摘要
乳酸菌在食品和医学领域应用广阔,在食品发酵行业中可用作发酵剂和功能性菌粉。乳酸菌的活性和作用效果会受到各种环境压力的影响,如渗透压、温度、氧、酸、胆盐等。可食用的乳酸菌能够发挥多种多样的健康疗效,但其活菌数在生产、储藏以及人体消化过程中均有减少。因此,本文系统阐述了乳酸菌在其生产、储藏和消化过程中遭受的不同胁迫环境以及面对环境压力的应激反应,并从隔离胁迫环境和增加菌株抗逆性2个方面总结了现有高活性保护策略与机制,以期为乳酸菌菌株的选育与产品开发应用提供必要的理论依据。
乳酸菌(lactic acid bacteria, LAB)是一类无芽孢的革兰氏阳性菌株,它们通过发酵产生大量活性物质,这些物质有助于促进健康,被广泛应用于发酵食品
为扩大益生菌市场,满足消费者的需求,迫切需要开发和制备具有益生功能的LAB产品。环境胁迫不仅对于LAB工业应用至关重要,而且会影响到菌株的生理活性及其益生功能。因此,本综述旨在总结不同环境胁迫下LAB的应激反应及其分子调控机制,从隔离胁迫环境和增加菌株抗逆性2个方面总结了现有高活性保护策略与机制,对LAB产品菌种的筛选和改良,以及生产工艺优化都具有重要指导意义。
1 LAB受到的胁迫环境
LAB产品从制备到消费,需历经多重环境考验,

图1 LAB在不同环境下所受到的胁迫
Figure 1 Stress of LAB in different environments. Created with BioRender.com.
1.1 乳酸菌生产和储藏中受到的胁迫
1.1.1 乳酸胁迫
LAB在高密度培养时会产生大量乳酸,很大程度上抑制了LAB的生长活力,是工业生产上无法避免的压力环境,其含量会随着LAB生长阶段的变化而变
LAB菌株生长过程中的乳酸环境较为常见,了解酸应激反应的分子机制有助于调整和改造这些LAB菌株用于工业应用。
1.1.2 渗透压胁迫
针对1.1.1所述的乳酸胁迫,工业上一般会采取流加碱液的方式来中和乳酸对菌体生长的反馈抑制,然而这种方法伴随大量盐分的产生,进而导致渗透压升
综上所述,LAB在面对外界渗透压的改变时,一是依靠细胞膜对膜电位的维持,二是通过积累相容性溶质来适应。
1.1.3 温度胁迫
LAB产品的细胞数量和活力是影响产品质量的关键因
因此,研究冷应激以及热应激可以充分了解LAB对不同应激条件的适应性,是之后开发相应保护策略来保证在食品生产和储藏环境中质量和功能的重要一步。
1.1.4 氧胁迫
LAB最终产品的总活菌数量与活力对产品的质量与益生功效至关重要,储藏环境的高氧气含量不仅会降低菌株的酶活性,还会促进不饱和脂肪酸的氧化,此外,LAB在生长代谢过程中产生的活性氧(reactive oxygen species, ROS)也会对菌体的蛋白质和DNA造成较大损伤,从而降低细胞活
综上所述,LAB所受到的氧胁迫不仅来源于外界分子氧的攻击,其本身的菌株生长代谢过程中产生的活性氧也是一个不可忽视的重要来源。在储藏过程中,LAB产品活性的降低不仅归因于氧的胁迫,储藏环境温度的改变也是一个至关重要的影响因素。因此,许多研究也着重于探究菌株的交叉保护机制,即探讨如何通过轻微胁迫下的预适应来提高LAB对其他环境胁迫的耐受
1.2 消化过程中的胁迫
1.2.1 胃酸胁迫
消化道是抵抗外来病原微生物对机体损害的天然屏障,然而具有益生作用的LAB产品同样需要通过这一屏障来发挥作用。LAB所面临的酸胁迫环境主要有两方面,一是在增殖过程中所产生的乳酸会影响菌体自身的生长和代谢,二是pH值接近2.0的胃
LAB在遭受胃酸胁迫时,主要是通过加强细胞屏障防止外来质子流入造成细胞内外pH失衡。
1.2.2 胆盐胁迫
胆盐是胆汁中参与消化吸收脂肪的主要成
2 乳酸菌在不同胁迫环境下的应激保护策略及保护机制
不同环境对LAB的胁迫有所不同,从对恶劣环境进行隔离和增强菌株自身抗逆性2个方面来设计不同的保护策略能够具有针对性和可靠性。

图2 胁迫环境下对LAB的不同保护策略
Figure 2 Different protection strategies for LAB in stressful environments. Created with BioRender.com.
2.1 隔离胁迫环境
2.1.1 添加保护剂
LAB通常以菌粉的形式用作膳食补充
Zhou
2.1.2 微囊化
微囊化技术是指利用天然或合成的高分子材料作为壁材,将固体、液体等芯材包埋在生物相容性聚合物基质或壳体内的一类技术,微囊化已被证明是保护LAB免遭上消化道降解的一项有效手
现有的微囊化的方式仍有许多不足,高成本以及复杂的工艺设计限制了大部分微囊化的工业应用,其次,LAB微囊化的粒径、形态不能满足所有产品的需求。因此,如何根据菌株的特异性与LAB产品应用场景而设计不同的微囊化方法是一个值得深入研究的领域。
2.2 增强菌株抗逆性
除在外部隔离胁迫环境之外,增强菌株本身的抗逆性更为重要。目前相关的研究方法主要可分为改变培养条件、预适应、基因工程三类。

图3 增强LAB菌株抗逆性的相关机制
Figure 3 The mechanisms related to enhancing stress resistance in LAB strains. Created with BioRender.com.
2.2.1 改变培养条件
LAB在增殖、冷冻干燥、消化过程中受到胁迫之后具有复杂且多样的调控机
酸胁迫是工业生产和胃肠道消化中遇到的重要生存挑战之一。Broadbent
除了上述常见的培养基成分外,还可以根据菌株的特异性添加其他能增强其抗逆性的成分。然而,培养条件的调整应该以实际生产为靶向,与生产工艺程序设计相结合才更具有现实意义。
2.2.2 预适应
LAB本身适应压力的能力在抵抗恶劣环境时至关重要。除上述保护策略之外,预适应是将LAB暴露于具有挑战性的环境之前在亚致死条件下适应性培养,已被证明可以有效提高其存活
Methods | Strains | Term | Results | Mechanisms | References |
---|---|---|---|---|---|
Heat | Enterococcus faecium | 52 ℃ 15 min | Increased tolerance to H2O2, ethanol, acid, and alkaline stresses |
[ | |
Tetragenococcus halophilus | 45 ℃ 1.5 h | Seven-fold increase in survival in ethanol-stressed environments | Involvement in energy metabolism and upregulation of membrane transporter protein genes |
[ | |
Lactobacillus acidophilus | 65 ℃ 40 min | Increased stability when stored at 37 ℃ and 42 ℃ for one week |
[ | ||
Lactobacillus acidophilus | 45 ℃ 30 min | Freeze-drying survival rate increased from 39.1% to 56.3% |
Changes in key enzymes of glycolysis and N |
[ | |
Cold | Streptococcus thermophilus | 10 ℃ 2 h | Increased tolerance to gastric fluids |
[ | |
Lactobacillus delbrueckii ssp. bulgaricus | 10 ℃ 2 h | Lyophilisation survival rate increased by 16.06% | Expression of two cold shock-induced genes and six heat shock-induced genes were upregulated |
[ | |
Lactobacillus kefiranofaciens | 20 ℃ 1 h | Inducing cross-stress and increasing resistance to other adversarial environments | Up-regulation of the expression of the molecular chaperones DnaK and GroEl |
[ | |
Lactobacillus helveticus | 10 ℃ 2 h | Increased synthesis of cyclopropane fatty acids and enhanced cell membrane fluidity |
[ | ||
Lactobacillus brevis | -5 ℃ 2 h | Extended shelf life | Production of surface proteins |
[ | |
Acid | Lactobacillus casei | pH 4.510 min | 100-fold increase in survival at pH 2.5 | Intracellular malate and histidine accumulation |
[ |
Lactobacillus plantarum | pH 3.0 1 h | Increased survival rate after 180 days of storage at room temperature |
[ | ||
Lactobacillus delbrueckii ssp. bulgaricus | pH 5.0 MRS | Freeze-drying survival rate increased to 68.3% |
[ | ||
Lactobacillus plantarum | pH 4.5 2 h | Increased lyophilisation survival | Genes involved in fatty acid synthesis and amino acid metabolism and sugar metabolism were significantly upregulated |
[ | |
NaCl | Lactobacillus acidophilus | 0.6 mol/L NaCl | Increased synthesis of surface proteins |
[ | |
Lactobacillus plantarum | 0.4 mol/L NaCl | Increased lyophilisation survival |
Up-regulation of |
[ | |
Lactobacillus delbrueckii ssp. bulgaricus | 0.2 mol/L NaCl | Increased accumulation of the compatible solute glycine betaine |
[ | ||
Lactobacillus delbrueckii ssp.bulgaricus | 2% NaCl 2 h | Increased glucose utilisation | Increased activity of glycolytic enzymes |
[ | |
H2O2 | Bifidobacterium animalis | 1.5 mmol/L H2O2 | Up-regulation of genes encoding thioredoxin systems and divalent cation transporter protein genes |
[ | |
Lactobacillus rhamnosus | 0.5 mmol/L H2O2 | Increased survival in sublethal conditions | Enhanced regulation of amino acid metabolism and group sensing pathways |
[ | |
Bifidobacterium | 210 ppm dissolved oxygen | No loss of viability after 35 days of storage |
[ |
(待续)
2.2.3 基因工程
近年来,通过转录组学或蛋白质组学方法鉴定了许多与应激保护相关的基因/蛋白质。因此,胁迫耐受性的改善也可以通过基因修饰、诱导已有基因的表达或插入相关基因来实现。对关键基因/蛋白质的表达进行基因工程改造,使LAB在各种胁迫条件下获得更好的活力是一种潜在的策
导致菌株的可培养性显著下降,突出了ctsR在酒球菌属应激反应中的关键作用。Watthanasakphuban等研究利用pSIP表达系统成功构建了2株能够表达活性氧清除酶的重组菌株,能最大限度地减少细胞中ROS的形成,使工业菌株在氧化应激条件下仍能获得较高的细胞密
从基因层面上挖掘菌株耐受性机制之后可以通过对基因进行修饰、诱导、插入来获得具有抗逆性较好的工程菌株,但同时也要面临和解决基因工程的LAB产品所带来的安全隐患。
3 总结与展望
在LAB的生产、储藏、消化过程中,环境胁迫是不可避免的。为了充分利用LAB在食品工业中作为发酵剂、在医学中作为益生菌、免疫调节剂和活疫苗的潜力,深入了解微生物的复杂防御机制,并根据产品需求设计高活性保护策略,是实现将LAB转化为工业上生产可行性产品的基础。本文总结了LAB从生产到人体摄入一系列过程所遭受的渗透压、温度、氧、酸、胆盐胁迫等的应激反应,并从外源保护和提高菌株本身的抗逆性两大方面阐述了现有的应激保护策略及其机制。调节机制决定了LAB细胞对应激源的敏感性,长期暴露于亚致死剂量的应激源已被证明会在种群水平上引起适应性和微进化的改变。如何根据菌种对不同的应激源进行保护策略的调整对之后LAB产品菌种的筛选和改良,以及生产工艺优化都具有重要指导意义。
目前,许多LAB菌株抗逆性研究的重点聚焦于如何提高环境胁迫下菌株的活力,而菌株的功能特性在经过保护策略处理之后是否改变常常被忽视,LAB功能活性的探究是开发益于人体健康产品的关键。鉴于日渐多元的LAB应用形式,未来的研究可以着重于LAB菌株的保护策略与不同应用产品(如食品)结合后是否仍能发挥原始的功能活性。另外,一项具有实际意义的LAB菌株保护策略,应当是既能与工业生产程序设计紧密结合,又能兼顾到工业上成本的经济性,这样才能实现科学成果向实际生产应用的良好转化。
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
利益冲突
公开声明
参考文献
HE GQ, WU CD, HUANG J, ZHOU RQ. Acid tolerance response of Tetragenococcus halophilus: a combined physiological and proteomic analysis[J]. Process Biochemistry, 2016, 51(2): 213-219. [百度学术]
PAPADIMITRIOU K, ALEGRÍA Á, BRON PA, de ANGELIS M, GOBBETTI M, KLEEREBEZEM M, LEMOS JA, LINARES DM, ROSS P, STANTON C, TURRONI F, van SINDEREN D, VARMANEN P, VENTURA M, ZÚÑIGA M, TSAKALIDOU E, KOK J. Stress physiology of lactic acid bacteria[J]. Microbiology and Molecular Biology Reviews, 2016, 80(3): 837-890. [百度学术]
SHARMA A, LAVANIA M, SINGH R, LAL B. Identification and probiotic potential of lactic acid bacteria from camel milk[J]. Saudi Journal of Biological Sciences, 2021, 28(3): 1622-1632. [百度学术]
SHIN Y, KANG CH, KIM W, SO JS. Heat adaptation improved cell viability of probiotic Enterococcus faecium HL7 upon various environmental stresses[J]. Probiotics and Antimicrobial Proteins, 2019, 11(2): 618-626. [百度学术]
LI Y, GAO JS, XUE L, SHANG YY, CAI WC, XIE XQ, JIANG T, CHEN HZ, ZHANG JM, WANG J, CHEN MT, DING Y, WU QP. Determination of antiviral mechanism of centenarian gut-derived Limosilactobacillus fermentum against norovirus[J]. Frontiers in Nutrition, 2022, 9: 812623. [百度学术]
吴清平, 陈慧贞, 李滢, 谢新强, 张菊梅, 杨宁, 陈惠元, 代京莎, 陈玲, 刘振杰. 一株高效合成烟酰胺、抗光老化的发酵乳杆菌XJC60及其应用: CN113832050B[P]. 2022-10-21. [百度学术]
WU QP, CHEN HZ, LI Y, XIE XQ, ZHANG JM, YANG N, CHEN HY, DAI JS, CHEN L, LIU Z. Lactobacillus fermentum capable of efficiently synthesizing nicotinamide and resisting light aging and application of Lactobacillus fermentum: CN113832050B[P]. 2022-10-21 (in Chinese). [百度学术]
吴清平, 商燕燕, 李滢, 谢新强, 丁郁, 王涓, 薛亮, 陈谋通, 张菊梅, 叶青华, 吴诗, 陈惠元, 吴军林. 一株产溶菌酶并高效拮抗多药耐药幽门螺杆菌的植物乳杆菌LP1Z及其应用: CN114350578B[P]. 2022-05-27. [百度学术]
WU QP, SHANG YY, LI Y, XIE XQ, DING Y, WANG J, XUE L, CHEN MT, ZHANG JM, YE QH, WU S, CHEN HY, WU J. Lactobacillus plantarum LP1Z capable of producing lysozyme and efficiently antagonizing multidrug-resistant helicobacter pylori and application of LP1Z: CN114350578B[P]. 2022-05-27 (in Chinese). [百度学术]
WU L, XIE XQ, LI Y, LIANG TT, ZHONG HJ, YANG LS, XI Y, ZHANG JM, DING Y, WU QP. Gut microbiota as an antioxidant system in centenarians associated with high antioxidant activities of gut-resident Lactobacillus[J]. NPJ Biofilms and Microbiomes, 2022, 8(1): 102. [百度学术]
YANG LS, XIE XQ, LI Y, WU L, FAN CC, LIANG TT, XI Y, YANG SH, LI HX, ZHANG JM, DING Y, XUE L, CHEN MT, WANG J, WU QP. Evaluation of the cholesterol-lowering mechanism of Enterococcus faecium strain 132 and Lactobacillus paracasei strain 201 in hypercholesterolemia rats[J]. Nutrients, 2021, 13(6): 1982. [百度学术]
LI LY, LIANG TT, JIANG T, LI Y, YANG LS, WU L, YANG J, DING Y, WANG J, CHEN MT, ZHANG JM, XIE XQ, WU QP. Gut microbiota: candidates for a novel strategy for ameliorating sleep disorders[J]. Critical Reviews in Food Science and Nutrition, 2024, 64(29): 10772-10788. [百度学术]
FIOCCO D, LONGO A, ARENA MP, RUSSO P, SPANO G, CAPOZZI V. How probiotics face food stress: they get by with a little help[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(9): 1552-1580. [百度学术]
DERUNETS AS, SELIMZYANOVA AI, RYKOV SV, KUZNETSOV AE, BEREZINA OV. Strategies to enhance stress tolerance in lactic acid bacteria across diverse stress conditions[J]. World Journal of Microbiology & Biotechnology, 2024, 40(4): 126. [百度学术]
CHEN X, WU JH, YANG FJ, ZHOU M, WANG RB, HUANG JL, RONG YZ, LIU JH, WANG SY. New insight into the mechanism by which antifreeze peptides regulate the physiological function of Streptococcus thermophilus subjected to freezing stress[J]. Journal of Advanced Research, 2023, 45: 127-140. [百度学术]
LIU Y, LIU B, LI D, HU YL, ZHAO L, ZHANG M, GE SY, PANG J, LI YX, WANG R, WANG PJ, HUANG YT, HUANG J, BAI J, REN FZ, LI Y. Improved gastric acid resistance and adhesive colonization of probiotics by mucoadhesive and intestinal targeted konjac glucomannan microspheres[J]. Advanced Functional Materials, 2020, 30(35): 2001157. [百度学术]
KULKARNI S, HAQ SF, SAMANT S, SUKUMARAN S. Adaptation of Lactobacillus acidophilus to thermal stress yields a thermotolerant variant which also exhibits improved survival at pH 2[J]. Probiotics and Antimicrobial Proteins, 2018, 10(4): 717-727. [百度学术]
PARLINDUNGAN E, JONES OAH. Using metabolomics to understand stress responses in lactic acid bacteria and their applications in the food industry[J]. Metabolomics, 2023, 19(12): 99. [百度学术]
POPOVA-KRUMOVA P, DANOVA S, ATANASOVA N, YANKOV D. Lactic acid production by Lactiplantibacillus plantarum AC 11S-kinetics and modeling[J]. Microorganisms, 2024, 12(4): 739. [百度学术]
BUSTOS AY, TARANTO MP, GEREZ CL, AGRIOPOULOU S, SMAOUI S, VARZAKAS T, ENSHASY HAE. Recent advances in the understanding of stress resistance mechanisms in probiotics: relevance for the design of functional food systems[J]. Probiotics and Antimicrobial Proteins, 2024.Doi: 10.1007/s12602-024-10273-9. [百度学术]
BELENKY P, COLLINS JJ. Microbiology. Antioxidant strategies to tolerate antibiotics[J]. Science, 2011, 334(6058): 915-916. [百度学术]
王学良, 韩雪, 王海娟, 井雪萍, 刘采云, 周艳. 乳酸菌在各种胁迫下的应激反应研究进展[J]. 食品工业科技, 2015, 36(6): 365-369. [百度学术]
WANG XL, HAN X, WANG HJ, JING XP, LIU CY, ZHOU Y. Studying progress of Lactobacillus’s responses in a variety of stress[J]. Science and Technology of Food Industry, 2015, 36(6): 365-369 (in Chinese). [百度学术]
ZHU ZM, YANG JH, YANG PS, WU ZM, ZHANG J, DU GC. Enhanced acid-stress tolerance in Lactococcus lactis NZ9000 by overexpression of ABC transporters[J]. Microbial Cell Factories, 2019, 18(1): 136. [百度学术]
JAN G, LEVERRIER P, PICHEREAU V, BOYAVAL P. Changes in protein synthesis and morphology during acid adaptation of Propionibacterium freudenreichii[J]. Applied and Environmental Microbiology, 2001, 67(5): 2029-2036. [百度学术]
LEE MY, KANG MJ, CHA S, KIM TR, PARK YS. Acid tolerance responses and their mechanisms in Lactiplantibacillus plantarum LM1001[J]. Food Science and Biotechnology, 2024, 33(9): 2213-2222. [百度学术]
BOMMASAMUDRAM J, KUMAR P, KAPUR S, SHARMA D, DEVAPPA S. Development of thermotolerant lactobacilli cultures with improved probiotic properties using adaptive laboratory evolution method[J]. Probiotics and Antimicrobial Proteins, 2023, 15(4): 832-843. [百度学术]
KÖNIG P, AVERHOFF B, MÜLLER V. A first response to osmostress in Acinetobacter baumannii: transient accumulation of
BROWN AD, SIMPSON JR. Water relations of sugar-tolerant yeasts: the role of intracellular polyols[J]. Journal of General Microbiology, 1972, 72(3): 589-591. [百度学术]
BERGENHOLTZ ÅS, WESSMAN P, WUTTKE A, HÅKANSSON S. A case study on stress preconditioning of a Lactobacillus strain prior to freeze-drying[J]. Cryobiology, 2012, 64(3): 152-159. [百度学术]
高薇, 韩雪, 张兰威. 乳酸菌渗透胁迫相关相容性溶质及其转运机制研究进展[J]. 微生物学通报, 2013, 40(11): 2097-2106. [百度学术]
GAO W, HAN X, ZHANG LW. Research advances of the osmotic stress-related compatible solutes of lactic acid bacteria and it’s transport mechanism[J]. Microbiology China, 2013, 40(11): 2097-2106 (in Chinese). [百度学术]
BRUGER EL, HYING ZT, SINGLA D, MÁRQUEZ REYES NL, PANDEY SK, PATEL JS, BAZURTO JV. Enhanced catabolism of Glycine betaine and derivatives provides improved osmotic stress protection in Methylorubrum extorquens PA1[J]. Applied and Environmental Microbiology, 2024, 90(7): e0031024. [百度学术]
WOOD JM, BREMER E, CSONKA LN, KRAEMER R, POOLMAN B, van der HEIDE T, SMITH LT. Osmosensing and osmoregulatory compatible solute accumulation by bacteria[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2001, 130(3): 437-460. [百度学术]
ROBERTS MF. Organic compatible solutes of halotolerant and halophilic microorganisms[J]. Saline Systems, 2005, 1: 5. [百度学术]
SLEATOR RD, HILL C. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence[J]. FEMS Microbiology Reviews, 2002, 26(1): 49-71. [百度学术]
GALLO M, PASSANNANTI F, COLUCCI CANTE R, NIGRO F, SCHIATTARELLA P, ZAPPULLA S, BUDELLI A, NIGRO R. Lactic fermentation of cereals aqueous mixture of oat and rice flours with and without glucose addition[J]. Heliyon, 2020, 6(9): e04920. [百度学术]
BISUTTI IL, STEPHAN D. Influence of fermentation temperature and duration on survival and biocontrol efficacy of Pseudomonas fluorescens Pf153 freeze-dried cells[J]. Journal of Applied Microbiology, 2020, 128(1): 232-241. [百度学术]
JOFRÉ A, AYMERICH T, GARRIGA M. Impact of different cryoprotectants on the survival of freeze-dried Lactobacillus rhamnosus and Lactobacillus casei/paracasei during long-term storage[J]. Beneficial Microbes, 2015, 6(3): 381-386. [百度学术]
GAGNETEN M, PASSOT S, CENARD S, GHORBAL S, SCHEBOR C, FONSECA F. Mechanistic study of the differences in lactic acid bacteria resistance to freeze- or spray-drying and storage[J]. Applied Microbiology and Biotechnology, 2024, 108(1): 361. [百度学术]
LIU B, FU N, WOO MW, CHEN XD. Heat stability of Lactobacillus rhamnosus GG and its cellular membrane during droplet drying and heat treatment[J]. Food Research International, 2018, 112: 56-65. [百度学术]
公丕民. 保加利亚乳杆菌喷雾干燥过程中损伤机制及保护方法研究[D]. 哈尔滨: 哈尔滨工业大学博士学位论文, 2019. [百度学术]
GONG PM. Study on damage mechanism and protection method of Lactobacillus bulgaricus during spray drying[D]. Harbin: Doctoral Dissertation of Harbin Institute of Technology, 2019 (in Chinese). [百度学术]
SHU GW, WANG Z, CHEN L, WAN HC, CHEN H. Characterization of freeze-dried Lactobacillus acidophilus in goat milk powder and tablet: optimization of the composite cryoprotectants and evaluation of storage stability at different temperature[J]. LWT, 2018, 90: 70-76. [百度学术]
谢建松, 杨占国, 安铎. 玻璃化转变对食品干燥贮藏的影响[J]. 粮食流通技术, 2012(3): 34-36. [百度学术]
XIE JS, YANG ZG, AN D. Effects on food drying and storage of glass transition[J]. Grain Distribution Technology, 2012(3): 34-36 (in Chinese). [百度学术]
KATHIRIYA MR, VEKARIYA YV, HATI S. Understanding the probiotic bacterial responses against various stresses in food matrix and gastrointestinal tract: a review[J]. Probiotics and Antimicrobial Proteins, 2023, 15(4): 1032-1048. [百度学术]
IMLAY JA. Cellular defenses against superoxide and hydrogen peroxide[J]. Annual Review of Biochemistry, 2008, 77: 755-776. [百度学术]
GIBSON CM, MALLETT TC, CLAIBORNE A, CAPARON MG. Contribution of NADH oxidase to aerobic metabolism of Streptococcus pyogenes[J]. Journal of Bacteriology, 2000, 182(2): 448-455. [百度学术]
FENG T, WANG J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review[J]. Gut Microbes, 2020, 12(1): 1801944. [百度学术]
LI Y, HUGENHOLTZ J, ABEE T, MOLENAAR D. Glutathione protects Lactococcus lactis against oxidative stress[J]. Applied and Environmental Microbiology, 2003, 69(10): 5739-5745. [百度学术]
JÄNSCH A, KORAKLI M, VOGEL RF, GÄNZLE MG. Glutathione reductase from Lactobacillus sanfranciscensis DSM20451T: contribution to oxygen tolerance and thiol exchange reactions in wheat sourdoughs[J]. Applied and Environmental Microbiology, 2007, 73(14): 4469-4476. [百度学术]
LIN QJ, LIN SY, FAN ZT, LIU J, YE DC, GUO PT. A review of the mechanisms of bacterial colonization of the mammal gut[J]. Microorganisms, 2024, 12(5): 1026. [百度学术]
GUAN NZ, LIU L. Microbial response to acid stress: mechanisms and applications[J]. Applied Microbiology and Biotechnology, 2020, 104(1): 51-65. [百度学术]
YANG X, HANG XM, ZHANG M, LIU XL, YANG H. Relationship between acid tolerance and cell membrane in Bifidobacterium, revealed by comparative analysis of acid-resistant derivatives and their parental strains grown in medium with and without Tween-80[J]. Applied Microbiology and Biotechnology, 2015, 99(12): 5227-5236. [百度学术]
WEI YX, GAO J, LIU DB, LI Y, LIU WL. Adaptational changes in physiological and transcriptional responses of Bifidobacterium longum involved in acid stress resistance after successive batch cultures[J]. Microbial Cell Factories, 2019, 18(1): 156. [百度学术]
WANG YY, XU HR, ZHOU XQ, CHEN WD, ZHOU HP. Dysregulated bile acid homeostasis: unveiling its role in metabolic diseases[J]. Medical Review, 2024, 4(4): 262-283. [百度学术]
HAY AJ, ZHU J. Chapter two in sickness and in health the relationships between bacteria and bile in the human gut[J]. Advances in Applied Microbiology, 2016, 96: 43-64. [百度学术]
陈春萌. 消化应激对乳酸菌黏附能力的影响[D]. 扬州: 扬州大学硕士学位论文, 2021. [百度学术]
CHEN CM. Effect of digestive stress on adhesion of lactic acid bacteria[D]. Yangzhou: Master’s Thesis of Yangzhou University, 2021 (in Chinese). [百度学术]
KEBOUCHI M, GALIA W, GENAY M, SOLIGOT C, LECOMTE X, AWUSSI AA, PERRIN C, ROUX E, DARY-MOUROT A, le ROUX Y. Implication of sortase-dependent proteins of Streptococcus thermophilus in adhesion to human intestinal epithelial cell lines and bile salt tolerance[J]. Applied Microbiology and Biotechnology, 2016, 100(8): 3667-3679. [百度学术]
SÁNCHEZ B, CHAMPOMIER-VERGÈS MC, ANGLADE P, BARAIGE F, de LOS REYES-GAVILÁN CG, MARGOLLES A, ZAGOREC M. Proteomic analysis of global changes in protein expression during bile salt exposure of Bifidobacterium longum NCIMB 8809[J]. Journal of Bacteriology, 2005, 187(16): 5799-5808. [百度学术]
乌日娜. 益生菌Lactobacillus casei Zhang蛋白质组学研究[D]. 呼和浩特: 内蒙古农业大学博士学位论文, 2009. [百度学术]
WU RN. Protein omics of probiotic Lactobacillus casei Zhang[D]. Hohhot: Doctoral Dissertation of Inner Mongolia Agricultural University, 2009 (in Chinese). [百度学术]
BUSTOS AY, SAAVEDRA L, de VALDEZ GF, RAYA RR, TARANTO MP. Relationship between bile salt hydrolase activity, changes in the internal pH and tolerance to bile acids in lactic acid bacteria[J]. Biotechnology Letters, 2012, 34(8): 1511-1518. [百度学术]
GRILL JP, CAYUELA C, ANTOINE JM, SCHNEIDER F. Isolation and characterization of a Lactobacillus amylovorus mutant depleted in conjugated bile salt hydrolase activity: relation between activity and bile salt resistance[J]. Journal of Applied Microbiology, 2000, 89(4): 553-563. [百度学术]
KHODER G, AL-MENHALI AA, AL-YASSIR F, KARAM SM. Potential role of probiotics in the management of gastric ulcer[J]. Experimental and Therapeutic Medicine, 2016, 12(1): 3-17. [百度学术]
SUN HY, ZHANG MH, LIU YK, WANG Y, CHEN YY, GUAN WY, LI X, WANG YH. Improved viability of Lactobacillus plantarum embedded in whey protein concentrate/pullulan/trehalose hydrogel during freeze drying[J]. Carbohydrate Polymers, 2021, 260: 117843. [百度学术]
吴家琳, 李滢, 刘振杰, 陈谋通, 吴清平. 益生菌冷冻干燥高活性保护机制研究进展[J]. 微生物学报, 2024, 64(5): 1402-1416. [百度学术]
WU JL, LI Y, LIU ZJ, CHEN MT, WU QP. Research progress in the mechanism of freeze-drying in protecting the high vitality of probiotics[J]. Acta Microbiologica Sinica, 2024, 64(5): 1402-1416 (in Chinese). [百度学术]
KUMAR A, CINCOTTI A, APARICIO S. A theoretical study on trehalose + water mixtures for dry preservation purposes[J]. Molecules, 2020, 25(6): 1435. [百度学术]
GE ST, HAN JR, SUN QY, YE ZD, ZHOU QQ, LI P, GU Q. Optimization of cryoprotectants for improving the freeze-dried survival rate of potential probiotic Lactococcus lactis ZFM559 and evaluation of its storage stability[J]. LWT, 2024, 198: 116052. [百度学术]
STEFANELLO RF, NABESHIMA EH, IAMANAKA BT, LUDWIG A, FRIES LLM, BERNARDI AO, COPETTI MV. Survival and stability of Lactobacillus fermentum and Wickerhamomyces anomalus strains upon lyophilisation with different cryoprotectant agents[J]. Food Research International, 2019, 115: 90-94. [百度学术]
YING DY, PHOON MC, SANGUANSRI L, WEERAKKODY R, BURGAR I, AUGUSTIN MA. Microencapsulated Lactobacillus rhamnosus GG powders: relationship of powder physical properties to probiotic survival during storage[J]. Journal of Food Science, 2010, 75(9): E588-E595. [百度学术]
WANG L, HE MY, WU T, YANG KY, WANG YL, ZHANG Y, GU YC, DENG KW. Screening of the freeze-drying protective agent for high-quality milk beer yeast (Kluyveromyces marxianus) and optimization of freeze-drying process conditions[J]. Journal of Food Processing and Preservation, 2021, 45(12): e16016. [百度学术]
ARELLANO K, PARK H, KIM B, YEO S, JO H, KIM JH, JI Y, HOLZAPFEL WH. Improving the viability of freeze-dried probiotics using a lysine-based rehydration mixture[J]. Microbiology and Biotechnology Letters, 2021, 49(2): 157-166. [百度学术]
SAVEDBOWORN W, TEAWSOMBOONKIT K, SURICHAY S, RIANSA-NGAWONG W, RITTISAK S, CHAROEN R, PHATTAYAKORN K. Impact of protectants on the storage stability of freeze-dried probiotic Lactobacillus plantarum[J]. Food Science and Biotechnology, 2018, 28(3): 795-805. [百度学术]
ZHOU R, WU YW, LI Y, LI LY, WU JL, XIE XQ, HUANG HS, GAO H, WU L, ZHAO H, CHEN MT, WU QP. Sodium l-glutamate improves the lyophilization survival rate of Lactiplantibacillus plantarum L5 by regulating cellular pyruvate[J]. Food Bioscience, 2024, 59: 104189. [百度学术]
COOK MT, TZORTZIS G, CHARALAMPOPOULOS D, KHUTORYANSKIY VV. Microencapsulation of a synbiotic into PLGA/alginate multiparticulate gels[J]. International Journal of Pharmaceutics, 2014, 466(1/2): 400-408. [百度学术]
DODOO CC, WANG J, BASIT AW, STAPLETON P, GAISFORD S. Targeted delivery of probiotics to enhance gastrointestinal stability and intestinal colonisation[J]. International Journal of Pharmaceutics, 2017, 530(1/2): 224-229. [百度学术]
刘会平, 王潆雪, 胡赞扬. 一种干酪乳杆菌微胶囊的制备方法: CN101724622A[P]. 2010-06-09. [百度学术]
LIU HP, WANG YX, HU ZY. A type of preparation method of Lactobacillus casei microcapsules. CN101724622A[P]. 2010-06-09 (in Chinese). [百度学术]
FAYED B, ABOOD A, EL-SAYED HS, HASHEM AM, MEHANNA NSH. A synbiotic multiparticulate microcapsule for enhancing inulin intestinal release and Bifidobacterium gastro-intestinal survivability[J]. Carbohydrate Polymers, 2018, 193: 137-143. [百度学术]
ERATTE D, DOWLING K, BARROW CJ, ADHIKARI BP. In-vitro digestion of probiotic bacteria and omega-3 oil co-microencapsulated in whey protein isolate-gum Arabic complex coacervates[J]. Food Chemistry, 2017, 227: 129-136. [百度学术]
E JJ, WANG PX, WANG RX, ZHANG QL, WANG JG. Effects of L-cysteine on the freeze-drying survival rate of Lactiplantibacillus plantarum LIP-1[J]. Food Science of Animal Products, 2023, 9240044. [百度学术]
WANG Y, CORRIEU G, BÉAL C. Fermentation pH and temperature influence the cryotolerance of Lactobacillus acidophilus RD758[J]. Journal of Dairy Science, 2005, 88(1): 21-29. [百度学术]
SILVA J, CARVALHO AS, PEREIRA H, TEIXEIRA P, GIBBS PA. Induction of stress tolerance in Lactobacillus delbrueckii ssp. bulgaricus by the addition of sucrose to the growth medium[J]. Journal of Dairy Research, 2004, 71(1): 121-125. [百度学术]
LI C, LIU LB, LIU N. Effects of carbon sources and lipids on freeze-drying survival of Lactobacillus bulgaricus in growth media[J]. Annals of Microbiology, 2012, 62(3): 949-956. [百度学术]
SHAO YY, GAO SR, GUO HL, ZHANG HP. Influence of culture conditions and preconditioning on survival of Lactobacillus delbrueckii subspecies bulgaricus ND02 during lyophilization[J]. Journal of Dairy Science, 2014, 97(3): 1270-1280. [百度学术]
包维臣. 德氏乳杆菌保加利亚亚种ND02高密度培养及冷冻保护的研究[D]. 呼和浩特: 内蒙古农业大学硕士学位论文, 2012. [百度学术]
BAO WC. Study on high density culture and cryopreservation of Lactobacillus delbrueckii subsp. bulgaricus ND02[D]. Hohhot: Master’s Thesis of Inner Mongolia Agricultural University, 2012 (in Chinese). [百度学术]
BROADBENT JR, LARSEN RL, DEIBEL V, STEELE JL. Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress[J]. Journal of Bacteriology, 2010, 192(9): 2445-2458. [百度学术]
WU CD, ZHANG J, CHEN W, WANG M, DU GC, CHEN J. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance[J]. Applied Microbiology and Biotechnology, 2012, 93(2): 707-722. [百度学术]
WANG WW, HE JY, PAN DD, WU Z, GUO YX, ZENG XQ, LIAN LW. Metabolomics analysis of Lactobacillus plantarum ATCC 14917 adhesion activity under initial acid and alkali stress[J]. PLoS One, 2018, 13(5): e0196231. [百度学术]
E JJ, ZHANG JY, MA RZ, CHEN ZC, YAO CQ, WANG RX, ZHANG QL, YANG Y, LI J, WANG JG. Study of the internal mechanism of L-glutamate for improving the survival rate of Lactiplantibacillus plantarum LIP-1 after freeze-drying[J]. Innovative Food Science & Emerging Technologies, 2023, 84: 103253. [百度学术]
E JJ, MA RZ, CHEN ZC, YAO CQ, WANG RX, ZHANG QL, HE ZB, SUN RY, WANG JG. Improving the freeze-drying survival rate of Lactobacillus plantarum LIP-1 by increasing biofilm formation based on adjusting the composition of buffer salts in medium[J]. Food Chemistry, 2021, 338: 128134. [百度学术]
ZHANG CC, LU JY, YANG D, CHEN X, HUANG YJ, GU RX. Stress influenced the aerotolerance of Lactobacillus rhamnosus hsryfm 1301[J]. Biotechnology Letters, 2018, 40(4): 729-735. [百度学术]
YANG H, YAO SJ, ZHANG M, WU CD. Heat adaptation induced cross protection against ethanol stress in Tetragenococcus halophilus: physiological characteristics and proteomic analysis[J]. Frontiers in Microbiology, 2021, 12: 686672. [百度学术]
ZHEN N, ZENG XQ, WANG HJ, YU J, PAN DD, WU Z, GUO YX. Effects of heat shock treatment on the survival rate of Lactobacillus acidophilus after freeze-drying[J]. Food Research International, 2020, 136: 109507. [百度学术]
FANG SH, LAI YJ, CHOU CC. The susceptibility of Streptococcus thermophilus 14085 to organic acid, simulated gastric juice, bile salt and disinfectant as influenced by cold shock treatment[J]. Food Microbiology, 2013, 33(1): 55-60. [百度学术]
CHEN MJ, TANG HY, CHIANG ML. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1[J]. Food Microbiology, 2017, 66: 20-27. [百度学术]
MONTANARI C, SADO KAMDEM SL, SERRAZANETTI DI, ETOA FX, GUERZONI ME. Synthesis of cyclopropane fatty acids in Lactobacillus helveticus and Lactobacillus sanfranciscensis and their cellular fatty acids changes following short term acid and cold stresses[J]. Food Microbiology, 2010, 27(4): 493-502. [百度学术]
CHOI IS, KO SH, KIM HM, CHUN HH, LEE KH, YANG JE, JEONG S, PARK HW. Shelf-life extension of freeze-dried Lactobacillus brevis WiKim0069 using supercooling pretreatment[J]. LWT, 2019, 112: 108230. [百度学术]
BARBOSA J, BORGES S, TEIXEIRA P. Influence of sub-lethal stresses on the survival of lactic acid bacteria after spray-drying in orange juice[J]. Food Microbiology, 2015, 52: 77-83. [百度学术]
HUANG RH, PAN MF, WAN CX, SHAH NP, TAO XY, WEI H. Physiological and transcriptional responses and cross protection of Lactobacillus plantarum ZDY2013 under acid stress[J]. Journal of Dairy Science, 2016, 99(2): 1002-1010. [百度学术]
PALOMINO MM, WAEHNER PM, FINA MARTIN J, OJEDA P, MALONE L, SÁNCHEZ RIVAS C, PRADO ACOSTA M, ALLIEVI MC, RUZAL SM. Influence of osmotic stress on the profile and gene expression of surface layer proteins in Lactobacillus acidophilus ATCC 4356[J]. Applied Microbiology and Biotechnology, 2016, 100(19): 8475-8484. [百度学术]
WANG RX, SUN RY, YANG Y, JINGJING E, YAO CQ, ZHANG QL, CHEN ZC, MA RZ, LI J, ZHANG JY, WANG JG. Effects of salt stress on the freeze-drying survival rate of Lactiplantibacillus plantarum LIP-1[J]. Food Microbiology, 2022, 105: 104009. [百度学术]
HAN X, WU HY, YU P, ZHANG LJ, ZHAO SN, ZHANG LW. Glycine betaine transport conditions of Lactobacillus delbrueckii subsp. bulgaricus in salt induced hyperosmotic stress[J]. International Dairy Journal, 2018, 86: 21-26. [百度学术]
LI C, SUN JW, QI XX, LIU LB. NaCl stress impact on the key enzymes in glycolysis from Lactobacillus bulgaricus during freeze-drying[J]. Brazilian Journal of Microbiology, 2015, 46(4): 1193-1199. [百度学术]
ZHANG JL, WANG SB, ZENG Z, QIN YX, LI PL. The complete genome sequence of Bifidobacterium animalis subsp. lactis 01 and its integral components of antioxidant defense system[J]. 3 Biotech, 2019, 9(10): 352. [百度学术]
ZHANG CC, GUI Y, CHEN X, CHEN DW, GUAN CR, YIN BX, PAN ZM, GU RX. Transcriptional homogenization of Lactobacillus rhamnosus hsryfm 1301 under heat stress and oxidative stress[J]. Applied Microbiology and Biotechnology, 2020, 104(6): 2611-2621. [百度学术]
TALWALKAR A, KAILASAPATHY K. Oxidative stress adaptation of probiotic bacteria[J]. Milchwissenschaft-Milk Science International, 2004, 59: 140-143. [百度学术]
YANG H, HE MW, WU CD. Cross protection of lactic acid bacteria during environmental stresses: stress responses and underlying mechanisms[J]. LWT, 2021, 144: 111203. [百度学术]
ZHAO HY, YUAN L, HU K, LIU LX, PENG S, LI H, WANG H. Heterologous expression of ctsR from Oenococcus oeni enhances the acid-ethanol resistance of Lactobacillus plantarum[J]. FEMS Microbiology Letters, 2019, 366(15): fnz192. [百度学术]
DARSONVAL M, JULLIAT F, MSADEK T, ALEXANDRE H, GRANDVALET C. CtsR, the master regulator of stress-response in Oenococcus oeni, is a heat sensor interacting with ClpL1[J]. Frontiers in Microbiology, 2018, 9: 3135. [百度学术]
WATTHANASAKPHUBAN N, SRILA P, PINMANEE P, SOMPINIT K, RATTANAPORN K, PETERBAUER C. Development of high cell density Limosilactobacillus reuteri KUB-AC5 for cell factory using oxidative stress reduction approach[J]. Microbial Cell Factories, 2023, 22(1): 86. [百度学术]