摘要
枯草芽孢杆菌(Bacillus subtilis)是一种公认安全的(generally recognized as safe, GRAS)益生菌,同时也是优良的工业生产底盘菌株,具有异源蛋白分泌能力强、低品质碳源生长特性良好以及无明显密码子偏好性等优点。自2016年以来,成簇规律间隔短回文重复序列(clustered regularly interspaced short palindromic repeats, CRISPR)基因编辑技术已成功应用于枯草芽孢杆菌,实现了精准的基因点突变、基因敲除、外源基因插入、基因表达调控及碱基替换等多种基因工程操作。这些进展极大地推动了枯草芽孢杆菌作为高效微生物细胞工厂的发展,并在农业、医药、食品以及合成生物学等领域展现了广泛的应用潜力。本文系统回顾了CRISPR系统在枯草芽孢杆菌中的发展历程,重点总结了其在高效生产不同产物方面的应用成果。旨在通过CRISPR系统靶向优化枯草芽孢杆菌的代谢通路,为在工业化生产中高效、稳定地合成目标产物提供参考,并为新型基因编辑系统的进一步开发与应用提供启示。
人类生活与微生物活动密切相关。随着系统生物学、合成生物学和进化工程等现代生物技术的快速发展,研究人员能够更深入地理解微生物活动的内在功能机制,对微生物的研究应用已从天然可培养微生物的分离鉴定转向可编程的基因工程菌研究。人类应用微生物至今,经历了3个完全不同的时代:微生物应用1.0时代是充分发挥微生物的自然特性;2.0时代是基于重组DNA技术或物理、化学诱变获得性能更佳的突变菌;3.0时代则是基于现代生物技术的“设计(design)-构建(construction)-评估(evaluation)-优化(optimization) (DCEO)”或“设计(design)-构建(build)-测试(test)-学习(learn) (DBTL)”循环获得基因工程菌,甚至完全从头合成细菌基因
枯草芽孢杆菌(Bacillus subtilis)是一种常见的革兰氏阳性菌,也是公认安全的(generally recognized as safe, GRAS)益生菌,具有异源蛋白分泌能力强、在低品质碳源上生长特性良好、无明显密码子偏好性等特
尽管传统基因工程操作方法经过多年发展取得了许多突破,但依然存在技术难度大、费时、成本高等不足,这也限制了枯草芽孢杆菌基因工程改造的进一步发展,尤其是在进行全局代谢网络调控中的应用。自2013年以来,成簇规律间隔短回文重复序列(clustered regularly interspaced short palindromic repeats, CRISPR)及其关联(CRISPR associated, Cas)系统(CRISPR/Cas)因操作简单、适用范围广、编辑效率高等诸多优点,迅速发展成为第三代基因编辑技
本文系统地介绍了CRISPR/Cas系统的作用原理,梳理了CRISPR基因编辑工具在枯草芽孢杆菌中的发展历程,总结了CRISPR系统靶向编辑枯草芽孢杆菌以促进核黄素、透明质酸、酶蛋白等产物高效生物合成的成功案例,并对CRISPR系统在枯草芽孢杆菌中的发展应用进行了展望,以期为基于全局代谢网络调控的枯草芽孢杆菌基因工程提供参考。
1 CRISPR/Cas系统的作用原理及发展
1.1 CRISPR/Cas系统的基因编辑原理
CRISPR/Cas系统作为原核生物的获得性免疫系统,主要由CRISPR基因序列与Cas基因组成。CRISPR基因序列能够储存病毒等侵入宿主的核苷酸信息,Cas基因能够编码核酸内切酶等功能性蛋白。CRISPR系统可划分为适应模块、表达模块、干扰模块和辅助模

图1 CRISPR/Cas9和CRISPR/Cas12a基因编辑示意
Figure 1 Schematic depicting gene editing based on CRISPR/Cas9 and CRISPR/Cas12
1.2 CRISPR/Cas系统的分类
基于Cas蛋白的组成,CRISPR系统被分为两大类。Ⅰ类CRISPR系统(如I型、III型和IV型系统)需要多种Cas蛋白才能发挥作用,而Ⅱ类CRISPR系统(如II型、V型和VI型系统)只需要一个Cas蛋白实现其功
1.3 CRISPR/Cas系统衍生的基因编辑工具发展
Cas9蛋白HNH结构域的H840A以及RuvC结构域的D10A发生点突变获得缺乏内切核酸酶活性的变体蛋白dCas9,但其依然能结合靶位点DNA序列,dCas9融合阻遏因子可实现对靶基因的抑制表达调控,即CRISPR干扰(CRISPR interference, CRISPRi) (

图2 CRISPRi和CRISPRa系统示意
Figure 2 Schematic diagrams of the CRISPRi and CRISPRa system
Komor
BE和PE系统可实现靶位点的单碱基替换,导致编码基因的提前终止,从而用于基因功能研究或有害基因功能沉默(

图3 CBE (A
Figure 3 Schematic diagrams of the CBE (A
2 枯草芽孢杆菌中CRISPR/Cas基因编辑工具的发展
自2016年以来,CRISPR/Cas系统在枯草芽孢杆菌中实现了高效率的单基因点突变、多基因点突变、单基因敲除、多基因缺失、大片段删除和外源基因插入等基因编辑操作,同时,CRISPRi、CRISPRa和BE系统等遗传工具的开发应用,以及将CRISPR系统结合生物传感器实现代谢途径多模块的动态调控,已拓展到生物制造领域。2016年,CRISPR/Cas系统首次应用于枯草芽孢杆菌的遗传改造,通过CRISPR/Cas9技术成功修复了B. subtilis 168的trpC2基因突

图4 CRISPR/Cas系统在枯草芽孢杆菌中的应用历程
Figure 4 An application history of the CRISPR/Cas system in Bacillus subtilis.
2.1 应用CRISPR/Cas系统实现高效基因敲除和敲入
在枯草芽孢杆菌中,CRISPR/Cas系统已实现高效率的点突变、大片段基因敲除和敲入,并且在增加透明质酸产
由此可见,CRISPR/Cas系统自应用于枯草芽孢杆菌以来,发展出了单质粒系统、双质粒系统和基因组嵌入表达系统,基因编辑效率和稳定性不断提升(
System types | Strains | Editing types | Editing efficiency | Purposes | References |
---|---|---|---|---|---|
dCas9 | 168 | Single plasmid, CBE, point mutation | The fluorescence intensity of GFP in RBS library spaned three orders of magnitude | Improved the growth rate and glycerol utilization efficiency |
[ |
Cas9 | 168 | Single plasmid, KO, point mutation | TrpC point mutations 100%; 4.1 kb KO 97%; 25.1 kb KO >90% | The first CRISPR/Cas9 tool in B. subtilis |
[ |
dCas9 | 168 | Genome integration, CRISPRi | GFP and RFP suppression intensity 0.01-1.00 times | CRISPRi library validation of essential gene functions |
[ |
Cas9 | 168 | Dual plasmids, KO, KI, point mutation | Single gene deletion 100%; 38 kb KO 80%; GFP gene KI 97% | Efficient large gene deletions achieved |
[ |
dCas9 | SCK6 | Dual plasmids, CRISPRi | Protease genes vpr, bpr, and nprB expression decreased by 95%, 78%, and 98% | Dual regulation of inhibition and activation, with a 260-fold increased in expression and a 2.6-fold increased in production of the amylase gene BLA |
[ |
dCas9 | SCK6 | Dual plasmids, CRISPRa | GFP expression increased by 2.4-3.8 times | ||
MAD7 | 168 | Single plasmid, KO | Gfpmut3 KO 100%; amyE KO 93% | Efficient editing ensured by homologous recombination repair |
[ |
dMAD7 | 168 | Single plasmid, CRISPRi | GFP suppression 1.3-3.5 times; amyE suppression 2.0-2.4 times | Amylase activity decreased by 99.4% |
[ |
dCpf1 | 168 | Genome integration, CRISPRi, CRISPRa | GFP suppression intensity 0.008-0.248 times; 1.8-fold activation of mKate fluorescence | Simultaneous gene activation and inhibition achieved by dCpf1-RemA |
[ |
Cpf1 | 168 | Dual plasmids, KO, KI, point mutation | Gene KI 74%-82%; double gene KO 100%; 6 site point mutations 100% |
NgAgo nucleases improved the efficiency of homologous recombination; inactivation of protease genes |
[ |
Cpf1 | 168 | Single plasmid, KO, KI | Small fragment KO >95%; large fragment >80%; 78 kb KO 16.7% | Higher stability of gene KO with Cpf1 protein than Cas9 protein |
[ |
dCas9 | 168 | Single plasmid, CBE, point mutation | 3 site 100%, 4 site 50% | The first report of CBE application; 5 nt editing window |
[ |
dCas9 | 168 | Single plasmid, CBE, point mutation | Efficiency of mutations in 2, 3, 4, and 5 genes were 100%, 100%, 83.3%, and 75.5%, respectively | Construction of 4 types of base editing tools |
[ |
Cas9n | 168 | Single plasmid, CBE, ABE | Editing efficiency of most sites>60% | Enhanced resistance to lanthionine antibiotics |
[ |
Cas9 | BsMN0 | Single plasmid, KI | Single amyQ gene integration efficiency 97.5%-98.6% | Multi-gene one-step insertion and selection |
[ |
dCas9 | 1A976 | Single plasmid, CRISPRi, CRISPRa | GFP fluorescence decreased by 5.02-8.36 times | Increased expression of recombinant proteins |
[ |
I型CRISPRi | 168 | Single plasmid, CRISPRi | GFP fluorescence decreased by 26.84-34.18 times | The titer of d-pantothenic acid increased to 12.81 g/L |
[ |
Cas9 |
YB886 (168 derivative) | Single plasmid, KO | NT | Enhanced resistance to bacteriophage SPP1 |
[ |
Cas9 | TS01 | Single plasmid, KO, KI | KO efficiency >40%; 2 kb KI 5% | Bacteriophage gene editing |
[ |
Cas9 | ATCC 6051A |
Single plasmid, KO (gene damage) | SrfC 284 bp deletion efficiency 9.1%; spoIIA deletion efficiency 36%; double gene deletion efficiency 33% | Inhibition of foam formation and spore production |
[ |
Cre-Cas9 | DB428 | Dual plasmids, KO, KI | Gene KO and KI efficiency >95% | Insertion of no resistant genes, inactivation of protease genes |
[ |
Cas9 dCas9 | 1A751 | Genome integration, KO, KI, CRISPRi | Point mutation 85%-100%; double gene KO 36%; 2.9 kb KI 69% | β-galactosidase activity decreased by 8 times |
[ |
dCas9 |
168 1A751 | Genome integration, CRISPRi | FtsZ relative suppression efficiency 25%-100% | Hyaluronic acid production increased by 204% |
[ |
Cas9 | 168 | Dual plasmids, KO | 500 bp KO >80% | Self-targeted removal of plasmids |
[ |
Cas9n | 168 |
Dual plasmids, point mutation, KO, KI | 8 kb KO-82%; 20.5 kb KO-23.6%; 1-2 kb KI >90% | Riboflavin production increased by 59% |
[ |
dCas9 | 168 | Genome integration, CRISPRi | GlcNAc production increased 81.7-131.6 g/L | Dynamic regulation of metabolic flux in response to intracellular GlcN6P concentration |
[ |
dCas9 |
BNY (168 derivative) | Genome integration, CRISPRi | Simultaneously suppressed zwf, pfkA, and glmM intensity 0.01-0.10 times | GlcNAc yield increased by 88.5% with reduced by-products |
[ |
dCas9 |
BY14 (168 derivative) | Genome integration, CRISPRi | Pyk and zwf expression decreased by 13.6 and 12.7 times | Lactose production increased by 59.2%; lactose titer increased by 17.4% |
[ |
Cas9n | ATCC6051△5 | Single plasmid, CBE | NT | Elimination of resistant genes in plasmids |
[ |
KO:敲除;KI:敲入;CRISPRi:CRISPR干扰;CRISPRa:CRISPR激活;CBE:胞嘧啶碱基编辑器;ABE:腺嘌呤碱基编辑器。
KO: Knock-out; KI: Knock-in; CRISPRi: CRISPR interference; CRISPRa: CRISPR activation; CBE: Cytosine base editor; ABE: Adenine base editor.
2.2 CRISPRi和CRISPRa实现多通路基因表达调控
CRISPRi和CRISPRa可特异性抑制或激活基因转录,实现目的基因表达的下调或激活。2016年,CRISPR/Cas9首次应用于枯草芽孢杆菌时,CRISPRi也随即应用到枯草芽孢杆菌中,并在基因功能研究中展现出巨大潜
2019年,Lu
2.3 碱基编辑器的开发应用
2020年,胞嘧啶碱基编辑系统CBE首次应用于枯草芽孢杆菌。研究人员发现,CBE在枯草芽孢杆菌中具有5 nt的编辑窗口范围,在PAM位点上游-16‒-20位置的编辑效率显著不同,以淀粉酶基因amyE为靶位点时,-16‒-20位置的编辑效率分别为2%、51%、100%、20%和13%;当运用CBE工具同时靶向3个位点和4个位点时,编辑效率分别为100%和50%;因此,仅通过两轮基因编辑即可实现8个蛋白酶基因的失活,并检测到蛋白酶活性显著降低至与WB800菌株相当;进一步分析BE系统在B. subtilis 168基因组(共4 106个基因)的可编辑范围发现,共有3 266个非必需基因(占85.1%)可编辑,而其他569个非必需基因的编码区缺乏合适的PAM位
由于BE系统在实现单碱基的精准替换方面表现出明显优势,后续在枯草芽孢杆菌中的研究应用将着重于文库构建寻找特定表型功能提升的突变株,或者对潜在耐药基因、毒力因子、致病性基因等特定有害基因功能的失活。此外,BE系统在未知基因功能的研究也能发挥重要作用。另一方面,尽管CBE和ABE已经在枯草芽孢杆菌中成功应用,但仍存在可编辑范围较窄的问题,且在同时编辑多个靶基因时,编辑效率明显下降或存在脱靶效应,因此在枯草芽孢杆菌中的多路编辑的BE系统有很大的提升空间。此外,PE系统至今尚未见在枯草芽孢杆菌中的文献报道,未来探究PE系统在枯草芽孢杆菌中的编辑应用也具有重要意义。
3 CRISPR基因编辑技术在枯草芽孢杆菌底盘菌株改造中的应用
在合成生物学中,进行枯草芽孢杆菌底盘菌株改造的核心思路之一是对目的产物合成竞争途径的抑制以及对合成途径限速酶基因的过表达,从而使更多的代谢通量流入目的产物合成途径,应用CRISPR/Cas系统能方便快捷地达到这一目的。通过CRISPR/Cas系统对枯草芽孢杆菌的基因表达调控和全局代谢网络优化,已成功实现透明质酸、N-乙酰氨基葡萄糖、核黄素等各类活性化合物的分泌表达,以及促进蛋白酶、纤维素酶等生物酶的高效生
Westbrook
Boumezbeur
Wu
在研究枯草芽孢杆菌产纤维素酶特性的工作中,研究人员以白蚁肠道来源的野生型B. subtilis RLI2019为出发菌,以超过80%的效率连续敲除其10个耐药性基因,获得无耐药性基因菌株,该菌株依然保留了高效的纤维素降解能力,并且能够提高动物生长性
此外,基于CRISPR基因编辑技术进行枯草芽孢杆菌全局代谢通路优化的遗传改造策略,已成功构建出涵盖酶制剂(淀粉
System types | Strains | Optimization strategy | Optimization results | References |
---|---|---|---|---|
CRISPRa | SCK6 | Inhibited and activated dual regulation | The amylase yield increased by 260 times |
[ |
CRISPRi | 168 | Integration of temperature sensor with CRISPRi system | The production of 2′-fucosyl lactose reached 1 839.7 mg/L |
[ |
CRISPRi | 168 | Reconstruction of type I CRISPRi system to control pdhA expression | The titer of d-pantothenic acid increased to 12.81 g/L |
[ |
Cas9 | 168 | Heterologous expression of SeHAS gene, overexpression of pgsA and clsA genes, downregulation of ftsZ gene expression | The hyaluronic acid titer increased by 204% |
[ |
CRISPRi | BNY | Inhibition of zwf, pfkA, and glmM genes | The production of N-acetylglucosamine reached 20.5 g/L |
[ |
AsCpf1 | 168 | Knockout of eps gene cluster, knockin of tuaD gene at mpr and epr sites | The hyaluronic acid production reached 1.39 g/L |
[ |
Cas9 | 168 | Alleviation of transcriptional riboswitch restrictions on riboflavin biosynthesis pathway | The riboflavin production increased by 53% |
[ |
Cas9n | 168 | Regulation of ribB, ribA, and ribH genes | The riboflavin production increased by 59% to reach 1.39 g/L |
[ |
dCas12a | S5 | Construction of genetic ScrABBLE system | The titer of N-acetylglucosamine reached 183.9 g/L |
[ |
Cas9 | RLI2019 | Knockout of 10 antibiotic resistance genes | The strain was more sensitive to antibiotics |
[ |
Cas9 | RLI2019 | Simultaneous integration of eglS, Cel48S, and bglS genes at aprE, epr, and amyE sites | The activities of endoglucanase, exoglucanase, and β-glucosidase were 3.1 times, 6.6 times, and 3.0 times of the starting strain, respectively |
[ |
Cas9 | 168 | Regulation of key genes in the synthetic pathway trpC2 | The lycopene production reached 1.12 mg/L |
[ |
4 总结与展望
遗传改造工具的技术迭代是推动基因工程菌研究的重要基础,而系统代谢工程是构建理想微生物细胞工厂的有力手段。在过去近10年间,以枯草芽孢杆菌为底盘菌的CRISPR基因编辑技术应用已突破传统基因工程的局限。通过目标基因过表达、代谢途径优化及代谢网络重构等策略,显著提升了目的产物的生物合成效率,为工业级量产提供了创新性解决方案。当前研究已形成以模式菌B. subtilis 168及其衍生菌株为核心的技术体系,但仍存在一些关键问题亟待解决,例如特异性不足导致的脱靶效应、全局代谢网络多层级调控的复杂性、自然环境分离的野生型菌株CRISPR基因编辑体系的不成熟性,以及工程菌生物安全性评估体系的不完善性等。在未来的技术发展中,应重点关注以下几个方面:(1) 全局基因表达调控系统的开发,例如开发CRISPR系统与群体感应系统耦合的自适应调控平台,实现代谢通路的动态平衡;(2) CRISPR基因编辑工具的普适性应用,将经过模式菌验证的CRISPR工具包拓展至野生菌株;(3) 在提高CRISPR基因编辑精确性方面,须持续致力于发掘毒性低、分子量小、靶向范围宽、编辑效率高的新型核酸酶,同时,整合深度学习算法,甚至引入人工智能技术,构建脱靶效应预测模型。
为实现工程菌最终的工业化安全应用,全面评估基于CRISPR系统重构的工程菌遗传稳定性和潜在风险,并制定相应的安全性检测标准和风险调控策略至关重要。总体而言,随着CRISPR基因编辑技术的持续发展,枯草芽孢杆菌中的可编程基因操作应用前景将更为广阔,并将进一步推动其在生物制造和合成生物学领域的发展应用。
作者贡献声明
公涵萱:文献检索整理,综述撰写;王智伟:图表制作及修改;陈玉林:整体构思与设计;杨雨鑫:全文审阅与修订;刘功炜:全文指导与返修。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
CHEN X, GAO C, GUO L, HU G, LUO Q, LIU J, NIELSEN J, CHEN J, LIU L. DCEO biotechnology: tools to design, construct, evaluate, and optimize the metabolic pathway for biosynthesis of chemicals[J]. Chemical Reviews, 2018, 118(1): 4-72. [百度学术]
DVOŘÁK P, NIKEL PI, DAMBORSKÝ J, de LORENZO V. Bioremediation 3.0: engineering pollutant-removing bacteria in the times of systemic biology[J]. Biotechnology Advances, 2017, 35(7): 845-866. [百度学术]
GU Y, XU X, WU Y, NIU T, LIU Y, LI J, DU G, LIU L. Advances and prospects of Bacillus subtilis cellular factories: from rational design to industrial applications[J]. Metabolic Engineering, 2018, 50: 109-121. [百度学术]
ZHU B, STÜLKE J. SubtiWiki in 2018: from genes and proteins to functional network annotation of the model organism Bacillus subtilis[J]. Nucleic Acids Research, 2018, 46(D1): D743-D748. [百度学术]
POPP PF, DOTZLER M, RADECK J, BARTELS J, MASCHER T. The Bacillus BioBrick Box 2.0: expanding the genetic toolbox for the standardized work with Bacillus subtilis[J]. Scientific Reports, 2017, 7(1): 15058. [百度学术]
SIERRO N, MAKITA Y, de HOON M, NAKAI K. DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information[J]. Nucleic Acids Research, 2008, 36(Database issue): D93-D96. [百度学术]
CASPI R, BILLINGTON R, FERRER L, FOERSTER H, FULCHER CA, KESELER IM, KOTHARI A, KRUMMENACKER M, LATENDRESSE M, MUELLER LA, ONG Q, PALEY S, SUBHRAVETI P, WEAVER DS, KARP PD. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases[J]. Nucleic Acids Research, 2016, 44(D1): D471-D480. [百度学术]
CONTESINI FJ, MELO RR, SATO HH. An overview of Bacillus proteases: from production to application[J]. Critical Reviews in Biotechnology, 2018, 38(3): 321-334. [百度学术]
ZHANG Q, WU Y, GONG M, ZHANG H, LIU Y, LV X, LI J, DU G, LIU L. Production of proteins and commodity chemicals using engineered Bacillus subtilis platform strain[J]. Essays in Biochemistry, 2021, 65(2): 173-185. [百度学术]
NIAUDET B, JANNIÈRE L, EHRLICH SD. Integration of linear, heterologous DNA molecules into the Bacillus subtilis chromosome: mechanism and use in induction of predictable rearrangements[J]. Journal of Bacteriology, 1985, 163(1): 111-120. [百度学术]
POHL S, BHAVSAR G, HULME J, BLOOR AE, MISIRLI G, LECKENBY MW, RADFORD DS, SMITH W, WIPAT A, WILLIAMSON ED, HARWOOD CR, CRANENBURGH RM. Proteomic analysis of Bacillus subtilis strains engineered for improved production of heterologous proteins[J]. Proteomics, 2013, 13(22): 3298-3308. [百度学术]
YAN X, YU HJ, HONG Q, LI SP. Cre/lox system and PCR-based genome engineering in Bacillus subtilis[J]. Applied and Environmental Microbiology, 2008, 74(17): 5556-5562. [百度学术]
MALI P, AACH J, STRANGES PB, ESVELT KM, MOOSBURNER M, KOSURI S, YANG L, CHURCH GM. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering[J]. Nature Biotechnology, 2013, 31(9): 833-838. [百度学术]
ISHINO Y, SHINAGAWA H, MAKINO K, AMEMURA M, NAKATA A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology, 1987, 169(12): 5429-5433. [百度学术]
JANSEN R, EMBDEN JD, GAASTRA W, SCHOULS LM. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology, 2002, 43(6): 1565-1575. [百度学术]
MOJICA FJ, DÍEZ-VILLASEÑOR C, GARCÍA-MARTÍNEZ J, SORIA E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. Journal of Molecular Evolution, 2005, 60(2): 174-182. [百度学术]
BARRANGOU R, FREMAUX C, DEVEAU H, RICHARDS M, BOYAVAL P, MOINEAU S, ROMERO DA, HORVATH P. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712. [百度学术]
DELTCHEVA E, CHYLINSKI K, SHARMA CM, GONZALES K, CHAO Y, PIRZADA ZA, ECKERT MR, VOGEL J, CHARPENTIER E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature, 2011, 471(7340): 602-607. [百度学术]
JINEK M, CHYLINSKI K, FONFARA I, HAUER M, DOUDNA JA, CHARPENTIER E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. [百度学术]
MAKAROVA KS, WOLF YI, ALKHNBASHI OS, COSTA F, SHAH SA, SAUNDERS SJ, BARRANGOU R, BROUNS SJ, CHARPENTIER E, HAFT DH, HORVATH P, MOINEAU S, MOJICA FJ, TERNS RM, TERNS MP, WHITE MF, YAKUNIN AF, GARRETT RA, van der OOST J, BACKOFEN R, et al. An updated evolutionary classification of CRISPR-Cas systems[J]. Nature Reviews Microbiology, 2015, 13(11): 722-736. [百度学术]
WANG JY, DOUDNA JA. CRISPR technology: a decade of genome editing is only the beginning[J]. Science, 2023, 379(6629): eadd8643. [百度学术]
NISHIMASU H, RAN FA, HSU PD, KONERMANN S, SHEHATA SI, DOHMAE N, ISHITANI R, ZHANG F, NUREKI O. Crystal structure of Cas9 in complex with guide RNA and target DNA[J]. Cell, 2014, 156(5): 935-949. [百度学术]
TONG Y, WEBER T, LEE SY. CRISPR/Cas-based genome engineering in natural product discovery[J]. Natural Product Reports, 2019, 36(9): 1262-1280. [百度学术]
KOONIN EV, MAKAROVA KS, ZHANG F. Diversity, classification and evolution of CRISPR-Cas systems[J]. Current Opinion in Microbiology, 2017, 37: 67-78. [百度学术]
HU JH, MILLER SM, GEURTS MH, TANG W, CHEN L, SUN N, ZEINA CM, GAO X, REES HA, LIN Z, LIU DR. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699): 57-63. [百度学术]
WALTON RT, CHRISTIE KA, WHITTAKER MN, KLEINSTIVER BP. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]. Science, 2020, 368(6488): 290-296. [百度学术]
ZALATAN JG, LEE ME, ALMEIDA R, GILBERT LA, WHITEHEAD EH, La RUSSA M, TSAI JC, WEISSMAN JS, DUEBER JE, QI LS, LIM WA. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds[J]. Cell, 2015, 160(1/2): 339-350. [百度学术]
DOUDNA JA, CHARPENTIER E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213): 1258096. [百度学术]
KOMOR AC, KIM YB, PACKER MS, ZURIS JA, LIU DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424. [百度学术]
MATSOUKAS IG. Commentary: programmable base editing of A•T to G•C in genomic DNA without DNA cleavage[J]. Frontiers in Genetics, 2018, 9: 21. [百度学术]
ANZALONE AV, GAO XD, PODRACKY CJ, NELSON AT, KOBLAN LW, RAGURAM A, LEVY JM, MERCER JAM, LIU DR. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing[J]. Nature Biotechnology, 2022, 40(5): 731-740. [百度学术]
KOBLAN LW, ARBAB M, SHEN MW, HUSSMANN JA, ANZALONE AV, DOMAN JL, NEWBY GA, YANG D, MOK B, REPLOGLE JM, XU A, SISLEY TA, WEISSMAN JS, ADAMSON B, LIU DR. Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning[J]. Nature Biotechnology, 2021, 39(11): 1414-1425. [百度学术]
LIU Z, LU Z, YANG G, HUANG S, LI G, FENG S, LIU Y, LI J, YU W, ZHANG Y, CHEN J, SUN Q, HUANG X. Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing[J]. Nature Communications, 2018, 9(1): 2338. [百度学术]
宗媛, 高彩霞. 碱基编辑系统研究进展[J]. 遗传, 2019, 41(9): 777-800. [百度学术]
ZONG Y, GAO CX. Progress on base editing systems[J]. Hereditas, 2019, 41(9): 777-800 (in Chinese). [百度学术]
GAUDELLI NM, KOMOR AC, REES HA, PACKER MS, BADRAN AH, BRYSON DI, LIU DR. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464-471. [百度学术]
刘尧, 周先辉, 黄舒泓, 王小龙. 引导编辑: 突破碱基编辑类型的新技术[J]. 遗传, 2022, 44(11): 993-1008. [百度学术]
LIU Y, ZHOU XH, HUANG SH, WANG XL. Prime editing: a search and replace tool with versatile base changes[J]. Hereditas, 2022, 44(11): 993-1008 (in Chinese). [百度学术]
ZHENG K, WANG Y, LI N, JIANG FF, WU CX, LIU F, CHEN HC, LIU ZF. Highly efficient base editing in bacteria using a Cas9-cytidine deaminase fusion[J]. Communications Biology, 2018, 1: 32. [百度学术]
WANG Y, CHENG H, LIU Y, LIU Y, WEN X, ZHANG K, NI X, GAO N, FAN L, ZHANG Z, LIU J, CHEN J, WANG L, GUO Y, ZHENG P, WANG M, SUN J, MA Y. In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing[J]. Nature Communications, 2021, 12(1): 678. [百度学术]
ALTENBUCHNER J. Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system[J]. Applied and Environmental Microbiology, 2016, 82(17): 5421-5427. [百度学术]
PETERS JM, COLAVIN A, SHI H, CZARNY TL, LARSON MH, WONG S, HAWKINS JS, LU CHS, KOO BM, MARTA E, SHIVER AL, WHITEHEAD EH, WEISSMAN JS, BROWN ED, QI LS, HUANG KC, GROSS CA. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria[J]. Cell, 2016, 165(6): 1493-1506. [百度学术]
SO Y, PARK SY, PARK EH, PARK SH, KIM EJ, PAN JG, CHOI SK. A highly efficient CRISPR-Cas9-mediated large genomic deletion in Bacillus subtilis[J]. Frontiers in Microbiology, 2017, 8: 1167. [百度学术]
TOYMENTSEVA AA, ALTENBUCHNER J. New CRISPR-Cas9 vectors for genetic modifications of Bacillus species[J]. FEMS Microbiology Letters, 2019, 366(1): fny284. [百度学术]
LU Z, YANG S, YUAN X, SHI Y, OUYANG L, JIANG S, YI L, ZHANG G. CRISPR-assisted multi-dimensional regulation for fine-tuning gene expression in Bacillus subtilis[J]. Nucleic Acids Research, 2019, 47(7): e40. [百度学术]
PRICE MA, CRUZ R, BRYSON J, ESCALETTES F, ROSSER SJ. Expanding and understanding the CRISPR toolbox for Bacillus subtilis with MAD7 and dMAD7[J]. Biotechnology and Bioengineering, 2020, 117(6): 1805-1816. [百度学术]
WU Y, LIU Y, LV X, LI J, DU G, LIU L. CAMERS-B: CRISPR/Cpf1 assisted multiple-genes editing and regulation system for Bacillus subtilis[J]. Biotechnology and Bioengineering, 2020, 117(6): 1817-1825. [百度学术]
HAO W, SUO F, LIN Q, CHEN Q, ZHOU L, LIU Z, CUI W, ZHOU Z. Design and construction of portable CRISPR-Cpf1-mediated genome editing in Bacillus subtilis 168 oriented toward multiple utilities[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 524676. [百度学术]
YU S, PRICE MA, WANG Y, LIU Y, GUO Y, NI X, ROSSER SJ, BI C, WANG M. CRISPR-dCas9 mediated cytosine deaminase base editing in Bacillus subtilis[J]. ACS Synthetic Biology, 2020, 9(7): 1781-1789. [百度学术]
KIM MS, KIM HR, JEONG DE, CHOI SK. Cytosine base editor-mediated multiplex genome editing to accelerate discovery of novel antibiotics in Bacillus subtilis and Paenibacillus polymyxa[J]. Frontiers in Microbiology, 2021, 12: 691839. [百度学术]
HAO W, CUI W, SUO F, HAN L, CHENG Z, ZHOU Z. Construction and application of an efficient dual-base editing platform for Bacillus subtilis evolution employing programmable base conversion[J]. Chemical Science, 2022, 13(48): 14395-14409. [百度学术]
YU W, JIN K, WU Y, ZHANG Q, LIU Y, LI J, DU G, CHEN J, LV X, LEDESMA-AMARO R, LIU L. A pathway independent multi-modular ordered control system based on thermosensors and CRISPRi improves bioproduction in Bacillus subtilis[J]. Nucleic Acids Research, 2022, 50(11): 6587-6600. [百度学术]
FERRANDO J, FILLUELO O, ZEIGLER DR, PICART P. Barriers to simultaneous multilocus integration in Bacillus subtilis tumble down: development of a straightforward screening method for the colorimetric detection of one-step multiple gene insertion using the CRISPR-Cas9 system[J]. Microbial Cell Factories, 2023, 22(1): 21. [百度学术]
ZHU X, LUO H, YU X, LV H, SU L, ZHANG K, WU J. Genome-wide CRISPRi screening of key genes for recombinant protein expression in Bacillus subtilis[J]. Advanced Science, 2024, 11(33): e2404313. [百度学术]
MAO C, ZHENG H, CHEN Y, YUAN P, SUN D. Development of a type I-E CRISPR-based programmable repression system for fine-tuning metabolic flux toward d-pantothenic acid in Bacillus subtilis[J]. ACS Synthetic Biology, 2024, 13(8): 2480-2491. [百度学术]
WESTBROOK AW, REN X, MOO-YOUNG M, CHOU CP. Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis[J]. Biotechnology and Bioengineering, 2018, 115(1): 216-231. [百度学术]
JAKUTYTE-GIRAITIENE L, GASIUNAS G. Design of a CRISPR-Cas system to increase resistance of Bacillus subtilis to bacteriophage SPP1[J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43(8): 1183-1188. [百度学术]
SCHILLING T, DIETRICH S, HOPPERT M, HERTEL R. A CRISPR-Cas9-based toolkit for fast and precise in vivo genetic engineering of Bacillus subtilis phages[J]. Viruses, 2018, 10(5): 241. [百度学术]
ZHANG K, DUAN X, WU J. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system[J]. Scientific Reports, 2016, 6: 27943. [百度学术]
BURBY PE, SIMMONS LA. MutS2 promotes homologous recombination in Bacillus subtilis[J]. Journal of Bacteriology, 2016, 199(2): e00682-16. [百度学术]
CAI MZ, CHEN PT. Novel combined Cre-Cas system for improved chromosome editing in Bacillus subtilis[J]. Journal of Bioscience and Bioengineering, 2021, 132(2): 113-119. [百度学术]
WESTBROOK AW, MOO-YOUNG M, CHOU CP. Development of a CRISPR-Cas9 tool kit for comprehensive engineering of Bacillus subtilis[J]. Applied and Environmental Microbiology, 2016, 82(16): 4876-4895. [百度学术]
LIM H, CHOI SK. Programmed gRNA removal system for CRISPR-Cas9-mediated multi-round genome editing in Bacillus subtilis[J]. Frontiers in Microbiology, 2019, 10: 1140. [百度学术]
刘丁玉. 枯草芽孢杆菌启动子文库和CRISPR-Cas9n基因组编辑技术的建立与应用[D]. 天津: 天津大学博士学位论文, 2019. [百度学术]
LIU DY. Establishment and application of promoter library and CRISPR-Cas9n mediated genome editing for Bacillus subtilis[D]. Tianjin: Doctoral Dissertation of Tianjin University, 2019 (in Chinese). [百度学术]
WU Y, CHEN T, LIU Y, LV X, LI J, DU G, LEDESMA-AMARO R, LIU L. CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis[J]. Metabolic Engineering, 2018, 49: 232-241. [百度学术]
DONG C, FONTANA J, PATEL A, CAROTHERS JM, ZALATAN JG. Author correction: synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria[J]. Nature Communications, 2018, 9: 4318. [百度学术]
CHEN Q, WANG B, PAN L. Efficient expression of γ-glutamyl transpeptidase in Bacillus subtilis via CRISPR/Cas9n and its immobilization[J]. Applied Microbiology and Biotechnology, 2024, 108(1): 149. [百度学术]
ZHAO X, CHEN X, XUE Y, WANG X. Development of an efficient iterative genome editing method in Bacillus subtilis using the CRISPR-AsCpf1 system[J]. Journal of Basic Microbiology, 2022, 62(7): 824-832. [百度学术]
BOUMEZBEUR AH, BRUER M, STOECKLIN G, MACK M. Rational engineering of transcriptional riboswitches leads to enhanced metabolite levels in Bacillus subtilis[J]. Metabolic Engineering, 2020, 61: 58-68. [百度学术]
LIU D, HUANG C, GUO J, ZHANG P, CHEN T, WANG Z, ZHAO X. Development and characterization of a CRISPR/Cas9n-based multiplex genome editing system for Bacillus subtilis[J]. Biotechnology for Biofuels, 2019, 12: 197. [百度学术]
WU Y, LI Y, JIN K, ZHANG L, LI J, LIU Y, DU G, LV X, CHEN J, LEDESMA-AMARO R, LIU L. CRISPR-dCas12a-mediated genetic circuit cascades for multiplexed pathway optimization[J]. Nature Chemical Biology, 2023, 19(3): 367-377. [百度学术]
陈玉林, 刘功炜, 杨雨鑫, 公涵萱, 崔雯元. 一株无特定抗性基因枯草芽孢杆菌及应用: CN116396915B[P]. 2023-10-31. [百度学术]
CHEN YL, LIU GW, YANG YX, GONG HX, CUI WY. A strain of Bacillus subtilis without specific resistance gene and its application: CN116396915B[P]. 2023-10-31 (in Chinese). [百度学术]
崔雯元. 白蚁源枯草芽孢杆菌的生物学特性与绒山羊饲喂效果研究[D]. 杨陵: 西北农林科技大学硕士学位论文, 2024. [百度学术]
CUI WY. Study on biological characteristics of Bacillus subtilis from termite and feeding effect of cashmere goats[D]. Yangling: Master’s Thesis of Northwest A&F University, 2024 (in Chinese). [百度学术]
LIU G, GONG H, TANG H, MENG Z, WANG Z, CUI W, ZHANG K, CHEN Y, YANG Y. Enhanced lignocellulose degradation in Bacillus subtilis RLI2019 through CRISPR/Cas9-mediated chromosomal integration of ternary cellulase genes[J]. International Journal of Biological Macromolecules, 2025, 306(Pt3): 141727. [百度学术]
公涵萱. 基于CRISPR/Cas9技术增强枯草芽孢杆菌纤维素降解能力的研究[D]. 杨陵: 西北农林科技大学硕士学位论文, 2024. [百度学术]
Gong HX. Study on enhancing cellulose degradation ability of Bacillus subtilis based on CRISPR/Cas9 technology[D]. Yangling: Master’s Thesis of Northwest A&F University, 2024 (in Chinese). [百度学术]
杨雨鑫, 陈玉林, 刘功炜, 公涵萱, 崔雯元. 一株共表达多元纤维素酶基因的枯草芽孢杆菌及其构建方法与应用: CN117264861B[P]. 2024-02-20. [百度学术]
YANG YX, CHEN YL, LIU GW, GONG HX, CUI WY. A Bacillus subtilis strain expressing multiple cellulase genes and its construction method and application: CN117264861B[P]. 2024-02-20 (in Chinese). [百度学术]
LIU Y, CHENG H, LI H, ZHANG Y, WANG M. A programmable CRISPR/Cas9 toolkit improves lycopene production in Bacillus subtilis[J]. Applied and Environmental Microbiology, 2023, 89(6): e0023023. [百度学术]