Abstract:Abstract: Bacillus subtilis Bs-916 is an effective biocontrol agent in control rice sheath blight caused by Rhizoctonia solani. We identified and analyzed the operon Bac in Bs-916 responsible for synthesis of iturin-like lipopeptides. The research plays an important part in genetic engineered Bs-916 for further improving its bio-control activity. Taking advantage of homologous recombination method, the one mutant obtained by replacement of the Bac original promoter by a constitutive promoter PrepU and designated BGG104; the other mutant was obtained by disruption of the Bac promoter by insertion and designated BGG105. The biological activities results showed the mutant BGG104 enhanced antagonistic activities against several pathogenic fungi and also clearly increased in hemolytic activities. However, the mutant BGG105 decreased clearly in both antagonistic activities and hemolytic activities. Crude lipopeptides were extracted with methanol from precipitates, which were obtained by adding 6 mol/L HCl to the cell-free culture broth. The results of reversed-phase high-performance liquid chromatography (HPLC) analysis of crude lipopeptides showed lipopeptides produced by Bs-916 have a different retention time compared to iturinA. The mutant BGG104 produced up to 3-fold more lipopeptides than Bs-916. However, the mutant BGG105 has not been detected countpart lipopeptides production. The molecular weights of the lipopeptides synthesized by Bac determined by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MS) were 1007.7 Da、1021.7 Da and 1035.7 Da. They were presumed to belong to homologues differed by a structure of –CH2 and their molecular weights were not the same as the other iturin-like liopeptides’, such as iturinA, mycosubtilin and bacillomycin, molecular weights. In conclusion, this paper showed the lipopeptides synthesized by Bac play crucial part in Bs-916 antifungal activities and the lipopeptides overproduction were able to enhance Bs-916 bio-control activities.