Abstract:Glucose is degraded to pyruvate via the so called “central metabolic pathways” that play vital roles in the carbohydrate and energy metabolism of organisms. Some variances to the classical glycolytic pathways in bacteria and eukarya are presented in the glycolysis of archaea. Results from biochemical, genomic and metabolomic studies indicate that some novel and characteristic enzymes are involved in the archaeal Embden-Meyerhof (EM) and Entner-Doudoroff (ED) glycolysis pathway. The ED pathway in archaea is divided into two sub-routes-the semi-phosphorylative and non- hos-phorylative Entner-Doudoroff pathways. The unique glycolysis pathway in archaea is different from those in bacteria and eukarya in metabolic route, enzyme, regulation site, and energy transformation. These characteristics show the ability of these extremophiles to evolve flexible metabolic pathways in the extreme life environment. We reviewed recent advances in the ED glycolytic pathway of archaeon concerning enzymes, regulation and energy transformation. The potentials of glycolysis pathway in archaea were also discussed.