. Enhanced aerobic sludge granulation in a sequencing batch reactor (SBR) by applying mycelial pellets[J]. Journal of Cleaner Production, 2020, 274: 123037.
    [70] CHEN YY, HU TH, XIONG W, FAN AL, WANG SJ, SU HJ. Enhancing robustness of activated sludge with Aspergillus tubingensis as a protective backbone structure under high-salinity stress[J]. Journal of Environmental Management, 2021, 297: 113302.
    [71] GAO ZX, JIANG CJ, LYU RT, YANG ZG, ZHANG T. Optimization of the preparation of fungal-algal pellets for use in the remediation of arsenic-contaminated water[J]. Environmental Science and Pollution Research, 2020, 27: 36789-36798.
    [72] WANG JJ, TIAN QH, ZENG WM, QIU GZ, SHEN L. Insights about fungus-microalgae symbiotic system in microalgae harvesting and wastewater treatment: a review[J]. Renewable and Sustainable Energy Reviews, 2023, 182: 113408.
    [73] LENG LJ, LI WT, CHEN J, LENG SQ, CHEN JF, WEI L, PENG HY, LI J, ZHOU WG, HUANG HJ. Co-culture of fungi-microalgae consortium for wastewater treatment: a review[J]. Bioresource Technology, 2021, 330: 125008.
    [74] SINGH G, PATIDAR SK. Microalgae harvesting techniques: a review[J]. Journal of Environmental Management, 2018, 217: 499-508.
    [75] HADIYANTO H, ISAROYATI L, CHRISTWARDANA M, SUHERMAN S, SUSILANINGSIH D. Respond surface optimization of bioflocculation of Chlorella vulgaris using filamentous fungus Aspergillus niger pellets to improve harvesting efficiency[J]. Bioresource Technology Reports, 2023, 21: 101378.
    [76] LI LX, LIU WM, LIANG TJ, MA F. The adsorption mechanisms of algae-bacteria symbiotic system and its fast formation process[J]. Bioresource Technology, 2020, 315: 123854.
    [77] ZHU JJ, DRESSEL W, PACION K, REN ZJ. ES&T in the 21st century: a data-driven analysis of research topics, interconnections, and trends in the past 20 years[J]. Environmental Science & Technology, 2021, 55(6): 3453-3464.
    [78] 谢晓栋, 胡建林, 张远航. 基于文献计量学的我国臭氧污染研究热点与趋势分析[J]. 中国环境科学, 2024. DOI:10.19674/j.cnki.issn1000-6923.20240605.001.XIE XD, HU JL, ZHANG YH. Research topic and trend analysis of ozone pollution in China based on bibliometric review[J]. China Environmental Science, 2024. DOI: 10.19674/j.cnki.issn1000-6923.20240605.001 (in Chinese).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王博涵,汪宇,张斯,迟超,王深研. 基于文献计量学的菌丝球及其在环境领域的应用研究现状及发展趋势[J]. 微生物学报, 2025, 65(2): 846-861

复制
分享
文章指标
  • 点击次数:17
  • 下载次数: 56
  • HTML阅读次数: 12
  • 引用次数: 0
历史
  • 收稿日期:2024-09-09
  • 在线发布日期: 2025-02-18
文章二维码