摘要
目的
探究广东珠江河口滩涂沉积物中的可培养细菌多样性,并挖掘具有微塑料降解功能的菌株资源。
方法
使用5种培养基对微生物进行分离与纯化,采用MEGA-X进行系统进化分析。利用聚对苯二甲酸乙二醇酯(polyethylene terephthalate, PET)培养基筛选具有PET微塑料降解功能的菌株,并对相关基因进行功能注释。
结果
共分离得到265株细菌,分布于4门32科71属。其中,假单胞菌门(Pseudomonadota) 168株,占比63.40%;放线菌门(Actinomycetota) 38株,占比14.34%;芽孢杆菌门(Bacillota) 31株,占比11.70%;拟杆菌门(Bacteroidota) 28株,占比10.56%。基于16S rRNA基因序列的同源性分析,推测其中59株菌株可能为潜在新物种。同时,筛选获得1株具有潜在PET降解功能的菌株。
结论
本研究成功获得广东珠海香洲区滩涂特有的微生物菌株资源,并筛选得到1株能以PET作为唯一碳源进行生长的细菌。
微塑料(microplastics, MPs)是指尺寸小于5 mm的塑料纤维、颗粒或薄膜,包括聚对苯二甲酸乙二醇酯(polyethylene terephthalate, PET)、聚乙烯(polyethylene, PE)和聚苯乙烯(polystyrene, PS)等,它们主要来自塑料包装、化妆品和衣物纤维
微塑料具有较强的稳定性,在自然环境中降解速度缓
滩涂是由潮汐或河流侵蚀产生的沉积物在潮间带区域形成的沿海湿
位于广东珠江河口西岸的珠海市香洲区,地理位置优越,区域内包含多个岛屿,如担杆岛、外伶仃岛、野狸岛、桂山岛等,海岸线绵长,自然资源丰
1 材料与方法
1.1 材料
1.1.1 样本采集
采样地点位于广东省珠海市香洲区的野狸岛滩涂、桂山岛滩涂和外伶仃岛滩涂区域(
Sample | Date | Island name | Sample type | Geographical coordinates |
---|---|---|---|---|
XZ1 | 2024-01-02 | Yeli Island | Clayey | 22°17′4″N, 113°35′2″E |
XZ2 | 2024-01-02 | Guishan Island | Clayey | 22°8′13″N, 113°48′52″E |
XZ3 | 2024-01-02 | Wai-lingding Island | Sandy | 22°6′18″N, 114°1′36″E |
1.1.2 培养基
采用5种不同的培养基对珠海市香洲区3个滩涂中的可培养细菌进行分离和纯化。2216E、R2A和TSA培养基是用于微生物分离的常规培养基。2216EM培养基是在2216E培养基的基础上添加制霉菌素;2216EMN培养基在2216E培养基的基础上同时添加制霉菌素和萘啶酮酸。此外,采用无机盐培养基和PET培养基筛选具有PET微塑料降解功能的菌株。上述培养基的详细配方见
Media | Formulation (g/L) |
---|---|
2216E medium (Zobell marine agar 2216) | Pronase 5.0, yeast extract 1.0, citric acid ferric 0.1, NaCl 19.45, MgCl2 5.98, Na2SO4 3.24, CaCl2 1.8, KCl 0.55, Na2CO3 0.16, KBr 0.08, SrCl2 0.034, H3BO3 0.02, Na2SiO3 0.004, NaF 0.002 4, NH4NO3 0.001 6, K2HPO4 0.008, agar 18.0, pH 7.6±0.2 |
2216EM medium (2216E with nystatin) | Pronase 5.0, yeast extract 1.0, citric acid ferric 0.1, NaCl 19.45, MgCl2 5.98, Na2SO4 3.24, CaCl2 1.8, KCl 0.55, Na2CO3 0.16, KBr 0.08, SrCl2 0.034, H3BO3 0.02, Na2SiO3 0.004, NaF 0.002 4, NH4NO3 0.001 6, K2HPO4 0.008, nystatin 0.05, agar 18.0, pH 7.6±0.2 |
2216EMN medium (2216E with nystatin, nalidixic acid) | Pronase 5.0, yeast extract 1.0, citric acid ferric 0.1, NaCl 19.45, MgCl2 5.98, Na2SO4 3.24, CaCl2 1.8, KCl 0.55, Na2CO3 0.16, KBr 0.08, SrCl2 0.034, H3BO3 0.02, Na2SiO3 0.004, NaF 0.002 4, NH4NO3 0.001 6, K2HPO4 0.008, nystatin 0.05, nalidixic acid 0.05, agar 18.0, pH 7.6±0.2 |
R2A medium (Reasoner’s 2A agar) | Yeast extract 0.5, peptone 0.5, casein 0.5, glucose 0.5, dextrose 0.5, K2HPO4 0.3, MgSO4⋅7H2O 0.05, pyruvic acid sodium salt 0.3, agar 18.0, pH 7.5±0.2 |
TSA medium (tryptic soy agar) | Tryptone 17.0, soybean peptone 5.0, NaCl 5.0, glucose 2.5, K2HPO4 0.5, agar 18.0, pH 7.5±0.2 |
Inorganic salt medium | (NH4)2SO4 1.0, KH2PO4 0.7, K2HPO4 0.7, NaCl 2.0, MgSO4·7H2O 0.7, ZnSO4·7H2O 0.002, FeSO4·7H2O 0.002, MnSO4 0.001, agar 18.0 |
PET medium | PET 0.005, (NH4)2SO4 1.0, KH2PO4 0.7, K2HPO4 0.7, NaCl 2.0, MgSO4·7H2O 0.7, ZnSO4·7H2O 0.002, FeSO4·7H2O 0.002, MnSO4 0.001, agar 18.0 |
1.1.3 主要仪器
微量分光光度计,ThermoFisher Scientific公司;PCR仪、凝胶成像仪,Bio-Rad公司;台式高压灭菌锅,Hirayama公司;台式pH计,Mettler Toledo公司。
1.2 样品预处理
称取5 g滩涂沉积物样品,放入已灭菌的250 mL三角瓶中(装有45 mL无菌生理盐水和小玻璃珠),置于恒温摇床28 ℃、200 r/min培养30 min,取出后静置5 min,用于后续的稀释涂布。
1.3 可培养细菌分离、纯化与保藏
将预处理后的滩涂样品悬浮液使用无菌生理盐水分别稀释至1
1.4 PCR扩增与序列测序
在PCR管中加入100 μL质量浓度为100 g/L的Chelex-100溶液,使用接种针将板子上的单菌落挑取出来,接着将其溶于对应的PCR管中,充分混匀,于99 ℃加热30 min后,PCR管中的上清液即为16S rRNA基因扩增模板。采用通用引物27F (5′-AGAGTTTGATCCTGGCTCAG-3′)和1492-R (5′-GGTTACCTTGTTACGACTT-3′)对分离纯化菌株的16S rRNA进行PCR扩
1.5 微塑料降解菌筛选与鉴定
将分离纯化后的菌株分别在无机盐培养基和PET培养基中进行划线培养,置于28 ℃培养箱孵育5 d后,观察平板中菌株的生长情况。通过比较2种培养基上的菌落生长情况,若观察到菌株仅在以PET为唯一碳源的PET培养基上生长,而在无机盐培养基中未见生长的现象,则表明该菌株能够利用PET进行生长代谢,具备降解PET微塑料的能力。将筛选出的微塑料降解细菌的菌体样品送至金唯智(广州)生物科技有限公司进行DNA提取和全基因组测序,以获取细菌的完整基因组信息。测序完成后,将获得的基因组序列上传至KEGG数据库(https://www.genome.jp/kegg/)进行基因功能预测和代谢途径分析,同时通过PlasticsDB数据库(https://plasticdb.org/)进行塑料降解基因簇的比对。
2 结果与分析
2.1 可培养细菌多样性统计
通过稀释涂布及平板划线培养,分别在5种不同的培养基中,从来自广东省珠海市香洲区的野狸岛、桂山岛和外伶仃岛3处滩涂区域采集的3份样品中共分离获得265株细菌。从形态上观察,培养基中的菌落主要为圆形,颜色主要有白色、黄色、红色等。265株细菌分属于4门7纲22目32科71属105个种。如

图1 不同培养基分离培养的滩涂细菌多样性
Figure 1 Diversity of bacteria from tidal flats cultured in different media. A: Community structure of isolated bacteria at phylum level; B: Venn diagram of differential genera; C: Upset plot of differential genera (The intersection column of four media was marked in grey color and the numbers represent the count of total genera or intersections of each component); D: Community structure of isolated bacteria in five different media at phylum level; E: Community structure of isolated bacteria in five different media at genus level.
2.2 不同培养基可培养细菌多样性
采用5种培养基对3份滩涂样品中的细菌进行分离培养。其中,2216EM培养基中获得的菌株最多,为129株(55属),其次是2216E、R2A、2216EMN和TSA培养基,分别获得86株(31属)、27株(12属)、12株(8属)和11株(8属)。5种培养基分离出的细菌在属水平上无共有的属,2216EM和2216E培养基共有的可培养细菌有13个属,而其他培养基共有的可培养细菌数目则相对较少(图
2.3 可培养细菌多样性在不同采样点之间的比较
在3份滩涂样品中,样品XZ1分离得到的菌株数量最多,共计126株(44属),而样品XZ2和XZ3分别分离得到59株(21属)和80株(29属),如
Sample | The number of isolates | The number of genera/species | The number of potential novel strains |
---|---|---|---|
XZ1 | 126 | 44/58 | 27 |
XZ2 | 59 | 21/28 | 10 |
XZ3 | 80 | 29/39 | 22 |

图2 香洲区不同滩涂样品分离的细菌多样性
Figure 2 Bacterial diversity of different mudflat samples in Xiangzhou District. A: Community structure of isolated bacteria in three mudflat samples at phylum level; B: Community structure of isolated bacteria in three mudflat samples at genus level; C: Venn diagram of differential genera; D: Community heatmap of differential genera.
不同样品在属水平上的可培养细菌丰度与多样性存在明显差异(图
2.4 分离菌株中的潜在新分类单元鉴定
对纯化成功的菌株进行16S rRNA基因的双向测序,并对获得的16S rRNA基因序列进行了比对分析。为了探究这些菌株间的进化关系,采用MEGA-X软件,运用邻接(neighbor-joining, NJ)法构建了系统发育树(

图3 珠海市香洲区滩涂可培养细菌基于16S rRNA基因序列的系统发育树
Figure 3 Phylogenetic tree of culturable bacteria from mudflat in Xiangzhou District, Zhuhai City based on 16S rRNA gene sequence. The color ranges of the innermost circle indicates the classification on the phylum level; The color of the outnermost circle indicates the classification on the class level.
Strains | The most similar strains (type strain) | GenBank accession number | Similarity (%) | Phylum |
---|---|---|---|---|
SYSU HH007 |
Demequina soli HI12-12 | NR_179185.1 | 98.65 | Actinomycetota |
SYSU HH013 |
Altererythrobacter xiamenensis LY0 | NR_133694.1 | 98.41 | Pseudomonadota |
SYSU HH015 |
Streptomyces somaliensis DSM 4073 | NR_025292.1 | 98.46 | Actinomycetota |
SYSU HH019 |
Metabacillus schmidteae AS-110s1 | OR825855.1 | 98.23 | Bacillota |
SYSU HH054 |
Rheinheimera riviphila KYPC | NR_169409.1 | 89.67 | Pseudomonadota |
SYSU HH056 |
Pontixanthobacter luteolus SW-10 | NR_043151.1 | 98.09 | Pseudomonadota |
SYSU HH066 |
Arenibacter palladensis LMG 2197 | NR_042188.1 | 98.42 | Bacteroidota |
SYSU HH075 |
Ruegeria conchae TW1 | NR_109062.1 | 98.65 | Pseudomonadota |
SYSU HH079 |
Pseudomonas xionganensis R-22-3 w-1 | NR_180878.1 | 98.53 | Pseudomonadota |
SYSU HH081 |
Microbacterium lacus GP2 | MW510008.1 | 98.64 | Actinomycetota |
SYSU HH084 |
Pseudoruegeria aestuarii 17 | OR675238.1 | 97.56 | Pseudomonadota |
SYSU HH090 |
Ruegeria conchae TW1 | NR_109062.1 | 98.52 | Pseudomonadota |
SYSU HH093 |
Robertkochia sediminum 136 | NR_181889.1 | 97.64 | Bacteroidota |
SYSU HH095 |
Agromyces tropicus CM9- | NR_112811.1 | 98.44 | Actinomycetota |
SYSU HH097 |
Altererythrobacter epoxidivorans CGMCC 1.773 | CP012669.1 | 98.40 | Pseudomonadota |
SYSU HH098 |
Kangsaoukella pontilimi GH1-5 | NR_179959.1 | 97.49 | Pseudomonadota |
SYSU HH106 |
Agromyces tropicus CM9- | NR_112811.1 | 98.31 | Actinomycetota |
SYSU HH115 |
Leucobacter tardus K70/0 | NR_042694.1 | 97.73 | Actinomycetota |
SYSU HH121 |
Amylibacter cionae H-1 | NR_158032.1 | 95.46 | Pseudomonadota |
SYSU HH133 |
Erythrobacter mangrovi EB31 | MT522623.1 | 98.37 | Pseudomonadota |
SYSU HH136 |
Altererythrobacter epoxidivorans JCS35 | NR_043706.1 | 98.12 | Pseudomonadota |
SYSU HH141 |
Arenimonas donghaensis HO3-R1 | NR_043790.1 | 97.92 | Pseudomonadota |
SYSU HH150 |
Aliiroseovarius sediminilitoris M-M1 | NR_109620.1 | 95.00 | Pseudomonadota |
SYSU HH151 |
Photobacterium gaetbulicola Gung4 | NR_117271.1 | 97.57 | Pseudomonadota |
SYSU HH153 |
Arenimonas donghaensis HO3-R1 | NR_043790.1 | 97.85 | Pseudomonadota |
SYSU HH161 |
Agromyces tropicus CM9- | NR_112811.1 | 98.44 | Actinomycetota |
SYSU HH176 |
Rheinheimera aquimaris SW-35 | NR_044068.1 | 98.32 | Pseudomonadota |
SYSU HH178 |
Agromyces tropicus CM9- | NR_112811.1 | 98.23 | Actinomycetota |
SYSU HH179 |
Defluviimonas aquaemixtae CDM- | NR_134014.1 | 98.07 | Pseudomonadota |
SYSU HH181 |
Defluviimonas aquaemixtae CDM- | NR_134014.1 | 97.99 | Pseudomonadota |
SYSU HH182 |
Tabrizicola aquatica RCRI1 | NR_117979.1 | 97.95 | Pseudomonadota |
SYSU HH188 |
Pontimicrobium aquaticum CA | MK051221.1 | 95.86 | Bacteroidota |
SYSU HH189 |
Muriicola soli MMS17-SY00 | NR_179812.1 | 98.09 | Bacteroidota |
SYSU HH190 |
Arenibacter troitsensis M15 | OR999768.1 | 98.30 | Bacteroidota |
SYSU HH191 |
Arenibacter troitsensis M15 | OR999768.1 | 98.49 | Bacteroidota |
SYSU HH195 |
Arenibacter palladensis LMG 2197 | NR_042188.1 | 98.58 | Bacteroidota |
SYSU HH199 |
Leucobacter luti RF | NR_042425.1 | 97.27 | Actinomycetota |
SYSU HH201 |
Microbacterium saccharophilum K- | NR_114342.1 | 98.31 | Actinomycetota |
SYSU HH205 |
Yoonia litorea DPG- | NR_118329.1 | 98.37 | Pseudomonadota |
SYSU HH207 |
Amylibacter cionae H-1 | NR_158032.1 | 95.58 | Pseudomonadota |
SYSU HH216 |
Kangsaoukella pontilimi GH1-5 | NR_179959.1 | 97.63 | Pseudomonadota |
SYSU HH223 |
Rheinheimera aquimaris SW-35 | NR_044068.1 | 97.90 | Pseudomonadota |
SYSU HH227 |
Roseovarius aestuarii SMK-12 | NR_044424.1 | 98.52 | Pseudomonadota |
SYSU HH228 |
Sneathiella litorea DP0 | MN381954.1 | 97.82 | Pseudomonadota |
SYSU HH239 |
Rheinheimera aquimaris SW-35 | NR_044068.1 | 97.97 | Pseudomonadota |
SYSU HH243 |
Sneathiella litorea DP0 | MN381954.1 | 97.96 | Pseudomonadota |
SYSU HH244 |
Altererythrobacter xiamenensis LY0 | NR_133694.1 | 98.26 | Pseudomonadota |
SYSU HH250 |
Rheinheimera aquimaris SW-35 | NR_044068.1 | 98.14 | Pseudomonadota |
SYSU HH259 |
Arenibacter troitsensis M15 | OR999768.1 | 98.08 | Bacteroidota |
SYSU HH262 |
Pontimicrobium aquaticum CA | MK051221.1 | 96.68 | Bacteroidota |
SYSU HH265 |
Arenibacter troitsensis NBRC 10153 | NR_114004.1 | 98.37 | Bacteroidota |
SYSU HH266 |
Arenibacter troitsensis M15 | OR999768.1 | 98.37 | Bacteroidota |
SYSU HH270 |
Maribacter cobaltidurans PR | OQ352841.1 | 97.81 | Bacteroidota |
SYSU HH296 |
Ruegeria conchae TW1 | NR_109062.1 | 98.31 | Pseudomonadota |
SYSU HH302 |
Altererythrobacter xiamenensis LY0 | NR_133694.1 | 98.41 | Pseudomonadota |
SYSU HH304 |
Bacillus carboniphilus JCM973 | NR_024690 | 92.70 | Bacillota |
SYSU HH311 |
Agromyces tropicus CM9- | NR_112811.1 | 98.44 | Actinomycetota |
SYSU HH320 |
Microbulbifer okinawensis ABABA2 | NR_112917.1 | 94.27 | Pseudomonadota |
SYSU HH323 |
Defluviimonas aquaemixtae CDM- | NR_134014.1 | 97.79 | Pseudomonadota |
(待续)
2.5 微塑料降解细菌的筛选及分析
将分离纯化后的菌株分别在无机盐培养基和PET培养基中划线培养5 d后,观察到
SYSU HH014菌株能在以PET为唯一碳源的PET培养基上生长,而在无机盐培养基中未见生长,而其余菌株在PET培养基和无机盐培养基中均不生长,表明SYSU HH014菌株能够利用PET进行生长代谢,具备降解PET微塑料的潜能。如

图4 微塑料降解细菌的筛选与鉴定
Figure 4 Screening and identification of microplastic-degrading bacteria. A: Comparison of the growth of SYSU HH014 strain in inorganic salt medium (left) and PET medium (right); B: Phylogenetic analysis of SYSU HH014 strain based on genome; C: Annotation results of the SYSU HH014 strain genome on the KEGG.
Sequence | Enzyme | Strains | Percent identity | Length (bp) | E-value | Bitscore |
---|---|---|---|---|---|---|
00013 | PU esterase | Comamonas acidovorans | 35.0 | 492 | 3.30E-57 | 208.8 |
00027 | PLA depolymerase | Paenibacillus amylolyticus | 49.8 | 203 | 1.10E-52 | 182.2 |
00035 | PEG aldehyde dehydrogenase | Streptomyces sp. | 41.7 | 468 | 1.50E-99 | 329.7 |
00040 | Protease | Parengyodontium album | 39.6 | 321 | 2.60E-43 | 163.7 |
00071 | 3HV dehydrogenase | Paracoccus denitrificans | 42.7 | 255 | 1.30E-53 | 188.7 |
00079 | Esterase | Clostridium hathewayi | 35.0 | 409 | 1.60E-54 | 196.8 |
00093 | PVA dehydrogenase | Stenotrophomonas rhizophila | 41.7 | 120 | 1.40E-22 | 100.1 |
00152 | Protease | Lederbergia lenta | 60.7 | 275 | 1.80E-99 | 321.2 |
00154 | Protease (PLA) | Bacillus licheniformis | 65.1 | 381 | 1.30E-149 | 469.9 |
00157 | Esterase (PLA; PBSA) | Alcanivorax borkumensis | 36.8 | 473 | 4.00E-72 | 251.1 |
00179 | Hydrolase (PBAT; PBSA; PCL) | Bacillus pumilus | 75.1 | 209 | 3.00E-99 | 316.2 |
00185 | PETase (PET) | Uncultured bacterium | 40.4 | 277 | 2.30E-52 | 186.8 |
00209 | Oxidoreductase (PU; PBAT) | Bacillus velezensis | 66.0 | 47 | 2.30E-12 | 71.6 |
3 讨论
本研究对珠海市香洲区的野狸岛、桂山岛和外伶仃岛的滩涂区域样品进行了细菌的分离与培养。从3份滩涂样品中共分离获得265株细菌菌株,分别为168株(63.40%)假单胞菌门细菌、38株(14.34%)放线菌门细菌、31株(11.70%)芽孢杆菌门细菌和28株(10.56%)拟杆菌门细菌。这一结果与Couradeau
本研究中的优势属主要包括农霉菌属、芽孢杆菌属、污物单胞菌属、尹正勋菌属、袁其朋菌属、莱茵海默氏菌属和栖砂杆菌属(Arenibacter),这与李斌
在获得的可培养细菌中,许多属具有应用潜能。例如,在样品XZ1中发现的罗伯特科赫菌属(Robertkochia)细菌能够分解木质纤维素,可用于制造生物燃料和化学制品,其产生的碱性磷酸酶可促进盐碱农田植物的生
在培养基方面,2216E培养基常用于海洋细菌的培
筛选出的PET降解细菌SYSU HH014呈现为圆形菌落,颜色为浅橘色。SYSU HH014菌株被鉴定为卡布氏芽孢杆菌,隶属于芽孢杆菌属。近年来,多个芽孢杆菌菌株被证实具备塑料降解活性。例如,周剑桥
4 结论
本研究采用5种培养基对珠海市香洲区的野狸岛滩涂、桂山岛滩涂和外伶仃岛滩涂的细菌多样性进行了初步分析。从3份滩涂样品中共获得265株细菌,其中假单胞菌门的细菌数量最多。在所有使用的培养基中,2216EM培养基分离获得的菌株数目最多。在获得的可培养细菌中发现59株潜在新种,并成功筛选出1株具有微塑料降解能力的细菌。然而,在对微塑料降解细菌的筛选与分析过程中,本研究仍存在一定局限性。本研究仅基于PET微塑料进行了初步筛选,对于筛选出的微塑料降解细菌的降解特性尚需进一步深入和全面的探讨。从分离出的可培养菌株中发现共有73株属于红细菌目(Rhodobacterales)的细菌。目前,多个红细菌被证实具有塑料降解活性,如海岸沉积物别样玫瑰变色菌(A. sediminilitoris
作者贡献声明
王莹:实验操作、数据分析和论文撰写;何欢欢:实验设计、实验操作、数据收集;卢春艳:实验设计、实验操作;郑卓桓:样本采集、菌株分离;王森:微塑料降解细菌筛选与鉴定;黄易:菌株分离;李冰雨:菌株纯化与保藏;董雷:实验设计、数据分析、论文审阅和修改;李文均:实验设计、数据分析、论文审阅和修改。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
PENG GY, XU P, ZHU BS, BAI MY, LI DJ. Microplastics in freshwater river sediments in Shanghai, China: a case study of risk assessment in mega-cities[J]. Environmental Pollution, 2018, 234: 448-456. [百度学术]
LIM X. Microplastics are everywhere — but are they harmful?[J]. Nature, 2021, 593: 22-25. [百度学术]
MOITA NETO JM, SILVA EAD. Sources of microplastic generation in the environment[J]. International Journal of Environmental Research and Public Health, 2023, 20(13): 6202. [百度学术]
BOSTAN N, ILYAS N, AKHTAR N, MEHMOOD S, SAMAN RU, SAYYED RZ, SHATID AA, ALFAIFI MY, ELBEHAIRI SEI, PANDIARAJ S. Toxicity assessment of microplastic (MPs); a threat to the ecosystem[J]. Environmental Research, 2023, 234: 116523. [百度学术]
THOMPSON RC, OLSEN Y, MITCHELL RP, DAVIS A, ROWLAND SJ, JOHN AWG, McGONIGLE D, RUSSELL AE. Lost at sea: where is all the plastic?[J]. Science, 2004, 304(5672): 838. [百度学术]
SURAN M. Microplastics are found outside in nature and inside the body-but evidence of health risks is inconclusive[J]. JAMA, 2022, 328(10): 911-913. [百度学术]
JIANG BR, KAUFFMAN AE, LI L, McFEE W, CAI B, WEINSTEIN J, LEAD JR, CHATTERJEE S, SCOTT GI, XIAO S. Health impacts of environmental contamination of micro- and nanoplastics: a review[J]. Environmental Health and Preventive Medicine, 2020, 25(1): 29. [百度学术]
CHANG XR, XUE YY, LI JY, ZOU LY, TANG M. Potential health impact of environmental micro- and nanoplastics pollution[J]. Journal of Applied Toxicology, 2020, 40(1): 4-15. [百度学术]
KRUEGER MC, HARMS H, SCHLOSSER D. Prospects for microbiological solutions to environmental pollution with plastics[J]. Applied Microbiology and Biotechnology, 2015, 99(21): 8857-8874. [百度学术]
YUAN JH, MA J, SUN YR, ZHOU T, ZHAO YC, YU F. Microbial degradation and other environmental aspects of microplastics/plastics[J]. Science of the Total Environment, 2020, 715: 136968. [百度学术]
JAIN R, GAUR A, SURAVAJHALA R, CHAUHAN U, PANT M, TRIPATHI V, PANT G. Microplastic pollution: understanding microbial degradation and strategies for pollutant reduction[J]. Science of the Total Environment, 2023, 905: 167098. [百度学术]
HOSSAIN MR, EAGAR AC, BLACKWOOD CB, LEFF LG. Nascently generated microplastics in freshwater stream are colonized by bacterial communities from stream and riparian sources[J]. Journal of Environmental Quality, 2024, 53(5): 577-588. [百度学术]
TUN TZ, KUNISUE T, TANABE S, PRUDENTE M, SUBRAMANIAN A, SUDARYANTO A, VIET PH, NAKATA H. Microplastics in dumping site soils from six Asian countries as a source of plastic additives[J]. Science of the Total Environment, 2022, 806: 150912. [百度学术]
WRÓBEL M, DEJA-SIKORA E, HRYNKIEWICZ K, KOWALKOWSKI T, SZYMAŃSKA S. Microbial allies in plastic degradation: specific bacterial genera as universal plastic-degraders in various environments[J]. Chemosphere, 2024, 363: 142933. [百度学术]
SEKUDEWICZ I, DĄBROWSKA AM, SYCZEWSKI MD. Microplastic pollution in surface water and sediments in the urban section of the Vistula River (Poland)[J]. Science of the Total Environment, 2021, 762: 143111. [百度学术]
CAO YN, BIAN J, HAN YP, LIU JG, MA YP, FENG WY, DENG YX, YU YJ. Progress and prospects of microplastic biodegradation processes and mechanisms: a bibliometric analysis[J]. Toxics, 2024, 12(7): 463. [百度学术]
DONG XR, ZHU LX, HE YR, LI CJ, LI DJ. Salinity significantly reduces plastic-degrading bacteria from rivers to oceans[J]. Journal of Hazardous Materials, 2023, 451: 131125. [百度学术]
PHONG NT, THUAN NB, LOI LT, QUOC HV. Morphological evolution of an intertidal mudflat in relation to mangrove growth: implications for future erosion control[J]. Life, 2024, 14(6): 711. [百度学术]
JAIN A, RAMAKRISHNAN R, THOMASKUTTY AV, AGRAWAL R, RAJAWAT AS, SOLANKI H. Topography and morphodynamic study of intertidal mudflats along the eastern coast of the Gulf of Khambhat, India using remote sensing techniques[J]. Remote Sensing Applications: Society and Environment, 2022, 27: 100798. [百度学术]
张权, 邓春暖, 郭锋锋, 张浩, 马欠. 滇池南部沿岸滩涂塑料污染特征研究[J]. 宜春学院学报, 2020, 42(12): 17-21, 110. [百度学术]
ZHANG Q, DENG CN, GUO FF, ZHANG H, MA Q. Pollution characteristic analysis on tidal-flat area plastics in the southern coast of the Dian Lake[J]. Journal of Yichun University, 2020, 42(12): 17-21, 110 (in Chinese). [百度学术]
ISOBE A, KUBO K, TAMURA Y, KAKO S, NAKASHIMA E, FUJII N. Selective transport of microplastics and mesoplastics by drifting in coastal waters[J]. Marine Pollution Bulletin, 2014, 89(1/2): 324-330. [百度学术]
杜家贤. 广东省珠海市香洲区药用植物资源多样性研究[D]. 广州: 华南农业大学硕士学位论文, 2020. [百度学术]
DU JX. Study on medicine plant resources and diversity in Xiangzhou, Zhuhai, Guangdong[D]. Guangzhou: Master’s Thesis of South China Agricultural University, 2020 (in Chinese). [百度学术]
LI S, DONG L, LIAN WH, LIN ZL, LU CY, XU L, LI L, HOZZEIN WN, LI WJ. Exploring untapped potential of Streptomyces spp. in Gurbantunggut Desert by use of highly selective culture strategy[J]. Science of the Total Environment, 2021, 790: 148235. [百度学术]
KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549. [百度学术]
ZHANG XY, LIU A, LIU C, LI H, LI GW, XU Z, CHEN XL, ZHOU BC, ZHANG YZ. Arenitalea lutea gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from intertidal sand[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt 8): 2853-2858. [百度学术]
LEE SY, PARK S, OH TK, YOON JH. Description of Olleya aquimaris sp. nov., isolated from seawater, and emended description of the genus Olleya Mancuso Nicholset al. 2005[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(Pt 4): 887-891. [百度学术]
CHEN CC, HAN X, KO TP, LIU WD, GUO RT. Structural studies reveal the molecular mechanism of PETase[J]. The FEBS Journal, 2018, 285(20): 3717-3723. [百度学术]
ZHOU L, SANG SL, LI JJ, LI YS, WANG DP, GAN LH, ZHAO ZL, WANG J. From waste to resource: metagenomics uncovers the molecular ecological resources for plastic degradation in estuaries of South China[J]. Water Research, 2023, 242: 120270. [百度学术]
SHALEM A, YEHEZKELI O, FISHMAN A. Enzymatic degradation of polylactic acid (PLA)[J]. Applied Microbiology and Biotechnology, 2024, 108(1): 413. [百度学术]
COURADEAU E, ROUSH D, GUIDA BS, GARCIA-PICHEL F. Diversity and mineral substrate preference in endolithic microbial communities from marine intertidal outcrops (Isla de Mona, Puerto Rico)[J]. Biogeosciences, 2017, 14(2): 311-324. [百度学术]
LEE E, SHIN D, HYUN SP, KO KS, MOON HS, KOH DC, HA K, KIM BY. Periodic change in coastal microbial community structure associated with submarine groundwater discharge and tidal fluctuation[J]. Limnology and Oceanography, 2017, 62(2): 437-451. [百度学术]
李斌斌. 沿海滩涂细菌资源多样性及部分放线菌菌株抗菌活性研究[D]. 新乡: 河南师范大学硕士学位论文. 2023. [百度学术]
LI BB. Study of bacterial diversity and antibacterial activity of Actinomycetota in intertidal zone[D]. Xinxiang: Master’s Thesis of Henan Normal University, 2023 (in Chinese). [百度学术]
LIU LR, LI JY, HUANG YH, PAN J, LI M. Defluviimonas sediminis sp. nov., isolated from mangrove sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 2023, 73(7): 005975 [百度学术]
MATH RK, JIN HM, JEONG SH, JEON CO. Defluviimonas aestuarii sp. nov., a marine bacterium isolated from a tidal flat, and emended description of the genus Defluviimonas Foeselet al. 2011[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt 8): 2895-2900. [百度学术]
FOESEL BU, DRAKE HL, SCHRAMM A. Defluviimonas denitrificans gen. nov., sp. nov., and Pararhodobacter aggregans gen. nov., sp. nov., non-phototrophic Rhodobacteraceae from the biofilter of a marine aquaculture[J]. Systematic and Applied Microbiology, 2011, 34(7): 498-502. [百度学术]
ZHANG SF, SUN CR, XIE JL, WEI H, HU Z, WANG H. Defluviimonas pyrenivorans sp. nov., a novel bacterium capable of degrading polycyclic aromatic hydrocarbons[J]. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(3): 957-961. [百度学术]
ITO K, NAKAJIMA N, YAMAMURA S, TOMITA M, SUZUKI H, AMACHI S. Draft genome sequence of Arenibacter sp. strain C-21, an iodine-accumulating bacterium isolated from surface marine sediment[J]. Genome Announcements, 2016, 4(5): e01155-16. [百度学术]
SIDHU C, SAINI MK, TANUKU NRS, PINNAKA AK. Arenibacter amylolyticus sp. nov., an amylase-producing bacterium of the family Flavobacteriaceae isolated from marine water in India[J]. International Journal of Systematic and Evolutionary Microbiology, 2019, 71(3): 004664. [百度学术]
GUTIERREZ T, WHITMAN WB, HUNTEMANN M, COPELAND A, CHEN A, KYRPIDES N, MARKOWITZ V, PILLAY M, IVANOVA N, MIKHAILOVA N, OVCHINNIKOVA G, ANDERSEN E, PATI A, STAMATIS D, REDDY TBK, NGAN CY, CHOVATIA M, DAUM C, SHAPIRO N, CANTOR MN, et al. Genome sequence of Arenibacter algicola strain TG409, a hydrocarbon-degrading bacterium associated with marine eukaryotic phytoplankton[J]. Genome Announcements, 2016, 4(4): e00765-16. [百度学术]
DELACUVELLERIE A, CYRIAQUE V, GOBERT S, BENALI S, WATTIEZ R. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation[J]. Journal of Hazardous Materials, 2019, 380: 120899. [百度学术]
CHEN JH, TONG J, LI SF, HU ZL, WANG LY, CHEN HR. Draft genome sequence of an algicidal bacterium, Arenibacter sp. strain 6A1, isolated from seawater during an Akashiwo sanguinea bloom in Shenzhen, China[J]. Microbiology Resource Announcements, 2020, 9(50): e00964-20. [百度学术]
LAM MQ, OATES NC, LEADBEATER DR, GOH KM, YAHYA A, MD SALLEH M, IBRAHIM Z, BRUCE NC, CHONG CS. Genomic analysis to elucidate the lignocellulose degrading capability of a new halophile Robertkochia Solimangrovi[J]. Genes, 2022, 13(11): 2135. [百度学术]
LAM MQ, CHEN SJ, GOH KM, ABD MANAN F, YAHYA A, SHAMSIR MS, CHONG CS. Genome sequence of an uncharted halophilic bacterium Robertkochia marina with deciphering its phosphate-solubilizing ability[J]. Brazilian Journal of Microbiology, 2021, 52(1): 251-256. [百度学术]
KO SR, LE VV, SRIVASTAVA A, KANG M, OH HM, AHN CY. Algicidal activity of a novel bacterium, Qipengyuania sp. 3-20A1M, against harmful Margalefidinium polykrikoides: effects of its active compound[J]. Marine Pollution Bulletin, 2023, 186: 114397. [百度学术]
LIU WJ, ZHANG Y, CAO K, LI JX, WEN YQ, SUN C, XU L. Aurantiacibacter hainanensis sp. nov. and Qipengyuania zhejiangensis sp. nov., two novel Erythrobacteraceae species isolated from tidal flat sediments[J]. International Journal of Systematic and Evolutionary Microbiology, 2024, 74(7): 006469. [百度学术]
LIU Y, PEI T, DENG MR, ZHU H. Qipengyuania soli sp. nov., isolated from Mangrove Soil[J]. Current Microbiology, 2021, 78(7): 2806-2814. [百度学术]
CHEN WM, LIN CY, YOUNG CC, SHEU SY. Rheinheimera aquatica sp. nov., an antimicrobial activity producing bacterium isolated from freshwater culture pond[J]. Journal of Microbiology and Biotechnology, 2010, 20(10): 1386-1392. [百度学术]
ROMANENKO LA, TANAKA N, SVETASHEV VI, KALINOVSKAYA NI, MIKHAILOV VV. Rheinheimera japonica sp. nov., a novel bacterium with antimicrobial activity from seashore sediments of the Sea of Japan[J]. Archives of Microbiology, 2015, 197(4): 613-620. [百度学术]
ZHAO MM, ZHENG GG, KANG XY, ZHANG XY, GUO JM, WANG SM, CHEN YP, XUE LG. Aquatic bacteria Rheinheimera tangshanensis new ability for mercury pollution removal[J]. International Journal of Molecular Sciences, 2023, 24(5): 5009. [百度学术]
YADAV V, MANJHI A, VADAKEDATH N. Mercury remediation potential of mercury-resistant strain Rheinheimera metallidurans sp. nov. isolated from a municipal waste dumping site[J]. Ecotoxicology and Environmental Safety, 2023, 257: 114888. [百度学术]
庄康, 胡晓娟, 曹煜成, 许云娜, 张建设, 文国樑. 不同寡营养培养条件下南海水体细菌群落结构及其对碳源的利用特征[J]. 微生物学通报, 2020, 47(9): 2697-2710. [百度学术]
ZHUANG K, HU XJ, CAO YC, XU YN, ZHANG JS, WEN GL. Bacterial community structure and its utilization characteristics of carbon sources in water of South China Sea under different low-nutrient culture conditions[J]. Microbiology China, 2020, 47(9): 2697-2710 (in Chinese). [百度学术]
GARCIA-PICHEL F, JOHNSON SL, YOUNGKIN D, BELNAP J. Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado plateau[J]. Microbial Ecology, 2003, 46(3): 312-321. [百度学术]
何媛秋, 李存, 陈柔雯, 崔林青, 田新朋. 不同培养条件对海洋沉积环境细菌的选择性分离[J]. 生物资源, 2020, 42(5): 540-548. [百度学术]
HE YQ, LI C, CHEN RW, CUI LQ, TIAN XP. Selective isolation of bacteria from marine sedimentary environment by different culture conditions[J]. Biotic Resources, 2020, 42(5): 540-548 (in Chinese). [百度学术]
寇文月, 江雨茹, 郝璐瑶, 唐宇毅, 周雪云, 朱秀娟, 钱臻, 金歌, 王娇娇. 商品化的预制TSA培养基有效期确定方法的探讨[J]. 中国药品标准, 2024, 25(3): 289-295. [百度学术]
KOU WY, JIANG YR, HAO LY, TANG YY, ZHOU XY, ZHU XJ, QIAN Z, JIN G, WANG JJ. Discussion on the validity period determination method of commercial ready-to-use TSA medium[J]. Drug Standards of China, 2024, 25(3): 289-295 (in Chinese). [百度学术]
周剑桥, 黄青松, 李娟, 金昶序, 陈晓倩, 吴敬, 颜正飞. 一株嗜热聚对苯二甲酸乙二醇酯降解菌的分离及其降解特性解析[J]. 微生物学报, 2023, 63(7): 2822-2834. [百度学术]
ZHOU JQ, HUANG QS, LI J, JIN CX, CHEN XQ, WU J, YAN ZF. Isolation and characterization of a thermophilic PET-degrading bacterium[J]. Acta Microbiologica Sinica, 2023, 63(7): 2822-2834 (in Chinese). [百度学术]
AUTA HS, EMENIKE CU, FAUZIAH SH. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation[J]. Environmental Pollution, 2017, 231: 1552-1559. [百度学术]
NOWAK B, PAJĄK J, DROZD-BRATKOWICZ M, RYMARZ G. Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions[J]. International Biodeterioration & Biodegradation, 2011, 65(6): 757-767. [百度学术]
KIM HS, LEE BY, WON EJ, HAN J, HWANG DS, PARK HG, LEE JS. Identification of xenobiotic biodegradation and metabolism-related genes in the copepod Tigriopus japonicus whole transcriptome analysis[J]. Marine Genomics, 2015, 24: 207-208. [百度学术]
穆军, 姚玲弟. 别样玫瑰变色菌及其应用和培养方法、降解塑料的方法: CN202310029951.0[P]. 2023-03-03. [百度学术]
MU J, YAO LD. Aliiroseovarius ediminilitoris and its application and cultivation method, degradation of plastic method: CN202310029951.0[P]. 2023-03-03 (in Chinese). [百度学术]
WU XW, LIU P, ZHAO XL, WANG JY, TENG MM, GAO SX. Critical effect of biodegradation on long-term microplastic weathering in sediment environments: a systematic review[J]. Journal of Hazardous Materials, 2022, 437: 129287. [百度学术]
胡逸晨. 细菌Microbacterium sp. 4-7降解聚乙烯[D]. 武汉: 华中农业大学硕士学位论文, 2015. [百度学术]
HU YC. Degradation of polyethylene by Microbacterium sp. 4-7[D]. Wuhan: Master’s Thesis of Huazhong Agricultural University, 2015 (in Chinese). [百度学术]
ESPINOSA MJC, BLANCO AC, SCHMIDGALL T, ATANASOFF-KARDJALIEFF AK, KAPPELMEYER U, TISCHLER D, PIEPER DH, HEIPIEPER HJ, EBERLEIN C. Toward biorecycling: isolation of a soil bacterium that grows on a polyurethane oligomer and monomer[J]. Frontiers in Microbiology, 2020, 11: 404. [百度学术]
LIU RJ, ZHAO SF, ZHANG BJ, LI GY, FU XT, YAN PS, SHAO ZZ. Biodegradation of polystyrene (PS) by marine bacteria in mangrove ecosystem[J]. Journal of Hazardous Materials, 2023, 442: 130056. [百度学术]