摘要
病毒是地球上数量最多的生物实体,广泛存在于各种生态系统中,在调控微生物群落组成、影响微生物进化、参与元素生物地球化学循环以及影响动植物病害等方面都发挥了重要的作用。土壤是病毒的重要储存库,但与海洋等水生生态系统相比,由于受到土壤异质性、土壤胶体的吸附作用及研究和分析方法的限制,土壤病毒研究相对滞后。近年来,分子生物学技术的快速发展及生态学理论的逐渐完善促进了土壤病毒研究的进展,病毒在土壤生态系统中所发挥的功能逐渐被关注。本文整体上对土壤病毒研究现状及进展进行了综述,主要包括土壤病毒的种类、土壤病毒研究方法及其在土壤中发挥的主要生态功能。在此基础上,本文进一步对土壤病毒未来发展趋势及重点研究方向进行了展望。本综述可加深人们对土壤病毒的深入了解,并为土壤病毒的相关研究提供科学参考。
2025, 65(7): 2771-2784
病毒个体微小,结构简单,主要由蛋白质外壳和核酸物质两部分组成,无细胞结构,必须依赖宿主才能复制繁殖。病毒是地球上数量最多的生物实体。据估算,目前全球病毒数量约为4.8×1
近年来,随着现代分子生物学技术的快速发展,病毒在土壤生态系统中所发挥的功能逐渐被重视,土壤病毒受到更多科研人员的关注。然而,由于土壤环境的复杂性和技术的不完善,大部分研究属于描述性的,缺乏对土壤病毒及其宿主群落共同模式机制的阐述,以及土壤病毒在土壤中发挥生态作用的有力证据。基于当前土壤病毒的研究现状,本文将从土壤病毒种类、研究方法及生态功能等方面对土壤病毒的研究进展进行综述。
1 土壤病毒种类
1.1 双链DNA病毒
土壤中的病毒主要以噬菌体为主,噬菌体携带的遗传物质主要为双链DNA (double-stranded DNA, dsDNA)、单链DNA (single-stranded DNA, ssDNA)及RNA。研究表明,土壤中噬菌体主要以携带dsDNA的噬菌体为
1.2 单链DNA病毒
与双链DNA病毒相比,目前对土壤中单链DNA病毒的了解非常有限,主要原因是DNA测序最初是针对双链DNA进行的优化,其将单链DNA病毒排除在
尽管单链DNA病毒丰度较低,但众多研究表明土壤中常见的单链DNA病毒属于微小病毒科(Microviridae)、环状病毒科(Circoviridae)和双生病毒科(Genomoviridae
1.3 RNA病毒
与DNA病毒相比,人们对土壤RNA病毒的多样性及其在生态系统中的作用了解相对较少。然而,随着宏转录组测序技术的出现,大量未被发现的RNA病毒进入人们的视
2 土壤病毒研究方法
2.1 土壤病毒形态与丰度观测
近年来,对于病毒的形态学特征研究,研究人员主要通过透射电子显微镜(transmission electron microscope, TEM)进行观测。与此同时,通过荧光电子显微镜(epifluorescence microscopy, EFM)研究病毒的丰度。Williamson
2.2 指纹图谱技术的应用
生物技术的快速发展推动了土壤病毒生态学的研究。基于基因组大小差异,采用脉冲场凝胶电泳(pulsed field gel electrophoresis, PFGE)方法,利用琼脂糖凝胶进行分离后产生指纹图谱,通过对指纹图谱进行分析,可解析病毒群
2.3 分子标记基因的应用
一直以来,病毒间缺乏通用基因的特点导致无法采用基于PCR的方法解析病毒多样性。后来研究人员发现利用病毒某些家族的保守氨基酸片段序列可设计出简并性引物,然后对相关基因序列进行PCR扩增,此方法可对病毒遗传基因多样性进行研
2.4 宏病毒组学技术的应用
由于对环境样本病毒核酸提取后,可直接采用高通量测序技术进行测序,目前宏病毒组学技术已发展成为环境病毒生态学研究的主要方法,是有效替代靶向方法的关键技

图1 土壤病毒主要研究方法流程图
Figure 1 Flow chart of main research methods of soil viruses.
目前,宏病毒组学技术已在小范围单一土壤样品上得到了广泛的应用,近年来,在区域大尺度上有关土壤病毒的相关研究也得到了报道。Bi
Research methods | Advantages | Limitations | References |
---|---|---|---|
Electron microscopy technology | Observing the abundance and morphology of viruses | Inability to accurately assess the genetic diversity of viral communities |
[ |
PFGE | Analyzing the composition of viruses communities | Cannot distinguish different categories of viruses with similar genome sizes or viruses with specific genotypes |
[ |
RAPD-PCR | Analyzing the diversity of viral communities | Insufficient assessment of viral community diversity |
[ |
PCR amplification of molecular marker genes | Studing the genetic diversity of viruses | Can only analyze the genetic diversity of a certain type of virus, resulting in the inability to evaluate the diversity of the virus population |
[ |
Viral metagenomics sequencing | Analyzing the composition, structure, diversity, and potential functions of viral communities; discovering previously unreported viral information through the splicing and assembly of viral genome sequences | The virus gene database is relatively limited, which results in only a small portion of sequences being classified as soil viruses |
[ |
虽然测序技术的飞速发展极大地推动了土壤病毒学的研究进展,但目前仍然存在部分问题亟待解决:(1) 因病毒基因组较小,病毒富集目前仍是土壤病毒组研究亟待突破的技术难题。目前研究人员多采用微孔滤膜过滤的方式富集病毒,由于较大的病毒颗粒无法透过微孔滤膜,因此此方法易将较大的病毒颗粒排除在外,导致后续缺乏对此类病毒的进一步探究。除此之外,浸提液的选择也会对浸提效果产生影响。(2) 一般直接从土壤样本中提取病毒遗传物质很难满足后续测序的要求,因此需对提取到的病毒遗传物质进行扩增,目前应用较多的是多重置换扩增,但该扩增方法对ssDNA病毒具有偏向性,导致不能全面反映土壤中病毒群落的真实状况。(3) 较其他微生物数据库而言,病毒基因数据库相对有限,且其中土壤病毒占比较小,这导致只有小部分的序列被划分为土壤病毒,其余源于宏病毒组的序列均被列为未知序列,这也是病毒被称为“暗物质”的主要原因之一。基于以上问题,开发适用于土壤宏病毒组研究的方法,规范相关技术流程(主要包括土壤病毒提取及宏病毒组数据分析)至关重要。
3 土壤病毒生态功能
3.1 调控宿主微生物群落组成
根据病毒在宿主中的复制策略,在土壤中一般将病毒分为烈性病毒(主要指烈性噬菌体)和温和病毒(主要指温和噬菌体)。病毒和宿主之间的捕食关系对病毒调控宿主微生物群落至关重要。烈性噬菌体一旦侵入宿主,就会在宿主体内复制,并最终将宿主裂解。因此,在土壤环境中噬菌体对细菌群落起到关键调节作用。Albright
3.2 影响元素生物地球化学循环
病毒裂解宿主时,细胞中含有的可溶性有机物从细胞中释放出来,这些可溶性有机物富含碳、氮、磷、硫等元素,可被其他微生物和植物重新利用,这一过程被称为“病毒路径(viral shunt)
土壤病毒除通过裂解宿主参与元素生物地球化学循环过程外,还可通过其携带的辅助代谢基因(auxiliary metabolic genes, AMGs)参与元素循环。研究表明,病毒编码的AMGs在感染周期内得到表达,且AMGs产物重新编程宿主细胞代谢过程,对生物地球化学循环产生直接影
3.3 介导水平基因转移
病毒介导的水平基因转移(horizontal gene transfer, HGT)是生物多样性和物种形成的重要机
3.4 影响宿主代谢过程
病毒可影响和调节宿主的代谢过程,主要表现为病毒感染宿主细胞后,会利用宿主细胞的代谢机制来生产自己复制所需的成分。宿主的代谢活动会为病毒的复制服务,导致宿主自身的代谢途径发生改变。病毒在复制过程中,会消耗宿主细胞内的各种代谢物,如氨基酸、核苷酸、糖类等,进而影响宿主自身的代谢过
目前,大多数研究发现土壤病毒功能主要集中在调控宿主微生物群落组成、影响元素生物地球化学循环、介导水平基因转移及影响宿主代谢过程这几方面(

图2 病毒在土壤环境中的主要生态功能
Figure 2 Main ecological functions of viruses in soil environment.
4 总结与展望
虽然近年来土壤病毒生态学得到了一定的发展,但现阶段研究人员对土壤病毒的认识及相关研究依然十分有限。基于当前土壤病毒的发展趋势,今后土壤病毒的研究应着重注意以下几方面。
(1) 当前对土壤病毒的研究主要集中于DNA病毒,对RNA病毒的了解相对较少。未来需扩大对土壤RNA病毒的研究,以发现新的RNA病毒,探明RNA病毒在土壤中发挥的生态功能,有助于人们对土壤整体病毒多样性及生态功能进行深入了解。
(2) 目前,土壤病毒的富集及纯化仍是土壤病毒研究中亟待解决的难题。在今后的研究中开发合适、高效的病毒提取方法至关重要。然而在病毒数据分析方面,仍需开发更加准确的病毒识别软件,同时可借助人工智能技术(如先进算法、模型等)以建立完善的病毒数据库,获得更加准确且可信的数据,推动病毒生态学发展。
(3) 现阶段土壤病毒的研究多集中在小范围单一土壤样本上,对大尺度上土壤病毒的研究较欠缺。因此,今后的研究应逐步扩大研究范围,增加大尺度上土壤病毒的相关研究,对于揭示土壤病毒的空间分布格局及地理分异的生态机制至关重要。
(4) 国际上对土壤病毒的研究更多体现在病毒的形态、丰度及多样性上,多数研究未能将土壤病毒与宿主微生物联系起来。因此,未来研究应加强病毒与其宿主互作机制的研究,进一步探究土壤病毒与宿主微生物的协同进化关系,对深入了解土壤病毒与宿主互作过程及土壤病毒生态功能方面具有重要推动作用。
(5) 相较于其他微生物而言,土壤病毒不仅数量巨大,还携带丰富的基因资源,因此土壤病毒具有广泛的应用价值。目前,噬菌体疗法在医学、畜禽养殖和食品行业中应用较多,而在土壤及土传病害防治方面应用较少。因此,开发针对不同类型致病菌的噬菌体资源,对防控动植物病害、提高土壤质量及生产力、促进噬菌体疗法在农业上的应用意义重大。
作者贡献声明
孙岩:撰写论文;王光华:对论文撰写提供思路及指导,并对论文修改提供了建议;李彦生:对论文修改提供了建议;王新珍:对论文修改提供了建议;向文胜:对论文撰写提供思路及指导,并对论文修改提供了建议。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
SUTTLE CA. Viruses in the sea[J]. Nature, 2005, 437(7057): 356-361. [百度学术]
EDWARDS RA, ROHWER F. Viral metagenomics[J]. Nature Reviews Microbiology, 2005, 3(6): 504-510. [百度学术]
PALERMO CN, FULTHORPE RR, SAATI R, SHORT SM. Metagenomic analysis of virus diversity and relative abundance in a eutrophic freshwater harbour[J]. Viruses, 2019, 11(9): 792. [百度学术]
RAMOS-BARBERO MD, MARTÍNEZ JM, ALMANSA C, RODRÍGUEZ N, VILLAMOR J, GOMARIZ M, ESCUDERO C, RUBIN SD, ANTÓN J, MARTÍNEZ-GARCÍA M, AMILS R. Prokaryotic and viral community structure in the singular chaotropic salt lake Salar de Uyuni[J]. Environmental Microbiology, 2019, 21(6): 2029-2042. [百度学术]
BUTINA TV, BUKIN YS, KRASNOPEEV AS, BELYKH OI, TUPIKIN AE, KABILOV MR, SAKIRKO МV, BELIKOV SI. Estimate of the diversity of viral and bacterial assemblage in the coastal water of Lake Baikal[J]. FEMS Microbiology Letters, 2019, 366(9): fnz094. [百度学术]
刘勇勤, 焦念志, 钟旭, 臧琳, 张锐, 肖湘, 施一, 张志好, 陶晔, 白丽萍, 高变利, 杨芸兰, 黄星煜, 计慕侃, 刘军志, 刘鹏飞, 姚檀栋. 山地与极地冰川表面生态系统DNA病毒的多样性与功能[J]. 科学通报, 2023, 68(20): 2418-2433. [百度学术]
LIU YQ, JIAO NZ, ZHONG X, ZANG L, ZHANG R, XIAO X, SHI Y, ZHANG ZH, TAO Y, BAI LP, GAO BL, YANG YL, HUANG XY, JI MK, LIU JZ, LIU PF, YAO TD. Diversity and function of mountain and polar supraglacial DNA viruses[J]. Science Bulletin, 2023, 68(20): 2418-2433. [百度学术]
BERGH Ø, BØRSHEIM KY, BRATBAK G, HELDAL M. High abundance of viruses found in aquatic environments[J]. Nature, 1989, 340(6233): 467-468. [百度学术]
BRUM JR, SULLIVAN MB. Rising to the challenge: accelerated pace of discovery transforms marine virology[J]. Nature Reviews Microbiology, 2015, 13(3): 147-159. [百度学术]
SUTTLE CA. Marine viruses: major players in the global ecosystem[J]. Nature Reviews Microbiology, 2007, 5(10): 801-812. [百度学术]
WEINBAUER MG. Ecology of prokaryotic viruses[J]. FEMS Microbiology Reviews, 2004, 28(2): 127-181. [百度学术]
WOMMACK KE, COLWELL RR. Virioplankton: viruses in aquatic ecosystems[J]. Microbiology and Molecular Biology Reviews, 2000, 64(1): 69-114. [百度学术]
TRUBL G, SOLONENKO N, CHITTICK L, SOLONENKO SA, RICH VI, SULLIVAN MB. Optimization of viral resuspension methods for carbon-rich soils along a permafrost thaw gradient[J]. PeerJ, 2016, 4: e1999. [百度学术]
WILLIAMSON KE, FUHRMANN JJ, WOMMACK KE, RADOSEVICH M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory[J]. Annual Review of Virology, 2017, 4(1): 201-219. [百度学术]
KUZYAKOV Y, MASON-JONES K. Viruses in soil: nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions[J]. Soil Biology and Biochemistry, 2018, 127: 305-317. [百度学术]
PRATAMA AA, van ELSAS JD. The ‘neglected’ soil virome: potential role and impact[J]. Trends in Microbiology, 2018, 26(8): 649-662. [百度学术]
EMERSON JB. Soil viruses: a new hope[J]. mSystems, 2019, 4(3): e00120-19. [百度学术]
JANSSON JK, HOFMOCKEL KS. Soil microbiomes and climate change[J]. Nature Reviews Microbiology, 2020, 18(1): 35-46. [百度学术]
FIERER N, JACKSON RB. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 626-631. [百度学术]
WILLIAMSON KE, RADOSEVICH M, WOMMACK KE. Abundance and diversity of viruses in six Delaware soils[J]. Applied and Environmental Microbiology, 2005, 71(6): 3119-3125. [百度学术]
JANSSON JK, WU RN. Soil viral diversity, ecology and climate change[J]. Nature Reviews Microbiology, 2023, 21(5): 296-311. [百度学术]
RAOULT D, AUDIC S, ROBERT C, ABERGEL C, RENESTO P, OGATA H, SCOLA BL, SUZAN M, CLAVERIE JM. The 1.2-megabase genome sequence of Mimivirus[J]. Science, 2004, 306(5700): 1344-1350. [百度学术]
KIM KH, BAE JW. Amplification methods bias metagenomic libraries of uncultured single-stranded and double-stranded DNA viruses[J]. Applied and Environmental Microbiology, 2011, 77(21): 7663-7668. [百度学术]
HAN LL, YU DT, ZHANG LM, SHEN JP, HE JZ. Genetic and functional diversity of ubiquitous DNA viruses in selected Chinese agricultural soils[J]. Scientific Reports, 2017, 7: 45142. [百度学术]
JIN M, GUO X, ZHANG R, QU W, GAO BL, ZENG RY. Diversities and potential biogeochemical impacts of mangrove soil viruses[J]. Microbiome, 2019, 7(1): 58. [百度学术]
TRUBL G, ROUX S, SOLONENKO N, LI YF, BOLDUC B, RODRÍGUEZ-RAMOS J, ELOE-FADROSH EA, RICH VI, SULLIVAN MB. Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils[J]. PeerJ, 2019, 7: e7265. [百度学术]
REAVY B, SWANSON MM, COCK PJA, DAWSON L, FREITAG TE, SINGH BK, TORRANCE L, MUSHEGIAN AR, TALIANSKY M. Distinct circular single-stranded DNA viruses exist in different soil types[J]. Applied and Environmental Microbiology, 2015, 81(12): 3934-3945. [百度学术]
HAN LL, YU DT, BI L, DU S, SILVEIRA C, GÜEMES AGC, ZHANG LM, HE JZ, ROHWER F. Distribution of soil viruses across China and their potential role in phosphorous metabolism[J]. Environmental Microbiome, 2022, 17(1): 6. [百度学术]
MALATHI VG, RENUKA DEVI P. ssDNA viruses: key players in global virome[J]. Virusdisease, 2019, 30(1): 3-12. [百度学术]
KRISHNAMURTHY SR, JANOWSKI AB, ZHAO GY, BAROUCH D, WANG D. Hyperexpansion of RNA bacteriophage diversity[J]. PLoS Biology, 2016, 14(3): e1002409. [百度学术]
ALLEN LZ, MCCROW JP, ININBERGS K, DUPONT CL, BADGER JH, HOFFMAN JM, EKMAN M, ALLEN AE, BERGMAN B, VENTER JC. The Baltic Sea virome: diversity and transcriptional activity of DNA and RNA viruses[J]. mSystems, 2017, 2(1): e00125-16. [百度学术]
DOLJA VV, KREUZE JF, VALKONEN JPT. Comparative and functional genomics of closteroviruses[J]. Virus Research, 2006, 117(1): 38-51. [百度学术]
STARR EP, NUCCIO EE, PETT-RIDGE J, BANFIELD JF, FIRESTONE MK. Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(51): 25900-25908. [百度学术]
WU RN, DAVISON MR, GAO YQ, NICORA CD, McDERMOTT JE, BURNUM-JOHNSON KE, HOFMOCKEL KS, JANSSON JK. Moisture modulates soil reservoirs of active DNA and RNA viruses[J]. Communications Biology, 2021, 4(1): 992. [百度学术]
HOU X, HE Y, FANG P, MEI SQ, XU Z, WU WC, TIAN JH, ZHANG S, ZENG ZY, GOU QY, XIN GY, LE SJ, XIA YY, ZHOU YL, HUI FM, PAN YF, EDEN JS, YANG ZH, HAN C, SHU YL, et al. Using artificial intelligence to document the hidden RNA virosphere[J]. Cell, 2024, 187(24): 6929-6942.e16. [百度学术]
SWANSON MM, FRASER G, DANIELL TJ, TORRANCE L, GREGORY PJ, TALIANSKY M. Viruses in soils: morphological diversity and abundance in the rhizosphere[J]. Annals of Applied Biology, 2009, 155(1): 51-60. [百度学术]
STEWARD GF, AZAM F. Analysis of marine viral assemblages[M]//Microbial Biosystems: New Frontiers Proceedings of the 8th International Symposium on Microbial Ecology. Halifax: Atlantic Canada Society for Microbial Ecology, 1999: 159-165. [百度学术]
FILIPPINI M, MIDDELBOE M. Viral abundance and genome size distribution in the sediment and water column of marine and freshwater ecosystems[J]. FEMS Microbiology Ecology, 2007, 60(3): 397-410. [百度学术]
COMEAU AM, CHAN AM, SUTTLE CA. Genetic richness of vibriophages isolated in a coastal environment[J]. Environmental Microbiology, 2006, 8(7): 1164-1176. [百度学术]
WINGET DM, WOMMACK KE. Randomly amplified polymorphic DNA PCR as a tool for assessment of marine viral richness[J]. Applied and Environmental Microbiology, 2008, 74(9): 2612-2618. [百度学术]
LI YT, SUN H, YANG WC, CHEN GX, XU H. Dynamics of bacterial and viral communities in paddy soil with irrigation and urea application[J]. Viruses, 2019, 11(4): 347. [百度学术]
ROHWER F, EDWARDS R. The phage proteomic tree: a genome-based taxonomy for phage[J]. Journal of Bacteriology, 2002, 184(16): 4529-4535. [百度学术]
李想, 孙岩, 刘俊杰, 姚钦, 王光华. 东北湿地沉积物中T4型噬菌体g23基因的多样性[J]. 微生物学报, 2019, 59(2): 364-373. [百度学术]
LI X, SUN Y, LIU JJ, YAO Q, WANG GH. T4-type bacteriophage g23 genetic diversity in wetland sediments in northeast China[J]. Acta Microbiologica Sinica, 2019, 59(2): 364-373 (in Chinese). [百度学术]
LI X, SUN Y, LIU JJ, YAO Q, WANG GH. Molecular diversity of cyanopodoviruses in two coastal wetlands in northeast China[J]. Current Microbiology, 2019, 76(7): 863-871. [百度学术]
LI X, SUN Y, LIU JJ, YAO Q, WANG GH. Survey of the bacteriophage phoH gene in wetland sediments in northeast China[J]. Scientific Reports, 2019, 9(1): 911. [百度学术]
JING RY, LIU JJ, YU ZH, LIU XB, WANG GH. Phylogenetic distribution of the capsid assembly protein gene (g20) of cyanophages in paddy floodwaters in northeast China[J]. PLoS One, 2014, 9(2): e88634. [百度学术]
WANG XZ, JING RY, LIU JJ, YU ZH, JIN J, LIU XB, WANG XJ, WANG GH. Narrow distribution of cyanophage psbA genes observed in two paddy waters of northeast China by an incubation experiment[J]. Virologica Sinica, 2016, 31(2): 188-191. [百度学术]
FILÉE J, TÉTART F, SUTTLE CA, KRISCH HM. Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(35): 12471-12476. [百度学术]
ADRIAENSSENS EM, COWAN DA. Using signature genes as tools to assess environmental viral ecology and diversity[J]. Applied and Environmental Microbiology, 2014, 80(15): 4470-4480. [百度学术]
GOLDSMITH DB, CROSTI G, DWIVEDI B, McDANIEL LD, VARSANI A, SUTTLE CA, WEINBAUER MG, SANDAA RA, BREITBART M. Development of phoH as a novel signature gene for assessing marine phage diversity[J]. Applied and Environmental Microbiology, 2011, 77(21): 7730-7739. [百度学术]
ZHONG Y, CHEN F, WILHELM SW, POORVIN L, HODSON RE. Phylogenetic diversity of marine cyanophage isolates and natural virus communities as revealed by sequences of viral capsid assembly protein gene g20[J]. Applied and Environmental Microbiology, 2002, 68(4): 1576-1584. [百度学术]
LINDELL D, JAFFE JD, JOHNSON ZI, CHURCH GM, CHISHOLM SW. Photosynthesis genes in marine viruses yield proteins during host infection[J]. Nature, 2005, 438(7064): 86-89. [百度学术]
MANN NH, COOK A, MILLARD A, BAILEY S, CLOKIE M. Marine ecosystems: bacterial photosynthesis genes in a virus[J]. Nature, 2003, 424(6950): 741. [百度学术]
LIU JJ, WANG GH, ZHENG CY, YUAN XH, JIN J, LIU XB. Specific assemblages of major capsid genes (g23) of T4-type bacteriophages isolated from upland black soils in northeast China[J]. Soil Biology and Biochemistry, 2011, 43(9): 1980-1984. [百度学术]
WANG GH, YU ZH, LIU JJ, JIN J, LIU XB, KIMURA M. Molecular analysis of the major capsid genes (g23) of T4-type bacteriophages in an upland black soil in northeast China[J]. Biology and Fertility of Soils, 2011, 47(3): 273-282. [百度学术]
LI Y, LIU HY, PAN H, ZHU XY, LIU C, ZHANG QC, LUO Y, DI HJ, XU JM. T4-type viruses: important impacts on shaping bacterial community along a chronosequence of 2 000-year old paddy soils[J]. Soil Biology and Biochemistry, 2019, 128: 89-99. [百度学术]
HOLMFELDT K, SOLONENKO N, SHAH M, CORRIER K, RIEMANN L, VERBERKMOES NC, SULLIVAN MB. Twelve previously unknown phage genera are ubiquitous in global oceans[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(31): 12798-12803. [百度学术]
SULLIVAN MB. Viromes, not gene markers, for studying double-stranded DNA virus communities[J]. Journal of Virology, 2015, 89(5): 2459-2461. [百度学术]
COUTINHO FH, SILVEIRA CB, GREGORACCI GB, THOMPSON CC, EDWARDS RA, BRUSSAARD CPD, DUTILH BE, THOMPSON FL. Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans[J]. Nature Communications, 2017, 8: 15955. [百度学术]
BI L, YU DT, DU S, ZHANG LM, ZHANG LY, WU CF, XIONG C, HAN LL, HE JZ. Diversity and potential biogeochemical impacts of viruses in bulk and rhizosphere soils[J]. Environmental Microbiology, 2021, 23(2): 588-599. [百度学术]
ZHAO XL, WANG S, WANG L, ZHU ZK, LIU YL, WANG JK, CHEN JP, GE TD. Contrasting viral diversity and potential biogeochemical impacts in paddy and upland soils[J]. Applied Soil Ecology, 2024, 199: 105399. [百度学术]
HUANG X, ZHOU ZC, LIU HY, LI YQ, GE TD, TANG XJ, HE Y, MA B, XU JM, ANANTHARAMAN K, LI Y. Soil nutrient conditions alter viral lifestyle strategy and potential function in phosphorous and nitrogen metabolisms[J]. Soil Biology and Biochemistry, 2024, 189: 109279. [百度学术]
BI L, HAN LL, DU S, YU DT, HE JZ, ZHANG LM, HU HW. Cross-biome soil viruses as an important reservoir of virulence genes[J]. Journal of Hazardous Materials, 2023, 442: 130111. [百度学术]
MA B, WANG YL, ZHAO KK, STIRLING E, LV XF, YU YJ, HU LF, TANG C, WU CY, DONG BY, XUE R, DAHLGREN RA, TAN XF, DAI HY, ZHU YG, CHU HY, XU JM. Biogeographic patterns and drivers of soil viromes[J]. Nature Ecology & Evolution, 2024, 8(4): 717-728. [百度学术]
GRAHAM EB, CAMARGO AP, WU RN, NECHES RY, NOLAN M, PAEZ-ESPINO D, KYRPIDES NC, JANSSON JK, McDERMOTT JE, HOFMOCKEL KS, CONSORTIUM SV. A global atlas of soil viruses reveals unexplored biodiversity and potential biogeochemical impacts[J]. Nature Microbiology, 2024, 9(7): 1873-1883. [百度学术]
ALBRIGHT MBN, GALLEGOS-GRAVES LV, FEESER KL, MONTOYA K, EMERSON JB, SHAKYA M, DUNBAR J. Experimental evidence for the impact of soil viruses on carbon cycling during surface plant litter decomposition[J]. ISME Communications, 2022, 2(1): 24. [百度学术]
MURRAY AG, JACKSON GA. Viral dynamics: a model of the effects of size shape, motion and abundance of single-celled planktonic organisms and other particles[J]. Marine Ecology Progress Series, 1992, 89: 103-116. [百度学术]
WU RN, DAVISON MR, NELSON WC, GRAHAM EB, FANSLER SJ, FARRIS Y, BELL SL, GODINEZ I, MCDERMOTT JE, HOFMOCKEL KS, JANSSON JK. DNA viral diversity, abundance, and functional potential vary across grassland soils with a range of historical moisture regimes[J]. mBio, 2021, 12(6): e0259521. [百度学术]
HUANG D, YU PF, YE M, SCHWARZ C, JIANG X, ALVAREZ PJJ. Enhanced mutualistic symbiosis between soil phages and bacteria with elevated chromium-induced environmental stress[J]. Microbiome, 2021, 9(1): 150. [百度学术]
KNOWLES B, SILVEIRA CB, BAILEY BA, BAROTT K, CANTU VA, COBIÁN-GÜEMES AG, COUTINHO FH, DINSDALE EA, FELTS B, FURBY KA, GEORGE EE, GREEN KT, GREGORACCI GB, HAAS AF, HAGGERTY JM, HESTER ER, HISAKAWA N, KELLY LW, LIM YW, LITTLE M, et al. Lytic to temperate switching of viral communities[J]. Nature, 2016, 531(7595): 466-470. [百度学术]
DUAN N, RADOSEVICH M, ZHUANG J, DeBRUYN JM, STATON M, SCHAEFFER SM. Identification of novel viruses and their microbial hosts from soils with long-term nitrogen fertilization and cover cropping management[J]. mSystems, 2022, 7(6): e0057122. [百度学术]
WANG YJ, LIU Y, WU YX, WU N, LIU WW, WANG XF. Heterogeneity of soil bacterial and bacteriophage communities in three rice agroecosystems and potential impacts of bacteriophage on nutrient cycling[J]. Environmental Microbiome, 2022, 17(1): 17. [百度学术]
GAO SM, SCHIPPERS A, CHEN N, YUAN Y, ZHANG MM, LI Q, LIAO B, SHU WS, HUANG LN. Depth-related variability in viral communities in highly stratified sulfidic mine tailings[J]. Microbiome, 2020, 8(1): 89. [百度学术]
THOMPSON LR, ZENG QL, KELLY L, HUANG KH, SINGER AU, STUBBE J, CHISHOLM SW. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(39): E757-E764. [百度学术]
SHARON I, BATTCHIKOVA N, ARO EM, GIGLIONE C, MEINNEL T, GLASER F, PINTER RY, BREITBART M, ROHWER F, BÉJÀ O. Comparative metagenomics of microbial traits within oceanic viral communities[J]. The ISME Journal, 2011, 5(7): 1178-1190. [百度学术]
BI L, YU DT, HAN LL, DU S, YUAN CY, HE JZ, HU HW. Unravelling the ecological complexity of soil viromes: challenges and opportunities[J]. Science of the Total Environment, 2022, 812: 152217. [百度学术]
SUN MM, YUAN SJ, XIA R, YE M, BALCÁZAR JL. Underexplored viral auxiliary metabolic genes in soil: diversity and eco-evolutionary significance[J]. Environmental Microbiology, 2023, 25(4): 800-810. [百度学术]
TRUBL G, JANG HB, ROUX S, EMERSON JB, SOLONENKO N, VIK DR, SOLDEN L, ELLENBOGEN J, RUNYON AT, BOLDUC B, WOODCROFT BJ, SALESKA SR, TYSON GW, WRIGHTON KC, SULLIVAN MB, RICH VI. Soil viruses are underexplored players in ecosystem carbon processing[J]. mSystems, 2018, 3(5): e00076-18. [百度学术]
SUBIRATS J, SÀNCHEZ-MELSIÓ A, BORREGO CM, BALCÁZAR JL, SIMONET P. Metagenomic analysis reveals that bacteriophages are reservoirs of antibiotic resistance genes[J]. International Journal of Antimicrobial Agents, 2016, 48(2): 163-167. [百度学术]
ROSS J, TOPP E. Abundance of antibiotic resistance genes in bacteriophage following soil fertilization with dairy manure or municipal biosolids, and evidence for potential transduction[J]. Applied and Environmental Microbiology, 2015, 81(22): 7905-7913. [百度学术]
CHEN ML, AN XL, LIAO H, YANG K, SU JQ, ZHU YG. Viral community and virus-associated antibiotic resistance genes in soils amended with organic fertilizers[J]. Environmental Science & Technology, 2021, 55(20): 13881-13890. [百度学术]
ZHENG XX, JAHN MT, SUN MM, FRIMAN VP, BALCAZAR JL, WANG JF, SHI Y, GONG X, HU F, ZHU YG. Organochlorine contamination enriches virus-encoded metabolism and pesticide degradation associated auxiliary genes in soil microbiomes[J]. The ISME Journal, 2022, 16(5): 1397-1408. [百度学术]
FEINER R, ARGOV T, RABINOVICH L, SIGAL N, BOROVOK I, HERSKOVITS AA. A new perspective on lysogeny: prophages as active regulatory switches of bacteria[J]. Nature Reviews Microbiology, 2015, 13(10): 641-650. [百度学术]
KIEFT K, ZHOU ZC, ANDERSON RE, BUCHAN A, CAMPBELL BJ, HALLAM SJ, HESS M, SULLIVAN MB, WALSH DA, ROUX S, ANANTHARAMAN K. Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages[J]. Nature Communications, 2021, 12(1): 3503. [百度学术]
WANG L, LIN D, XIAO KQ, MA LJ, FU YM, HUO YX, LIU YJ, YE M, SUN MM, ZHU D, RILLIG MC, ZHU YG. Soil viral-host interactions regulate microplastic-dependent carbon storage[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(45): e2413245121. [百度学术]