摘要
我国对原油和天然气的需求量巨大。通过传统开采方式(如水驱、气驱、化学驱和微生物驱等),仍有超过1/2的原油残留在地下,无法通过“流动”的方式被开采利用。通过厌氧微生物代谢,将液态原油生物转化为气态天然气,进行“沼气化”开采,有望成为枯竭油藏残余原油开发的未来技术。本文总结了原油生物气化的研究历史、研究进展以及下一步研究方向,从而为原油生物气化的工业应用提供参考。
原油和天然气是我国重要的化石能源和化工原料,2023年的消费量分别占全球的16.5%和10.1%,对外依存度分别为73.0%和40.5% (原油产量2.09亿t,进口量5.64亿t;天然气产量2 343亿
油藏是研究深部生物圈的一个特殊“窗口”,其独特的缺氧、高温、高压和油气水共存一体的环境,孕育了丰富多样的微生物资
1 原油生物气化的研究历史
在20世纪40年代,科学家观察到了硫酸盐还原和产甲烷条件下石油烃的厌氧生物降解过
2 原油生物气化的反应途径
原油成分复杂,含有数千甚至数万种不同类型的化合

图1 石油烃降解产甲烷示意图
Figure 1 Schematic diagram of methanogenic degradation of petroleum hydrocarbon.
2.1 厌氧烃降解激活途径
目前已被证实的厌氧烃降解起始激活途径包括延胡索酸加成途径(fumarate addition pathway)、羟基化途径(hydroxylation pathway)、羧基化途径(carboxylation pathway)、水合化途径(hydration pathway)和烷基辅酶M还原酶途径(alkyl-coenzyme M reductase pathway)。
2.1.1 延胡索酸加成途径
在烷基/苄基琥珀酸合酶(alkyl/benzyl-succinate synthase, Ass/Bss)及其同源酶的催化作用下,石油烃(烷烃、环烷烃、甲基取代芳烃)与延胡索酸盐进行加成反应,生成相应的琥珀酸苄酯类物质,再通过碳骨架重排、脱羧、β氧化等步骤降解石油
2.1.2 羟基化途径
在乙苯脱氢酶(ethylbenzene dehydrogenase, Ebd)、烷烃羟化酶(alkane hydroxylation, Ahy)或4-异丙基甲苯脱氢酶(p-cymene dehydrogenase, Cmd)的催化作用下,水分子中的氧原子被引入底物烃分子中(乙苯、烷烃、4-异丙基甲苯),生成相应的醇类物质,激活烃分子厌氧降
2.1.3 羧基化途径
在类辅酶Q羧化酶(ubiquinone decarboxylase-like, UbiD-like)的催化作用下,无取代芳烃(苯、萘、菲等)与CO2或HCO
2.1.4 水合化途径
在乙炔水合酶(acetylene hydratase, Ach)等的催化作用下,水分子中的氢和氧原子均被加成到不饱和烃中(乙炔、1-烯烃),生成相应的醇类物质,激活不饱和烃厌氧降
2.1.5 烷基辅酶M还原酶途径
在烷基辅酶M还原酶(alkyl-coenzyme M reductase, Acr)的催化作用下,异二硫化物CoM-S-S-CoB中的CoM-S-基团被引入烷烃的碳链上,生成相应的烷基-辅酶M,激活烷烃厌氧降
2.2 产甲烷途径
根据底物营养类型,产甲烷代谢途径可以分为5种类型:氢营养型产甲烷途径(hydrogenotrophic methanogenesis)、乙酸营养型产甲烷途径(acetoclastic methanogenesis)、甲基营养型产甲烷途径(methylotrophic methanogenesis)、甲氧基营养型产甲烷途径(methoxydotrophic methanogenesis)和烷基营养型产甲烷途径(alkylotrophic methanogenesis)。
在标准状况下,且无外源电子受体时,石油烃厌氧降解反应为吸热反应,无法自发进行[Δ
过程 Process | 反应式 Reaction | 自由能 Δ |
---|---|---|
Hydrocarbon degradation |
(1) Toluene: C7H8+7H2O→3.5CH3CO | +113.6 |
(2) Naphthalene: C10H8+10H2O→5CH3CO | +101.1 | |
(3) Hexadecane: C16H34+16H2O→8CH3CO | +470.8 | |
Methanogenesis |
(4) Hydrogenotrophic: 4H2+HCO | -135.6 |
(5) Acetotrophic: CH3CO | -31.0 | |
Overall |
(6) Toluene: C7H8+7.5H2O→4.5CH4+2.5HCO | -130.5 |
(7) Naphthalene: C10H8+10H2O→6CH4+4HCO | -189.5 | |
(8) Hexadecane: C16H34+16H2O→12.25CH4+3.75HCO | -353.5 |
2.2.1 氢营养型产甲烷途径
氢营养型产甲烷途径是指古菌利用H2作为电子供体还原CO2产生CH4的途径,也称为CO2还原途
2.2.2 乙酸营养型产甲烷途径
古菌将乙酸分解为CO2和CH4的途径称为乙酸发酵途
2.2.3 甲基营养型产甲烷途径
甲基营养型产甲烷途径是古菌将简单的甲基类化合物(甲醇、二甲基硫、甲胺、二甲胺、三甲胺等)分解为CH4 (甲基还原型)或CO2和CH4 (甲基裂解型)的途
2.2.4 甲氧基营养型产甲烷途径
甲氧基营养型产甲烷途径是指古菌将甲氧基芳烃类化合物(ArO-CH3)分解为酚类物质(ArOH)并产生CO2和CH4的途
2.2.5 烷基营养型产甲烷途径
古菌将长链烷基烃(烷烃、烷基环己烷、烷基苯)分解为CO2和CH4的途径为烷基营养型产甲烷途

图2 原油生物气化的反应模式(修改自文献[
Figure 2 Reactive mode of crude oil biogasification (modified from literature [90]). A: Syntrophic methanogenesis; B: Alkylotrophic methanogenesis. HDE: Hydrocarbon degrading enzyme; MCR: Methyl-coenzyme M reductase; ACR: Alkyl-coenzyme M reductase.
3 原油生物气化的产气性能
3.1 产甲烷潜量
单位质量原油产生甲烷气的总体积(单位:
3.2 产甲烷速率
单位质量原油在单位时间内产生的甲烷摩尔量[单位:μmol/(d·g)]可以衡量原油生物气化的产甲烷速
3.3 最小甲烷倍增时间
产甲烷古菌只能通过甲烷产生途径获取能量进行生长,其最小甲烷倍增时间(单位:d),可以客观地指示产甲烷菌(群)的代谢活

图3 传统发酵体系与新型产甲烷体系甲烷倍增时间的比较(数据源于文献[
Figure 3 Comparison of methane doubling time between traditional fermentation pathway and novel methanogenic pathway (data retrieved from the statistical results of literature [36]).
4 原油生物气化的应用策略
油藏环境中富含碳氢化合物,碳氮比和碳磷比过高,影响微生物的生长和繁殖,通常需要添加无机氮和磷
4.1 内源激活
内源激活是指向油藏中注入营养物质,以激活油藏中存在的原油生物气化菌群,从而增强原油生物气化速率的一种方法。Gao
类型(周期) Type (period) | 营养激活剂配方 Nutrient activator formula | 实验方案 Experimental scheme | 总产气量 Total gas yield (mL) | 甲烷产量 Methane yield (mL) | 参考文献 References |
---|---|---|---|---|---|
Cultivation (90 d) |
6 g/L NaNO3+2 g/L (NH4)2HPO4 +6 g/L molasses | (1) Formation water | - | - |
[ |
(2) Formation water+nutrient activator | 186 | 11.60 | |||
Cultivation (30 d) |
0.3 g/L glucose+ 0.3 g/L peptone+ 0.2 g/L yeast extract+ 0.27 g/L K2HPO4 +0.5 g/L NaCl | (3) Formation water | - | - |
[ |
(4) Formation water+nutrient activator | 117 | 29.22 | |||
(5) Formation water+SL-1 | - | - | |||
(6) Formation water+nutrient activator+SL-1 | 277 | 140.79 | |||
Cultivation (35 d) |
A: 0.3 g/L glucose+ 0.3 g/L peptone+ 0.2 g/L yeast extract+ 0.27 g/L K2HPO4+0.5 g/L NaCl B: 0.1 g/L urea+0.5 g/L NaCl+ 0.27 g/L K2HPO4 | (7) Formation water | 65 | 0.08 |
[ |
(8) Formation water+nutrient activator (A+B)+K4 | 185 | 48.73 | |||
(9) Formation water+nutrient activator (A+B)+methanogenesis inhibitor | 150 | 0.42 | |||
(10) Formation water+nutrient activator (A+B)+methanogenesis inhibitor+K4 | 124 | 0.05 | |||
Physical model (90 d) |
0.3 g/L NH3Cl+ 0.2 g/L K2HPO4+ 0.15 g/L cysteine | (11) Formation water+nutrient activator | - | - |
[ |
(12) Formation water+nutrient activator+ crude oil | 15.68* | 1.51* | |||
(13) Formation water+nutrient activator+ Ca. Methanoliparum | - | - | |||
(14) Formation water+nutrient activator+ crude oil+Ca. Methanoliparum | 70.05* | 54.36* |
Formation water: Water was collected from oil reservoirs, and contained crude oil and indigenous microorganisms; SL-1: Geobacillus stearothermophilus SL-1; K4: Geobacillus sp. K4; -: Below detection limit; *: Data conversion according to molar quantities.
4.2 外源注入
外源注入是指向地下油藏中注入营养物质和发酵浓缩的微生物,发挥外源微生物优良的烃降解能力或(和)产甲烷能力,从而提高原油生物气化速率的一种方法。李彩风
5 总结与展望
油藏是一个大型地质生物反应器。假设全国10%的残余原油可用于生物气化,预计可增产甲烷气954-4 770亿
(1) 加强基础研究。地下油藏目前仍是一个“黑箱子”,大部分油藏微生物仍处于未培养分离的状态。我们对它们的生理生化功能以及代谢催化机制的认识还不清楚;特别是它们在地下可以通过哪些途径、功能酶来催化石油烃的代谢,我们的认知仍然有限。甚至它们在地下油藏的生存边界(80 ℃是否是一个门槛)也有待进一步研究。这些基础油藏微生物学的研究会给我们带来新的启发和思路。
(2) 油藏厌氧功能菌的工业放大。油藏微生物对氧气十分敏感且生长缓慢,因此在工业发酵过程中,其最佳生长条件(如温度、pH值及培养基成分等)仍有待探究。此外,通过人工智能等新技术,模拟、评估和优化发酵工艺,可以为厌氧微生物稳定的工业放大提供理论基础。
(3) 油藏环境的勘探评估。油藏地质条件复杂,在开展场地实验之前,必须先深入研究相应油藏的理化性质、地貌特征、内源微生物群落组成、注入微生物生理生化特征,以保证注入微生物与油藏环境的匹配性。另外,通过构建物理模型和先导试验,可以评估和监测原油生物气化在不同地质构造油藏中的效果,为大规模工业化应用提供工艺支撑。
作者贡献声明
丁恒武:论文撰写;周卓:论文撰写;承磊:论文构思、设计和修改。
致谢
感谢农业农村部成都沼气科学研究所的巫可佳、黄越义、刘伟和钟佳来在本文撰写过程中所提供的帮助。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
Energy Institute. Statistical Review of World Energy[M]. London, UK: BP Statistical Review, 2024: 20-45. [百度学术]
王永祥, 杨涛, 鞠秀娟, 徐小林, 胡晓春. 中国油气探明经济可采储量状况分析[J]. 中国石油勘探, 2023, 28(1): 26-37. [百度学术]
WANG YX, YANG T, JU XJ, XU XL, HU XC. Status of proven economic recoverable oil and gas reserves in China[J]. China Petroleum Exploration, 2023, 28(1): 26-37 (in Chinese). [百度学术]
王永臻, 吴裕根, 门相勇. 我国老油田稳产形势、挑战及前景展望[J]. 石油科技论坛, 2024, 43(3): 18-23, 39. [百度学术]
WANG YZ, WU YG, MEN XY. Situation, challenges and prospects for stable production of China’s old oilfields[J]. Petroleum Science and Technology Forum, 2024, 43(3): 18-23, 39 (in Chinese). [百度学术]
袁士义, 王强, 李军诗, 高明, 韩海水. 提高采收率技术创新支撑我国原油产量长期稳产[J]. 石油科技论坛, 2021, 40(3): 24-32. [百度学术]
YUAN SY, WANG Q, LI JS, GAO M, HAN HS. EOR technological innovation keeps China’s crude oil production stable on long-term basis[J]. Petroleum Science and Technology Forum, 2021, 40(3): 24-32 (in Chinese). [百度学术]
袁士义, 王强. 中国油田开发主体技术新进展与展望[J]. 石油勘探与开发, 2018, 45(4): 657-668. [百度学术]
YUAN SY, WANG Q. New progress and prospect of oilfields development technologies in China[J]. Petroleum Exploration and Development, 2018, 45(4): 657-668 (in Chinese). [百度学术]
HALLMANN C, SCHWARK L, GRICE K. Community dynamics of anaerobic bacteria in deep petroleum reservoirs[J]. Nature Geoscience, 2008, 1: 588-591. [百度学术]
刘一凡, 周蕾, 寿利斌, MBADINGA SM, 刘金峰, 杨世忠, 牟伯中. 油藏环境石油烃厌氧生物降解产甲烷途径与生物标志物[J]. 地球科学, 2018, 43(S1): 181-191. [百度学术]
LIU YF, ZHOU L, SHOU LB, MBADINGA SM, LIU JF, YANG SZ, MU BZ. Anaerobic hydrocarbon degradation in oil reservoir environment[J]. Earth Science, 2018, 43(S1): 181-191 (in Chinese). [百度学术]
RAJBONGSHI A, GOGOI SB. A review on anaerobic microorganisms isolated from oil reservoirs[J]. World Journal of Microbiology and Biotechnology, 2021, 37(7): 111. [百度学术]
BASTIN ES, GREER FE, MERRITT CA, MOULTON G. The presence of sulphate reducing bacteria in oil field waters[J]. Science, 1926, 63(1618): 21-24. [百度学术]
ZHANG CJ, ZHOU Z, CHA GH, LI L, FU L, LIU LY, YANG L, WEGENER G, CHENG L, LI M. Anaerobic hydrocarbon biodegradation by alkylotrophic methanogens in deep oil reservoirs[J]. The ISME Journal, 2024, 18(1): wrae152. [百度学术]
JONES DM, HEAD IM, GRAY ND, ADAMS JJ, ROWAN AK, AITKEN CM, BENNETT B, HUANG H, BROWN A, BOWLER BFJ, OLDENBURG T, ERDMANN M, LARTER SR. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs[J]. Nature, 2008, 451: 176-180. [百度学术]
李赞豪. 具有广阔勘探前景的一种新型浅层天然气: 油层、煤层厌氧菌解再生生物气[J]. 石油实验地质, 1994, 16(3): 220-229. [百度学术]
LI ZH. A new type of shallow natural gas with broad exploration prospect: theregenerated biogenic gas from oil reservoir and coal seams by the degradaton of anaerodic bacteria[J]. Petroleum Geology & Experiment, 1994, 16(3): 220-229 (in Chinese). [百度学术]
HEAD IM, JONES DM, LARTER SR. Biological activity in the deep subsurface and the origin of heavy oil[J]. Nature, 2003, 426: 344-352. [百度学术]
SUFLITA JM, DAVIDOVA IA, GIEG LM, NANNY M, PRINCE RC. Chapter 10. Anaerobic hydrocarbon biodegradation and the prospects for microbial enhanced energy production[M]//Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 2004: 283-305. [百度学术]
承磊, 仇天雷, 邓宇, 张辉. 油藏厌氧微生物研究进展[J]. 应用与环境生物学报, 2006, 12(5): 740-744. [百度学术]
CHENG L, QIU TL, DENG Y, ZHANG H. Recent advances in anaerobic microbiology of petroleum reservoirs[J]. Chinese Journal of Applied and Environmental Biology, 2006, 12(5): 740-744 (in Chinese). [百度学术]
NI S, LV W, JI Z, WANG K, MEI Y, LI Y. Progress of crude oil gasification technology assisted by microorganisms in reservoirs[J]. Microorganisms, 2024, 12(4): 702. [百度学术]
NOVELLI G. Assimilation of petroleum hydrocarbons by sulfate-reducing bacteria[J]. Journal of Bacteriology, 1944, 7: 47-48. [百度学术]
ROSENFELD WD. Anaerobic oxidation of hydrocarbons by sulfate-reducing bacteria[J]. Journal of Bacteriology, 1947, 54(5): 664. [百度学术]
ZENGLER K, RICHNOW HH, ROSSELLÓ-MORA R, MICHAELIS W, WIDDEL F. Methane formation from long-chain alkanes by anaerobic microorganisms[J]. Nature, 1999, 401: 266-269. [百度学术]
AITKEN CM, JONES DM, LARTER SR. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs[J]. Nature, 2004, 431: 291-294. [百度学术]
DOLFING J, LARTER SR, HEAD IM. Thermodynamic constraints on methanogenic crude oil biodegradation[J]. The ISME Journal, 2008, 2(4): 442-452. [百度学术]
SIDDIQUE T, FEDORAK PM, FOGHT JM. Biodegradation of short-chain n-alkanes in oil sands tailings under methanogenic conditions[J]. Environmental Science & Technology, 2006, 40(17): 5459-5464. [百度学术]
GIEG LM, DUNCAN KE, SUFLITA JM. Bioenergy production via microbial conversion of residual oil to natural gas[J]. Applied and Environmental Microbiology, 2008, 74(10): 3022-3029. [百度学术]
GRAY ND, SHERRY A, HUBERT C, DOLFING J, HEAD IM. Chapter 5. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery[J]. Advances in Applied Microbiology, 2010, 72: 137-161. [百度学术]
WANG LY, GAO CX, MBADINGA SM, ZHOU L, LIU JF, GU JD, MU BZ. Characterization of an alkane-degrading methanogenic enrichment culture from production water of an oil reservoir after 274 days of incubation[J]. International Biodeterioration & Biodegradation, 2011, 65(3): 444-450. [百度学术]
DING C, MA TT, HU AY, DAI LR, HE Q, CHENG L, ZHANG H. Enrichment and characterization of a psychrotolerant consortium degrading crude oil alkanes under methanogenic conditions[J]. Microbial Ecology, 2015, 70(2): 433-444. [百度学术]
GRAY ND, SHERRY A, GRANT RJ, ROWAN AK, HUBERT CRJ, CALLBECK CM, AITKEN CM, JONES DM, ADAMS JJ, LARTER SR, HEAD IM. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes[J]. Environmental Microbiology, 2011, 13(11): 2957-2975. [百度学术]
CHENG L, DING C, LI Q, HE Q, DAI LR, ZHANG H. DNA-SIP reveals that Syntrophaceae play an important role in methanogenic hexadecane degradation[J]. PLoS One, 2013, 8(7): e66784. [百度学术]
TAN B, DONG X, SENSEN CW, FOGHT J. Metagenomic analysis of an anaerobic alkane-degrading microbial culture: potential hydrocarbon-activating pathways and inferred roles of community members[J]. Genome, 2013, 56(10): 599-611. [百度学术]
TAN B, NESBØ C, FOGHT J. Re-analysis of omics data indicates Smithella may degrade alkanes by addition to fumarate under methanogenic conditions[J]. The ISME Journal, 2014, 8(12): 2353-2356. [百度学术]
WAWRIK B, MARKS CR, DAVIDOVA IA, MCINERNEY MJ, PRUITT S, DUNCAN KE, SUFLITA JM, CALLAGHAN AV. Methanogenic paraffin degradation proceeds via alkane addition to fumarate by ‘Smithella’ spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens[J]. Environmental Microbiology, 2016, 18(8): 2604-2619. [百度学术]
QIN QS, FENG DS, LIU PF, HE Q, LI X, LIU AM, ZHANG H, HU GQ, CHENG L. Metagenomic characterization of Candidatus Smithella cisternae strain M82_1, a syntrophic alkane-degrading bacteria, enriched from the Shengli oil field[J]. Microbes and Environments, 2017, 32(3): 234-243. [百度学术]
LIU YF, QI ZZ, SHOU LB, LIU JF, YANG SZ, GU JD, MU BZ. Anaerobic hydrocarbon degradation in candidate phylum ‘Atribacteria’ (JS1) inferred from genomics[J]. The ISME Journal, 2019, 13(9): 2377-2390. [百度学术]
YU TT, FU L, WANG YZ, DONG YJ, CHEN YF, WEGENER G, CHENG L, WANG FP. Thermophilic Hadarchaeota grow on long-chain alkanes in syntrophy with methanogens[J]. Nature Communications, 2024, 15: 6560. [百度学术]
LIU YF, CHEN J, LIU ZL, SHOU LB, LIN DD, ZHOU L, YANG SZ, LIU JF, LI W, GU JD, MU BZ. Anaerobic degradation of paraffins by thermophilic Actinobacteria under methanogenic conditions[J]. Environmental Science & Technology, 2020, 54(17): 10610-10620. [百度学术]
ZHOU Z, ZHANG CJ, LIU PF, FU L, LASO-PÉREZ R, YANG L, BAI LP, LI J, YANG M, LIN JZ, WANG WD, WEGENER G, LI M, CHENG L. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species[J]. Nature, 2022, 601: 257-262. [百度学术]
CHENG L, SHI S, LI Q, CHEN J, ZHANG H, LU Y. Progressive degradation of crude oil N-alkanes coupled to methane production under mesophilic and thermophilic conditions[J]. PLoS One, 2014, 9(11): e113253. [百度学术]
XUE JL, YU Y, BAI Y, WANG LP, WU YN. Marine oil-degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: a review[J]. Current Microbiology, 2015, 71(2): 220-228. [百度学术]
HYNE NJ. Nontechnical guide to petroleum geology, exploration, drilling, and production[M]. Tulsa, OK: PennWell, 2012: 1. [百度学术]
BOLL M, ESTELMANN S, HEIDER J. Anaerobic degradation of hydrocarbons: mechanisms of hydrocarbon activation in the absence of oxygen[M]//Anaerobic Utilization of Hydrocarbons, Oils, and Lipids. Cham: Springer International Publishing, 2020: 3-29. [百度学术]
BIEGERT T, FUCHS G, HEIDER J. Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate[J]. European Journal of Biochemistry, 1996, 238(3): 661-668. [百度学术]
CALLAGHAN AV, WAWRIK B, NÍ CHADHAIN SM, YOUNG LY, ZYLSTRA GJ. Anaerobic alkane-degrading strain AK-01 contains two alkylsuccinate synthase genes[J]. Biochemical and Biophysical Research Communications, 2008, 366(1): 142-148. [百度学术]
JAEKEL U, ZEDELIUS J, WILKES H, MUSAT F. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments[J]. Frontiers in Microbiology, 2015, 6: 116. [百度学术]
RABUS R, BOLL M, HEIDER J, MECKENSTOCK RU, BUCKEL W, EINSLE O, ERMLER U, GOLDING BT, GUNSALUS RP, KRONECK PMH, KRÜGER M, LUEDERS T, MARTINS BM, MUSAT F, RICHNOW HH, SCHINK B, SEIFERT J, SZALENIEC M, TREUDE T, ULLMANN GM, et al. Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment[J]. Journal of Molecular Microbiology and Biotechnology, 2016, 26(1/2/3): 5-28. [百度学术]
MBADINGA SM, WANG LY, ZHOU L, LIU JF, GU JD, MU BZ. Microbial communities involved in anaerobic degradation of alkanes[J]. International Biodeterioration & Biodegradation, 2011, 65(1): 1-13. [百度学术]
VON NETZER F, PILLONI G, KLEINDIENST S, KRÜGER M, KNITTEL K, GRÜNDGER F, LUEDERS T. Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems[J]. Applied and Environmental Microbiology, 2013, 79(2): 543-552. [百度学术]
DUNCAN KE, GIEG LM, PARISI VA, TANNER RS, TRINGE SG, BRISTOW J, SUFLITA JM. Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities[J]. Environmental Science & Technology, 2009, 43(20): 7977-7984. [百度学术]
BIAN XY, MAURICE MBADINGA S, LIU YF, YANG SZ, LIU JF, YE RQ, GU JD, MU BZ. Insights into the anaerobic biodegradation pathway of N-alkanes in oil reservoirs by detection of signature metabolites[J]. Scientific Reports, 2015, 5: 9801. [百度学术]
BEEDER J, NILSEN RK, ROSNES JT, TORSVIK T, LIEN T. Archaeoglobus fulgidus isolated from hot North Sea oil field waters[J]. Applied and Environmental Microbiology, 1994, 60(4): 1227-1231. [百度学术]
KHELIFI N, AMIN ALI O, ROCHE P, GROSSI V, BROCHIER-ARMANET C, VALETTE O, OLLIVIER B, DOLLA A, HIRSCHLER-RÉA A. Anaerobic oxidation of long-chain N-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus[J]. The ISME Journal, 2014, 8(11): 2153-2166. [百度学术]
WELTE CU, DE GRAAF R, DALCIN MARTINS P, JANSEN RS, JETTEN MSM, KURTH JM. A novel methoxydotrophic metabolism discovered in the hyperthermophilic archaeon Archaeoglobus fulgidus[J]. Environmental Microbiology, 2021, 23(7): 4017-4033. [百度学术]
JI JH, LIU YF, ZHOU L, IRFAN M, MBADINGA SM, PAN P, CHEN J, LIU JF, YANG SZ, SAND W, GU JD, MU BZ. Methanogenic biodegradation of C13 and C14 N-alkanes activated by addition to fumarate[J]. International Biodeterioration & Biodegradation, 2020, 153: 104994. [百度学术]
JIAO JY, MA SC, SALAM N, ZHOU Z, LIAN ZH, FU L, CHEN Y, PENG CH, OUYANG YT, FAN H, LI L, YI Y, ZHANG JY, WANG JY, LIU L, GAO L, OREN A, WOYKE T, DODSWORTH JA, HEDLUND BP, et al. Cultivation of novel Atribacterota from oil well provides new insight into their diversity, ecology, and evolution in anoxic, carbon-rich environments[J]. Microbiome, 2024, 12(1): 123. [百度学术]
BALL HA, JOHNSON HA, REINHARD M, SPORMANN AM. Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium, strain EB1[J]. Scientifica, 1996, 178(19): 5755-5761. [百度学术]
JOHNSON HA, SPORMANN AM. In vitro studies on the initial reactions of anaerobic ethylbenzene mineralization[J]. Chronobiology International, 1999, 181(18): 5662-5668. [百度学术]
AECKERSBERG F, BAK F, WIDDEL F. Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium[J]. Archives of Microbiology, 1991, 156(1): 5-14. [百度学术]
SHOU LB, LIU YF, ZHOU J, LIU ZL, ZHOU L, LIU JF, YANG SZ, GU JD, MU BZ. New evidence for a hydroxylation pathway for anaerobic alkane degradation supported by analyses of functional genes and signature metabolites in oil reservoirs[J]. AMB Express, 2021, 11(1): 18. [百度学术]
ZHANG X, YOUNG LY. Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia[J]. International Journal of Surgery Case Reports, 1997, 63(12): 4759-4764. [百度学术]
CALDWELL ME, SUFLITA JM. Detection of phenol and benzoate as intermediates of anaerobic benzene biodegradation under different terminal electron-accepting conditions[J]. Environmental Science & Technology, 2000, 34(7): 1216-1220. [百度学术]
KUNAPULI U, GRIEBLER C, BELLER HR, MECKENSTOCK RU. Identification of intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment culture[J]. Environmental Microbiology, 2008, 10(7): 1703-1712. [百度学术]
ROTHERMICH MM, HAYES LA, LOVLEY DR. Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment[J]. Environmental Science & Technology, 2002, 36(22): 4811-4817. [百度学术]
ZHANG ZT, SUN J, GONG XQ, YANG ZY, WANG CY, WANG H. Anaerobic phenanthrene biodegradation by a new salt-tolerant/halophilic and nitrate-reducing Virgibacillus halodenitrificans strain PheN4 and metabolic processes exploration[J]. Journal of Hazardous Materials, 2022, 435: 129085. [百度学术]
BIRCH-HIRSCHFELD L. Die Umsetzung von Acetylen durch Mycobacterium lacticola[J]. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt, 1932, 86: 113-129. [百度学术]
SCHINK B. Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov.[J]. Archives of Microbiology, 1985, 142(3): 295-301. [百度学术]
GROSSI V, CRAVO-LAUREAU C, MÉOU A, RAPHEL D, GARZINO F, HIRSCHLER-RÉA A. Anaerobic 1-alkene metabolism by the alkane- and alkene-degrading sulfate reducer Desulfatibacillum aliphaticivorans strain CV2803T[J]. Applied and Environmental Microbiology, 2007, 73(24): 7882-7890. [百度学术]
CRAVO-LAUREAU C, MATHERON R, CAYOL JL, JOULIAN C, HIRSCHLER-RÉA A. Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an N-alkane- and N-alkene-degrading, sulfate-reducing bacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(pt 1): 77-83. [百度学术]
LASO-PÉREZ R, WEGENER G, KNITTEL K, WIDDEL F, HARDING KJ, KRUKENBERG V, MEIER DV, RICHTER M, TEGETMEYER HE, RIEDEL D, RICHNOW HH, ADRIAN L, REEMTSMA T, LECHTENFELD OJ, MUSAT F. Thermophilicarchaea activate butane via alkyl-coenzyme M formation[J]. Nature, 2016, 539: 396-401. [百度学术]
DOMBROWSKI N, SEITZ KW, TESKE AP, BAKER BJ. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments[J]. Microbiome, 2017, 5(1): 106. [百度学术]
MUSAT F, KJELDSEN KU, ROTARU AE, CHEN SC, MUSAT N. Archaea oxidizing alkanes through alkyl-coenzyme M reductases[J]. Current Opinion in Microbiology, 2024, 79: 102486. [百度学术]
WEGENER G, LASO-PÉREZ R, ORPHAN VJ, BOETIUS A. Anaerobic degradation of alkanes by marine archaea[J]. Annual Review of Microbiology, 2022, 76: 553-577. [百度学术]
ZEHNLE H, LASO-PÉREZ R, LIPP J, RIEDEL D, BENITO MERINO D, TESKE A, WEGENER G. Candidatus Alkanophaga archaea from Guaymas Basin hydrothermal vent sediment oxidize petroleum alkanes[J]. Nature Microbiology, 2023, 8: 1199-1212. [百度学术]
CHEN SC, MUSAT N, LECHTENFELD OJ, PASCHKE H, SCHMIDT M, SAID N, POPP D, CALABRESE F, STRYHANYUK H, JAEKEL U, ZHU YG, JOYE SB, RICHNOW HH, WIDDEL F, MUSAT F. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep[J]. Nature, 2019, 568: 108-111. [百度学术]
BENITO MERINO D, LIPP JS, BORREL G, BOETIUS A, WEGENER G. Anaerobic hexadecane degradation by a thermophilic Hadarchaeon from Guaymas Basin[J]. The ISME Journal, 2024, 18(1): wrad004. [百度学术]
HAHN CJ, LASO-PÉREZ R, VULCANO F, VAZIOURAKIS KM, STOKKE R, STEEN IH, TESKE A, BOETIUS A, LIEBEKE M, AMANN R, KNITTEL K, WEGENER G. Candidatus Ethanoperedens, a thermophilic genus of archaea mediating the anaerobic oxidation of ethane[J]. mBio, 2020, 11(2): e00600-20. [百度学术]
WANG YZ, FENG XY, NATARAJAN VP, XIAO X, WANG FP. Diverse anaerobic methane- and multi-carbon alkane-metabolizing archaea coexist and show activity in Guaymas Basin hydrothermal sediment[J]. Environmental Microbiology, 2019, 21(4): 1344-1355. [百度学术]
GIEG LM, FOWLER SJ, BERDUGO-CLAVIJO C. Syntrophic biodegradation of hydrocarbon contaminants[J]. Current Opinion in Biotechnology, 2014, 27: 21-29. [百度学术]
张雪, 张辉, 承磊. 获取有机物厌氧降解产甲烷过程中关键功能类群: 互营细菌培养物[J]. 微生物学报, 2019, 59(2): 211-223. [百度学术]
ZHANG X, ZHANG H, CHENG L. Key players involved in methanogenic degradation of organic compounds: progress on the cultivation of syntrophic bacteria[J]. Acta Microbiologica Sinica, 2019, 59(2): 211-223 (in Chinese). [百度学术]
承磊, 郑珍珍, 王聪, 张辉. 产甲烷古菌研究进展[J]. 微生物学通报, 2016, 43(5): 1143-1164. [百度学术]
CHENG L, ZHENG ZZ, WANG C, ZHANG H. Recent advances in methanogens[J]. Microbiology China, 2016, 43(5): 1143-1164 (in Chinese). [百度学术]
MAYUMI D, MOCHIMARU H, YOSHIOKA H, SAKATA S, MAEDA H, MIYAGAWA Y, IKARASHI M, TAKEUCHI M, KAMAGATA Y. Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the high-temperature petroleum reservoir of Yabase oil field (Japan)[J]. Environmental Microbiology, 2011, 13(8): 1995-2006. [百度学术]
FERRY JG. Methanosarcina acetivorans: a model for mechanistic understanding of aceticlastic and reverse methanogenesis[J]. Frontiers in Microbiology, 2020, 11: 1806. [百度学术]
KHOMYAKOVA MA, MERKEL AY, SLOBODKIN AI, SOROKIN DY. Phenotypic and genomic characterization of the first alkaliphilic aceticlastic methanogens and proposal of a novel genus Methanocrinis gen. nov. within the family Methanotrichaceae[J]. Frontiers in Microbiology, 2023, 14: 1233691. [百度学术]
ZHAO JY, HU B, DOLFING J, LI Y, TANG YQ, JIANG YM, CHI CQ, XING JM, NIE Y, WU XL. Thermodynamically favorable reactions shape the archaeal community affecting bacterial community assembly in oil reservoirs[J]. Science of the Total Environment, 2021, 781: 146506. [百度学术]
KRYACHKO Y, DONG XL, SENSEN CW, VOORDOUW G. Compositions of microbial communities associated with oil and water in a mesothermic oil field[J]. Antonie Van Leeuwenhoek, 2012, 101(3): 493-506. [百度学术]
MAYUMI D, DOLFING J, SAKATA S, MAEDA H, MIYAGAWA Y, IKARASHI M, TAMAKI H, TAKEUCHI M, NAKATSU CH, KAMAGATA Y. Carbon dioxide concentration dictates alternative methanogenic pathways in oil reservoirs[J]. Nature Communications, 2013, 4: 1998. [百度学术]
WU KJ, ZHOU L, TAHON G, LIU LY, LI J, ZHANG JC, ZHENG FF, DENG CP, HAN WH, BAI LP, FU L, DONG XZ, ZHANG CL, ETTEMA TJG, SOUSA DZ, CHENG L. Isolation of a methyl-reducing methanogen outside the Euryarchaeota[J]. Nature, 2024, 632: 1124-1130. [百度学术]
SÖLLINGER A, URICH T. Methylotrophic methanogens everywhere: physiology and ecology of novel players in global methane cycling[J]. Biochemical Society Transactions, 2019, 47(6): 1895-1907. [百度学术]
MAYUMI D, MOCHIMARU H, TAMAKI H, YAMAMOTO K, YOSHIOKA H, SUZUKI Y, KAMAGATA Y, SAKATA S. Methane production from coal by a single methanogen[J]. Science, 2016, 354(6309): 222-225. [百度学术]
KURTH JM, NOBU MK, TAMAKI H, de JONGE N, BERGER S, JETTEN MSM, YAMAMOTO K, MAYUMI D, SAKATA S, BAI LP, CHENG L, NIELSEN JL, KAMAGATA Y, WAGNER T, WELTE CU. Methanogenic archaea use a bacteria-like methyltransferase system to demethoxylate aromatic compounds[J]. The ISME Journal, 2021, 15: 3549-3565. [百度学术]
CHENG L, QIU TL, YIN XB, WU XL, HU GQ, DENG Y, ZHANG H. Methermicoccus shengliensis gen. nov., sp. nov., a thermophilic, methylotrophic methanogen isolated from oil-production water, and proposal of Methermicoccaceae fam. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(pt 12): 2964-2969. [百度学术]
BORREL G. A microbe that uses crude oil to make methane[J]. Nature, 2022, 601: 196-197. [百度学术]
刘岩, 郭辽原, 王世虎, 王海增, 郭省学. 罗801块原油微生物气化物模实验[J]. 大庆石油学院学报, 2011, 35(4): 58-61. [百度学术]
LIU Y, GUO LY, WANG SH, WANG HZ, GUO SX. Gasification of oil microbes’ physical simulation experimental study in Luo 801 oil reservoirs[J]. Journal of Daqing Petroleum Institute, 2011, 35(4): 58-61 (in Chinese). [百度学术]
林军章, 冯云, 谭晓明, 王静, 承磊, 王兴谋, 汪卫东. 生物成因稠油与伴生气形成过程模拟研究: 以林樊家地区浅层气和稠油为例[J]. 油气地质与采收率, 2017, 24(2): 85-89. [百度学术]
LIN JZ, FENG Y, TAN XM, WANG J, CHENG L, WANG XM, WANG WD. A simulation experiment of formation of biodegraded heavy oil and associated gas: a case of shallow gas and heavy oil in Linfanjia area[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(2): 85-89 (in Chinese). [百度学术]
李明宅, 张洪年, 刘华, 张辉, 邓宇, 连莉文, 尹小波. 生物气模拟试验的进展[J]. 石油与天然气地质, 1996, 17(2): 117-122. [百度学术]
LI MZ, ZHANG HN, LIU H, ZHANG H, DENG Y, LIAN LW, YIN XB. Advances in simulated test of biogas[J]. Oil & Gas Geology, 1996, 17(2): 117-122 (in Chinese). [百度学术]
CHENG L, SHI SB, YANG L, ZHANG YH, DOLFING J, SUN YG, LIU LY, LI Q, TU B, DAI LR, SHI Q, ZHANG H. Preferential degradation of long-chain alkyl substituted hydrocarbons in heavy oil under methanogenic conditions[J]. Organic Geochemistry, 2019, 138: 103927. [百度学术]
BERDUGO-CLAVIJO C, GIEG LM. Conversion of crude oil to methane by a microbial consortium enriched from oil reservoir production waters[J]. Frontiers in Microbiology, 2014, 5: 197. [百度学术]
POWELL GE, HILTON MG, ARCHER DB, KIRSOP BH. Kinetics of the methanogenic fermentation of acetate[J]. Journal of Chemical Technology and Biotechnology Biotechnology, 1983, 33(4): 209-215. [百度学术]
DOLFING J, MULDER JW. Comparison of methane production rate and coenzyme f(420) content of methanogenic consortia in anaerobic granular sludge[J]. Applied and Environmental Microbiology, 1985, 49(5): 1142-1145. [百度学术]
PEREZ M, ROMERO LI, SALES D. Kinetics of thermophilic anaerobes in fixed-bed reactors[J]. Chemosphere, 2001, 44(5): 1201-1211. [百度学术]
高配科. 油藏内源微生物高效激活剂筛选与评价[D]. 天津: 南开大学硕士学位论文, 2011. [百度学术]
GAO PK. Activator screen, optimization and effect evaluation of indigenous microorganisms from oil reservoir[D]. Tianjin: Master’s Thesis of Nankai University, 2011 (in Chinese). [百度学术]
GAO PK, LI GQ, ZHAO LX, DAI XC, TIAN HM, DAI LB, WANG HB, HUANG HD, CHEN YH, MA T. Dynamic processes of indigenous microorganisms from a low-temperature petroleum reservoir during nutrient stimulation[J]. Journal of Bioscience and Bioengineering, 2014, 117(2): 215-221. [百度学术]
李彩风, 王晓, 李岗建, 林军章, 汪卫东, 束青林, 曹嫣镔, 肖盟. 嗜烃乳化菌SL-1与内源菌协同驱油的菌群作用关系研究[J]. 化工学报, 2022, 73(9): 4095-4102. [百度学术]
LI CF, WANG X, LI GJ, LIN JZ, WANG WD, SHU QL, CAO YB, XIAO M. Synergistic relationship between hydrocarbon degrading and emulsifying strain SL-1 and endogenous bacteria during oil displacement[J]. CIESC Journal, 2022, 73(9): 4095-4102 (in Chinese). [百度学术]
王晓. 嗜烃乳化功能菌与内源菌群协同驱油机制研究[D]. 青岛: 青岛科技大学硕士学位论文, 2023. [百度学术]
WANG X. Study of the mechanism of synergistic oil displacement between hydrophilic emulsifying functional bacteria and endogenous bacteria[D]. Qingdao: Master’s Thesis of Qingdao University of Science and Technology, 2023 (in Chinese). [百度学术]
丁明山, 林军章, 冯云, 孙楠, 王冠, 巴燕, 汪卫东. 新型产甲烷菌系提高极限含水油藏采收率技术[J]. 石油实验地质, 2024, 46(2): 412-419. [百度学术]
DING MS, LIN JZ, FENG Y, SUN N, WANG G, BA Y, WANG WD. Enhancing oil recovery of ultimate water-cut reservoirs with a novel methane-producing bacterial strain[J]. Petroleum Geology Experiment, 2024, 46(2): 412-419 (in Chinese). [百度学术]