网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

功能内生细菌消减作物有机污染风险的研究进展  PDF

  • 陈卓涵
  • 周贤
  • 李鹏飞
  • 李凯
  • 王建
南京农业大学 资源与环境科学学院,江苏 南京

最近更新:2025-04-30

DOI: 10.13343/j.cnki.wsxb.20240775

CSTR: 32112.14.j.AMS.20240775

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

作物有机污染威胁食品产品安全和人体健康,亟待解决。内生细菌在微生态系统中不可或缺。近年来,国内外不断有研究从环境中筛选分离出具有降解污染物功能的内生细菌,并利用其调控作物体内有机污染物的代谢过程,实现作物体内有毒有机污染物的高效消减。本文综述了功能内生细菌消减作物体内有毒有机污染物积累的研究进展,重点从功能内生细菌定殖后作物体内有毒有机污染物的降解功能基因、降解产物和途径进行讨论,分析了影响功能内生细菌降解效能的因素,强调了功能内生菌群在作物有机污染物消减方面的重要性,为进一步利用内生细菌调控作物有机污染风险提供了思路和依据。

近年来,随着工业化和现代化的迅速推进,大量污染物随之产生,包括邻苯二甲酸酯(phthalate esters, PAEs)、多环芳烃(polycyclic aromatic hydrocarbons, PAHs)、多氯联苯(polychlorinated biphenyls, PCBs)、总石油烃(total petroleum hydrocarbons, TPHs)、有机农药和环境雌激素等,这些有毒有机污染物多具有致癌、致畸、致突变的“三致”效应,它们通过多种途径进入土壤,并通过作物根系吸收在植物体内积[

1]。例如,Wang[2]调查了长三角地区工业区(钢铁、热电和石化企业)周边蔬菜和稻米中PAHs的残留及风险特征,结果发现二者体内PAHs含量分别为950.3-1 935.1 μg/kg和244-420 μg/kg,食用PAHs污染作物对当地居民健康造成潜在致癌风险。根据2014年全国土壤污染调查公报,我国耕地土壤点位超标率为19.4%,其中轻微、轻度、中度和重度污染点位比例分别为13.7%、2.8%、1.8%和1.1%,主要有机污染物为六氯环己烷、双对氯苯基三氯乙烷和多环芳[3]。然而当前我国面临的问题包括污染土壤缺少足够的修复资金,且针对受污染的耕地土壤尚未开发出适宜的修复技术。因此,如何有效直接地消减作物体内有机污染物积累,对于保障农业生产安全和人群健康意义重大。

以往多是从污染土壤修复的角度来控制作物体内有机污染物的积累,但由于当前技术的不足,农田土壤大面积修复存在一定的现实问题,不仅成本较高且无法消除通过大气沉降进入作物体内的有毒有机污染[

4]。利用功能内生细菌消减作物体内有机污染物积累被认为是一种经济、绿色环保的技术,它们可以通过多种方式使宿主受益,如提高农作物对污染物胁迫的耐受性、降解有毒有机污染物[5]。研究表明,通过从污染土壤或植物中分离出功能菌株,人为构建功能菌群或利用土著微生物群落,再重新定殖于作物体内,可实现有机污染物的高效消减。张志[6]将从PAHs污染土壤中的植物小蓬草分离获得的菌株RS2定殖在空心菜根表,不仅能够促进空心菜生长,还有效降低了空心菜体内菲的残留浓度。显然,利用具有有毒有机污染物降解功能的内生细菌消减作物体内有机污染物积累具有广阔的应用前景。

本文综述了内生细菌的功能和多样性,总结了单一菌株和功能菌群降解作物体内有机污染物的研究进展,分析了内生细菌的作用机制和影响因素,并对内生细菌消减作物有机污染的研究前景和存在的问题进行了总结,以期为降低作物体内有机污染风险、保障农业生产安全和人群健康提供基础依据。

1 内生细菌

内生细菌是指能够定殖在植物内部且不对宿主植物造成感染或负面影响的一类微生[

7]。内生细菌不仅具有溶磷、固氮、产生铁载体等功能,还能促进植物生长、积累营养物质和增强植物抗[8]。此外,内生细菌具有丰富的生物多样性,可分为兼性内生细菌和专性内生细菌,其中大多数为兼性内生细菌,主要在植物、根际和土壤中存[9]。常见的内生细菌包括芽孢杆菌属(Bacillus)、类芽孢杆菌属(Paenibacillus)、假单胞菌属(Pseudomonas)、泛菌属(Pantoea)、根瘤菌属(Rhizobium)、肠杆菌属(Enterobacter)、伯克霍尔德氏菌属(Burkholderia)、节杆菌属(Arthrobacter)和农杆菌属(Agrobacterium)[9-10]

外界细菌可通过根[

11]、根毛或侧根的开[12]、地上植物表面(叶圈)[12]以及种子的垂直转[13]等多种途径进入植物体内,成为内生细菌。其中,土壤细菌从土壤到根的转移是主要途[14],因此内生细菌的多样性在一定程度上取决于根际细菌的多样性。例如,杨立军[15]通过高通量测序分析粉防己不同组织样本,发现在根、茎、叶3个部位的内生细菌丰富度存在显著差异,表现为根>>茎。郝建华[16]研究发现,不同灌丛(灰栒子、忍冬和红瑞木)根际土壤和根内生细菌种类丰富且群落组成存在差异,且灌丛根际土壤细菌的多样性与丰富度均高于根内生细菌,表明根际土壤为细菌提供了良好的生存环境。内生细菌的多样性不仅受宿主植物的影响,还受气候、温度、降水、地理位置、耕作方式和土壤类型等环境因子的影[9]。肖健[17]发现甘蔗间作黄豆显著提高了甘蔗植株根系内生细菌的多样性和丰富度,而间作花生则导致其下降。

内生细菌通过促生提高农作物产量,并增强宿主作物的抗逆性,包括抵御生物胁迫(病原体、病虫害等)和非生物胁迫(极端温度、干旱、重金属、土壤盐渍化、有机污染等)[

18],例如,Zhang[19]通过田间试验发现,芽孢杆菌属和假单胞菌属在体内和体外条件下均对番茄枯萎病(尖孢镰孢菌)表现出拮抗作用,其生防效果达到92.8%。Hwang[20]从盐生植物中分离出一株内生细菌BP-R2,研究发现在干旱胁迫下,接种BP-R2菌株的拟南芥的生长参数较未接种的增加了1.2-3.0倍。类似地,BP-R2菌株还能促进白菜生长,并减少盐胁迫和干旱胁迫引起的各种氧化应激损伤。Li[21]从矿区植物紫茎泽兰(Ageratina adenophora)中分离出7株金属抗性内生细菌,这些菌株均表现出植物生长促进能力和对铅离子的高度耐受性,其中鞘氨醇单胞菌属(Sphingomonas sp.) ZYG-4的铅耐受性最强,可耐受900 mg/L的铅离子浓度。此外,Zhu[22]将内生细菌沙雷氏菌属(Serratia sp.) PW7定殖至小麦中,结果表明该菌株显著促进了小麦幼苗的生长,且与未接种的幼苗相比,接种8 d后幼苗的芽和根中芘含量分别降低了35.7%-86.3%和26.8%-60.1%。因此,有效定殖内生细菌被认为是降低作物体内有毒有机污染物污染风险的可行替代方案。此外,研究人员在筛选菌株时,通过选择性培养基或特定的分离技术,评估了目标菌株对人群健康和环境监控的风险性,确保了具有有毒有机污染物降解功能的菌株在施用过程中不会对人体及其他生物造成危[23]

1.1 作物有机污染现状及控制技术

我国农田土壤有机污染问题逐渐凸显,农作物作为食物链的起始和重要组成部分,会不断从周围环境中吸收和蓄积有机污染物,这些污染物会破坏农作物的代谢过程,降低其对病虫害的抵抗能力,使其生长缓慢,当污染物浓度达到一定水平时,会抑制植物根系生长,其毒性还会通过食物链逐级放大,最终对人体健康产生严重影[

24]。不同农作物对有机污染物的吸收能力存在较大差异。例如,胡静伊[25]测定了南宁市不同茄果类蔬菜中16种优控PAHs的含量,结果显示其范围为525.03-1 216.14 μg/kg,含量从高到低依次为指天椒、线椒、紫茄子、彩椒、黑茄子、番茄,其中3环PAHs占比最高;张亚萍[26]对某电子垃圾废渣旁种植的蔬菜中PCBs含量进行了测定,发现不同蔬菜积累PCBs的能力不同,总PCBs含量从高到低依次为油麦菜、四季豆、圆白菜,含量范围为0.44-12.27 ng/g,其中油麦菜中PCBs含量最高;钟姣[27]从2013年起连续4年对文山州新鲜蔬菜中有机磷农药的残留量进行了监测分析,结果显示在检测的23种有机磷农药中,共检出10种化合物,其中氧化乐果、毒死蜱、甲胺磷3种超标,此外,研究发现8类蔬菜中仅瓜类未检出农药残留,而茎类、豆类、叶菜类、芸薹类均有不同程度的超标;研究人员还测定了浙江地区7个市的果蔬样品中16种邻苯二甲酸酯的含量,结果显示果蔬样品中∑PAEs的范围为0.72-4 394.75 μg/kg,平均含量为103.30 μg/kg,蔬菜类的PAEs总含量高于水果类,茎叶类蔬菜含量高于其他蔬[28]。类似地,陈海燕[29]采用液相色谱/质谱联用技术检测了蔬菜类和粮谷类中的雌二醇(estradiol, E2)、双酚A (bisphenol A, BPA)、壬基酚(nonylphenol, NP)和炔雌醇(ethinyl estradiol, EE2)含量,发现两者均有样品检测出环境雌激素,蔬菜类对E2、NP、BPA有较强的蓄积作用,而粮谷类中NP和BPA的浓度较高。

有机污染物在蔬菜等农作物中的不断积累,对人们的食品安全构成了严重威胁,因此农作物有机污染的治理刻不容缓。传统的治理手段主要是对土壤进行物理或化学修复,以降低土壤中有机污染物的浓度,从而减少作物体内的污染物含量,然而这种方法不仅成本较高,容易对环境造成二次污染,而且难以实现污染物的彻底降解,对于作物体内已富集的污染物更是难以有效去[

30]。显然,如何有效消减作物体内积累的有毒有机污染物,对于保障农业生产安全和人群健康具有重大意义。

1.2 具有有机污染降解功能的内生细菌

已有研究表明,通过定殖具有有毒有机污染物降解功能的内生细菌可以实现作物体内有机污染物的直接消减,功能内生细菌去除有机污染物已成为研究热点之一。植物和内生细菌形成互利共生关系,植物吸收并降解有机物,为细菌提供营养,使其与污染物共代谢;另一方面,细菌通过自身代谢降低污染物的毒性,为植物提供所需的营养物质,从而有利于进一步消减污染[

31]。近年来,诸多研究证实从污染区农作物体内分离筛选出的功能内生细菌能够重新定殖回作物体内,实现有机污染物的高效消[32]。例如,王雪[33]从植物体内分离筛选出一株具有高效降解功能的内生细菌——嗜麦芽寡养单胞菌(Stenotrophomonas maltophilia) PX1,实验发现菌株PX1可以高效降解多种PAHs:培养7 d时,菌株PX1几乎可以彻底降解萘(10.0 mg/L);培养10 d时,菌株PX1对菲(50.0 mg/L)、芘(20.0 mg/L)、荧蒽(20.0 mg/L)、苯并[a]芘(10.0 mg/L)的降解率分别为72.6%、50.7%、31.9%和12.9%;此外,将菌株PX1定殖到空心菜和小麦中,结果表明该菌株不仅可以促进空心菜和小麦的生长,还能显著降低二者体内芘的浓度。除此之外,研究者们还筛选出许多其他可以促进农作物有机污染降解的内生细菌(表1)。

表1  可调控作物降解有机污染物的内生细菌
Table 1  Endophytic bacteria that modulate crop degradation of organic pollutants

有机污染物

Organic contaminants

作物

Crop

细菌

Bacteria

参考文献

References

菲、芘

Phenanthrene, pyrene

空心菜、小麦

Ipomoea aquatic, Triticum aestivum

嗜麦芽寡养单胞菌

Stenotrophomonas maltophilia PX1

[33]
芘Pyrene 大麦Barley 沙雷氏菌属Serratia sp. Wed4 [34]
碳氢化合物Hydrocarbons 白花草木樨White sweet clover 假单胞菌属Pseudomonas sp. EA6-5 [35]
总石油烃TPHs 莴苣Lactuca sativa 链霉菌属Streptomyces sp. Hlh1 [36]
丙环唑Propiconazole 番茄Tomato 枯草芽孢杆菌Bacillus subtilis W9 [37]
毒死蜱Chlorpyrifos 韭菜Allium tuberosum 鞘氨醇单胞菌属Sphingomonas sp. HJY [38]
邻苯二甲酸酯PAEs 青菜Brassica rapa var. chinensis 枯草芽孢杆菌Bacillus subtilis W34 [39]
十氯联苯PCB-209 罗勒Ocimum basilicum L.

嗜根寡养单胞菌

Stenotrophomonas rhizophila BS-7

[40]

不同来源和种类的内生细菌对有毒有机污染物的降解效能不同。Sánchez-Pérez[

40]从罗勒的根际土壤、根、茎、叶和花中分离出86株细菌,主要归类为芽孢杆菌、α-变形菌和变形菌;同时筛选出一组对十氯联苯(PCB-209)有较好去除效果的细菌,其中菌株BS-7的效果最佳,24 h时去除率为29.82%,66 h时去除率达到99.30%。

2 功能内生细菌消减作物体内有机污染物的机制

功能内生细菌在作物体内定殖后,通过产生生长激素、抗菌物质、酶类等代谢产物,增强作物的抗逆性和抗病能力,促进作物生长。此外,它们还能诱导宿主作物免疫,提高作物的抗病性,从而有利于作物体内有机污染物的去除(图1)[

41]

fig

图1  功能内生细菌的潜在作用机制

Figure 1  Potential mechanisms of action of functional endophytic bacteria.

2.1 功能内生细菌促进作物生长

内生细菌可通过直接或间接的方式对作物发挥促生作用,从而影响有机污染物的代谢效率。一方面,功能内生细菌通过产生吲哚乙酸(indole-3-acetic acid, IAA)、1-氨基环丙烷-1-羧酸(1-aminocyclopropane-1-carboxylic acid, ACC)、铁载体以及固氮和溶解磷酸盐的能力,直接促进作物生[

41]。其中,枯草芽孢杆菌与其他细菌相比,除了能够分泌IAA和ACC脱氨酶直接促进作物生长外,还能产生孢子,从而在土壤中存活更长时间,发挥更强的效[42]。Liu[43]通过盆栽试验发现,在邻苯二甲酸二丁酯(dibutyl phthalate, DBP)胁迫下,接种枯草芽孢杆菌N-1-gfp的水稻株高和鲜重与对照相比分别显著提高了8.28%-10.0%和23.9%-56.3%,证实了菌株N-1-gfp定殖可以促进水稻生长以抵抗DBP胁迫。

另一方面,功能内生细菌通过生态位和营养竞争抑制病原菌的生长,且能够产生拮抗物质,诱导植物产生抗生素、抗菌肽、酶类和挥发性化合物等次生代谢产物,提高作物对病原体的抵抗力和对有害病原微生物的敏感性,或者与病菌直接作用,攻击病菌的致病因子或病菌本[

41,44]。Chen[45]将菌株RS1-gfp定殖至菠菜、白菜和大白菜体内,结果表明该菌株不仅促进了蔬菜的生长,还减少了蔬菜中菲的积累,这可能是因为内生细菌RS1-gfp存在于寄主蔬菜的内部组织中,对养分和空间的竞争较少,且能够增强植物酶活性如直接产生利于PAHs转化的氧化酶、还原酶、酯酶和脱卤酶等。因此,菌株RS1-gfp能够降低作物菲的污染风险。

2.2 功能内生细菌调控作物体内酶系活性

内生细菌能够增强植株对污染物的抗性,这归因于它们对作物体内酶系统的影响。在作物体内,氧化酶、还原酶和酯酶等多种酶类共同参与有机污染物的转化过程,内生细菌通过调节宿主作物体内的酶活性,进而调控有机污染物的代谢过[

4]。Prodhan[46]利用不同内生细菌构建功能菌群,在盆栽试验中,4种功能菌群显著提高了水稻产量和毒死蜱的降解率,这些内生细菌显示出氧化酶、过氧化氢酶、木聚糖酶、淀粉酶、蛋白酶和纤维素酶活性,这对于内生细菌在作物体内的定殖和代谢污染物的能力至关重要;类似地,魏通[47]发现空心菜接种功能菌Phe15后,增加了空心菜亚细胞水平PAHs代谢相关酶系活性,从而降低了空心菜体内菲的积累。

2.3 功能内生细菌促进作物体内代谢基因表达

内生细菌中部分含有与代谢相关的基因,也是促进作物代谢有机污染物的原因之一。例如,从香根草根部分离得到的洋葱伯克霍尔德氏菌(Burkholderia cepacia)菌株869T2的基因组中含有许多与二噁英降解相关的基因,Nguyen[

48]选择该菌株进行培养,在2,3,7,8-四氯化二苯并对二噁英(2,3,7,8-tetrachlorinated dibenzo-p-dioxin, TCDD)培养基中,菌株869T2的生长不受TCDD毒性的影响,暴露1周后,TCDD (0.2 mg/L)的浓度下降了94.8%,说明该菌株对TCDD有较好的降解效果;通过分析发现,在6 h和12 h时,相关环裂解双加氧酶、水解酶、脱卤酶和细胞色素P450的基因表达水平高,这些基因的高表达可能介导了TCDD降解过程中产生的胁迫和其他毒性中间产物,从而促进了TCDD的有效降解。Zhang[49]将6种PAHs降解内生细菌构建成功能菌群,并接种于空心菜、大白菜和白菜中,结果发现蔬菜芽和根中∑PAH含量分别降低了46%和51%以上,这可能是因为PAHs分解代谢基因BphA1fnidA基因的丰富度增加,有利于低分子和中分子量多环芳烃的降解。

此外,内生细菌还可作为外源基因的载体,即利用作物内生细菌作为基因转移的媒介,将外源基因导入作物细胞中,从而实现对作物的基因改良和功能增强,以产生更多根系分泌物和各种酶类,促进对有机污染物的分[

41]。然而,这种手段可能会造成广泛的生态环境安全问题、污染自然基因库等,因此还有待深入研[50-51]

3 功能内生细菌降解有毒有机污染物的途径

有机磷农药、PAHs和PCBs等有机污染物在环境中稳定存在,能够在农作物中长期残留并不断积累,通过摄入、吸入等方式对人体健康产生危害,而毒死蜱作为一种中等毒性的有机磷杀虫剂,被广泛应用于农作物保护,尤其在发展中国家如中国、印度等[

52],在果蔬中的检出率较[53]。几十年来,研究人员通过实验从污染环境中分离出菌株,成功降解了这3类污染物并取得了较好的效果。随着检测手段和仪器的发展,学者们对毒死蜱、小分子量PAHs和PCBs的部分生物降解途径进行了深入分析。然而,目前对这些污染物的代谢途径研究主要在纯培养体系下进行,作物体内有机污染物的代谢路径及其降解产物的分析仍有待进一步探索。

3.1 毒死蜱代谢

毒死蜱的微生物降解反应本质上是酶促反[

54]。在各种酶的作用下,毒死蜱通过氧化还原、水解、脱卤等生化反应,最终被完全降解或分解为小分子化合物。大多数情况下,毒死蜱的生物降解是在好氧条件下进行的,具体代谢机制如图2所示:毒死蜱首先通过磷酸盐键水解生成三磷酸二乙酯(diethyl triphosphate, DETP)和3,5,6-三氯-2-吡啶醇(3,5,6-trichloro-2-pyridinol, TCP)[55],DETP进一步被水解生成硫代磷酸和乙醇,而毒死蜱一氧是毒死蜱通过氧化脱硫或酰化形成的不稳定中间体,被迅速水解成TCP和磷[56-57]。TCP的代谢途径主要有2种,其一是经氧化和脱氯形成3,6-二羟基吡啶- 2,5-二酮,最后吡啶环裂解生成5-氨基-2,4,5-三氧杂戊酸;另一种途径是TCP经甲基化和羟基化反应生成3,5,6-三氯-2-甲氧基吡啶(3,5,6-trichloro-2-methoxypyridine, TMP)和5,6-二氧- 2,3-二羟基吡[58]。TMP经还原脱氯生成2,3-二羟基吡啶,在有机磷水解酶的作用下,2,3-二羟基吡啶可分别通过羟基化和吡啶环裂解形成2-羟基吡啶和马来酰胺半醛,2-羟基吡啶经羟基化形成2,5,6-三羟基吡啶,而裂解产生的马来酰胺半醛也可被氧化转化成马来酰胺酸,进一步被水解成丁烯二酸,最终形成丙酮[56]

fig

图2  毒死蜱的生物降解途[

55-58]

Figure 2  Biodegradation pathways of chlorpyrifos[

55-58].

在毒死蜱生物降解过程中,一些关键基因及酶发挥着重要作用,主要包括有机磷降解基因opd、甲基对硫磷降解基因mpd、有机磷水解酶(organophosphorus hydrolase, OPH)、磷酸三酯酶(phosphotriesterase, PTE)、有机磷酸水解酶(organophosphorus acid anhydrolase, OPAA)、甲基对硫磷水解酶(methyl parathion hydrolase, MPH)、毒死蜱水解酶(chlorpyrifos hydrolase, CPH)、漆酶等,其中OPH是有机磷农药降解过程中的关键酶之一,具有高效广泛的底物利用率和水解有机磷化合物的能力,由opdBmpd基因编[

56-61]。Li[62]分离出鞘氨醇单胞菌属Dsp-2,它以毒死蜱为唯一碳源,在24 h内完全降解了100 mg/L的毒死蜱,其中编码毒死蜱降解的克隆基因与在邻单胞菌属(Plesiomonas sp.) M6中发现的mpd基因高度相似;Barman[63]发现ophB基因可以从假单胞菌属(Pseudomonas sp.) BF1-3中克隆,并在大肠埃希氏菌(Escherichia coli) DH5α中表达,实现毒死蜱的高效降解;此外,Yang[64]利用转录组学分析了德氏乳杆菌保加利亚亚种(Lactobacillus delbrueckii ssp. bulgaricus)生物降解毒死蜱过程中代谢基因的表达,发现降解过程中10个水解酶的基因转录显著增强,其中酰胺水解酶家族蛋白的表达上调更为显著,此外,磷酸酯酶和磷酸酶的表达也有所上调,促进了毒死蜱的降解。

3.2 PAHs代谢

研究发现,多数降解菌具有较好的消减低分子量PAHs的能力,但随着苯环数量和分子量的增加,PAHs的化学结构更为稳定,降解细菌难以代[

65]。因此,目前对低分子量PAHs如萘、菲等降解机制的研究较多,降解途径也较为完整。如图3所示,萘和菲的降解一般包括5个阶段:(1) 在外双加氢酶作用下实现羟基化,生成顺式二氢二[66];(2) 经过脱氢酶的作用重排为二[67-68];(3) 在环裂解双加氧酶作用下发生邻位或间位裂[69];(4) 通过异构酶、水合缩醛酶、醛脱氢酶或双加氧酶等一系列酶促反应,逐步生成水杨酸或邻苯二甲[70];(5) 水杨酸和邻苯二甲酸分别通过儿茶酚和原儿茶酸(3,4-二羟基苯甲酸)进一步代谢为三羧酸循环中间体,进入三羧酸循环(tricarboxylic acid cycle, TCA)[66]

fig

图3  萘、菲的生物降解途[

66-70]

Figure 3  Biodegradation pathways of naphthalene and phenanthrene[

66-70].

随着对低分子量PAHs的微生物降解途径的深入研究,参与PAHs降解的相关基因逐渐被阐[

71]。PAHs降解的主要功能基因由多种基因簇组成,如PAH-RHD基因、phd基因(编码菲双加氧酶)、pht基因(编码邻苯二甲酸盐双加氧酶)、cat基因(编码儿茶酚双加氧酶)、pca基因(编码原儿茶酸3,4-双加氧酶)、lig基因(编码原儿茶酸4,5-双加氧酶)、细胞色素P450基因(编码单加氧酶)[72-73]。Zheng[74]利用PCR和16S rRNA基因分析发现,在芘降解过程中PAH-RHDα-GP基因(革兰氏阳性降解菌的羟基化双加氧基因)、nidA基因和nidB基因在芘的降解中起重要作用,且两者的丰度随芘的浓度发生变化;Sun[75]进行了分枝杆菌属(Mycobacterium sp.) WY10中PAHs降解的基因组分析,在菌株WY10基因组的主要分解代谢区发现了52个导致PAHs降解的推定基因,包括pht基因簇、phd基因簇、nid基因簇等,这些基因编码了通过邻苯二甲酸酯和β-酮己二酸酯途径降解菲和芘所需的所有酶促步骤。

3.3 PCBs代谢

大多数PCBs降解细菌,如假单胞菌、芽孢杆菌、红球菌等,在有氧条件下能够以联苯为生长底物对PCBs进行共同代谢过[

76]。多氯联苯的降解效果随着氯原子数量的增加而降低,高氯代联苯尤为不易代[77]。这些降解细菌主要通过联苯2,3-双加氧酶(biphenyl 2,3-dioxygenase, BphA)攻击2,3-碳键,使多氯联苯开环,生成氯苯甲酸(chlorobenzoic acid, CBA)和2-羟基戊-2,4-二烯酸(2-hydroxy-penta-2,4-dienoic acid, HPD)[76],具体的代谢过程如图4所示。首先,PCB在BphA的催化加成作用下生成顺式2,3-二氢-2,3-二羟基氯联苯;随后,二氢二醇脱氢酶(biphenyl-2,3-dihydrodiol dehydrogenase, BphB)催化其生成2,3-二羟基氯联苯;再经2,3-二羟基联苯双加氧酶(2,3-dihydroxybiphenyl dioxygenase, BphC)催化开环,进一步生成2-羟基-6-氧-6-苯六甲酸-2,4-氯二烯酸(2-hydroxy-6-oxo-6-phenylhexa-2,4-chlorodienoic acid, HOPDA);最后,被专一性水解酶2-羟基-6-氧-6-苯基六-2,4-二烯酸水解酶(2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolase, BphD)水解为氯苯甲酸(chlorobenzoic acid, CBA)和2-羟基戊-2,4-二烯酸,进入联苯代谢的下游途径;CBA和HPD经过一系列转化过程,最终生成乙酰辅酶A,进入三羧酸循环并被完全氧[78-80]

fig

图4  PCB的好氧降解途[

78-80]。FcbA:苯甲酸乙酰辅酶A连接酶;FcbB:苯甲酰乙酰辅酶A双加氧酶;BphH:2-羟基戊-2,4-二烯酸水合酶;BphI:4-羟基-2-氧代戊酸醛缩酶;BphJ:乙醛脱氢酶。

Figure 4  Aerobic degradation pathway of PCB[

78-80]. FcbA: Benzoate-CoA ligase; FcbB: Benzoyl-CoA dioxygenase; BphH: 2-hydroxypenta-2,4-dienoate hydratase; BphI: 4-hydroxy-2-oxovalerate aldolase; BphJ: Acetal-dehyde dehydrogenase.

通过宏基因组分析、高通量测序和定量聚合酶链反应等技术,可以鉴定出参与PCBs降解的功能基因和酶,这些基因和酶包括bph基因簇、由bph编码的酶家族(尤其是双加氧酶)、etb基因簇和nar基因[

73,81-82]。例如,Garrido-Sanz[83]通过宏基因组学研究发现,bph基因簇由bphBCA1A2A3A4bphD组成,负责将PCB降解为氯苯甲酸盐等产物,而nar基因簇由narA1A2BC和2个转录调节因子narR1R2组成,参与了多种底物的降解过程。由于苯甲酸盐可以被pobA编码的蛋白质降解为原儿茶酸盐,Lin[84]通过实时荧光定量聚合酶链反应(quantitative real-time polymerase chain reaction, RT-qPCR)技术监测了PCBs下游降解相关基因的表达水平,结果表明pobA基因的表达明显上调,参与原儿茶酸环降解的lig相关基因和pca相关基因的表达水平也有所上调,此外参与邻苯二酚裂解的catA2catB基因也分别上调了1.2倍和1.4倍,从而促进了PCBs的进一步矿化。然而,目前对于PCBs降解过程中基因和酶的表达水平的认知仍然非常有限,未来需要更多的研究来深入揭示其降解机制,特别是微生物联盟在催化高氯化PCBs脱氯和羟基化过程中的功能基因及其作用机[80]

3.4 功能内生细菌降解作物体内有机污染物的影响因素

3.4.1 定殖方式

不同定殖方式对作物体内内生细菌的定殖数量及有机污染物降解效能存在显著影响,常用的内生细菌定殖方法主要包括浸种(seed soaking, SS)、喷叶(leaf spraying, LS)、浸根(root soaking, RS)、喷灌联合(combined spraying-irrigation, CS)等。Zuo[

85]分别采用SS、LS、CS三种方式将内生菌群EN定殖至生菜中,30 d后,SS、LS、CS处理下的生菜中残留的PAEs比未接种的对照分别降低了62.83%、10.89%、29.70%;50 d后,CS处理下的生菜中残留的PAEs浓度最低,比对照组降低了94.05%。张贵[86]通过土培盆栽试验,将复合功能菌群以浸种、灌根、喷叶及浸种结合喷灌的方式定殖到上海青体内,30 d后上海青茎叶中总PAHs含量比未接菌对照分别减少55.78%、55.18%、40.00%、65.78%,根部分别减少51.16%、60.42%、46.23%、83.07%,结果表明,浸种联合喷灌的方式定殖可获得最佳的PAHs去除效能。李爽[87]对比了浸根和浸种2种定殖方式对黑麦草中芘的去除效率,结果发现同一污染水平下,浸根接种使黑麦草植株根和茎叶中芘浓度分别降低了44.2%、42.3%,比浸种接种的降解效率高20%以上,且浸根组的根和茎叶中的定殖数量比浸种组大一个数量级。综上所述,功能内生细菌或菌群的高效定殖有利于消减作物体内的污染物并促进作物生长,选取最优的定殖方式对于提高细菌的定殖效率至关重要。

3.4.2 温度

温度会影响微生物降解酶的活性,从而影响内生细菌降解污染物的能力。张帅[

88]通过单因素试验发现,菌群在25-30 ℃范围内对PAEs的降解率达到最高,但温度处于20 ℃和35-40 ℃范围时,菌群的降解效果明显降低。周贺[89]实验发现温度对菌群降解PCB180的降解效果影响较大,降解率随着温度的升高呈先上升后降低的趋势,在30 ℃降解率最高达61.5%。类似地,黄婷[90]研究了不同温度下菌株对多溴联苯醚同系物BDE-47的降解能力,结果表明在15-35 ℃范围内,菌株对BDE-47的降解效果较好,30 ℃时降解率达85.4%;当温度过低或过高时,降解率明显降低。总体来看,温度过高或过低都不利于微生物降解污染物。较低的温度会抑制微生物的生长活力、降解反应速率和酶的生物合成;而较高的温度会使降解酶变性失活,这都将导致代谢速率的降低。

3.4.3 pH

pH值对微生物的活性也有很大影响,强酸或强碱的环境条件均不利于内生细菌的消减效果。周贺[

89]研究表明,在不同pH条件下,菌群的降解效果呈现明显差异。在中性条件下,菌群对污染物的降解率为61.5%;pH过低或过高时,菌群的降解率只有25%左右。因此,保持pH中性对于消减速率至关重[84]。同样地,张帅[88]研究也表明菌群对PAEs的最适pH在7.0-8.0范围内,降解率接近80%。柴阳阳[91]发现,最适合培养菌株HBT4的pH范围为6.0-8.0;在pH值为7.0时,DBP的降解效果最好,降解率达到78.32%;当pH值为4.0时,菌株生长困难,DBP的降解率不足10%。pH值过低或过高都会影响微生物降解功能酶的正常作用,进而影响内生细菌消减作物中的污染物。

3.4.4 底物浓度

底物浓度对内生细菌降解能力也具有重要影响。柴阳阳[

91]通过实验分析了DBP初始浓度对菌株降解率的影响,发现随着初始浓度增加,降解率呈现先增加后降低的趋势,菌株在底物浓度为10 mg/L时降解率最高为89.33%;底物浓度越高,微生物的生长受到抑制,降解效率大幅降低;当底物浓度为50 mg/L时降解率仅30.9%。Yang[92]研究发现与对照组相比,在同一时间、同一芘污染浓度条件下,体内定殖了Pyr9菌株的空心菜中芘残留量显著降低;随着芘污染浓度的增加,植物体内的芘浓度也在上升,降解效果有所降低,这说明菌株Pyr9对空心菜体内芘污染的消减效果受到芘浓度的影响。Liu[93]接种菌株Pn2有效减少了小麦根和芽中菲的积累;但当菲污染水平较高(134.64 mg/kg)时,小麦根系的生长受到抑制,且小麦根和芽中菲浓度普遍增加。这可能是由于较低浓度的污染物不能与细菌完全接触而不能被完全降解;而当污染物浓度很高时,会对微生物产生一定的毒害作用,从而影响其代谢污染物的效果。

3.4.5 共代谢基质

内生细菌在促进有机污染物消减与转化方面发挥着重要作用,不仅得益于其小体积、强大的适应性、快速的代谢速率以及能直接将污染物作为碳源或氮源进行生长的能力,而且这些细菌还能通过与作物共享体内的碳源或氮源,实现共代谢过程,有效降低污染物水平,通过引入共代谢基质,可以进一步提升内生细菌的降解效能,调整其碳源与能源的底物构成,拓宽内生细菌对碳源和能源的利用范围,使得作物体内积聚的难以降解的有机污染物得以被内生细菌有效利用并减[

41]。不同类型的作物中存在不同类型的基质和代谢相关酶活性及种类。潘丽[94]研究了PCBs的代谢转化的影响因素,结果表明各类化合物在作物中的代谢转化率依次为玉米>小麦>水稻。

4 有机污染物降解功能内生细菌菌群

通过定殖功能内生细菌可以有效减少作物体内有机污染物的积累。然而,单一菌株的降解谱往往较窄,而在实际污染区域的作物体内,多种污染物常常共存,这限制了内生细菌的原位应[

95]。近年来,研究结果显示,通过人工装配或富集驯化的方式,可以获得具有高效性和广谱性的有机污染物降解功能内生细菌菌[88]。合成微生物群落是指将2种或2种以上具有已知分类状态和功能特性的菌株进行人工组合,并以精确的比例进行组装,从而获得具有降解谱广、效率高、功能性强等优势的功能性细菌群[95]。装配合成功能菌群的设计方法主要采用自下而上的方式(图5),即根据污染环境中自然存在的微生物群落,通过分离筛选得到不同的功能菌株,然后根据其功能进行分类组合,利用微生物之间的共代谢作用来拓宽降解菌株的底物谱,提高降解能力,并获得最少的必要细菌菌[96-97]。例如,Wang[98]筛选出8株具有PAHs降解功能且能共生的菌株,将装配后的菌群通过浸种和喷叶的方式定殖到蔬菜中,处理结束后,∑PAH浓度较对照降低了53.20%-70.77%,有效减轻了作物的PAHs污染。相较于单一菌株,功能菌群的主要优势在于菌群可以分工合作,协同降解,以缓解高浓度有毒有机污染物的胁迫和单个菌株的代谢压力。此外,功能菌群还能获得更强的稳定性,从而发挥更加高效的降解能力。

fig

图5  采用自下而上的方法构建人工功能菌群

Figure 5  Construct the artificial microbial consortia using the “bottom-up” method.

表2所示,目前已有多项研究结果表明,功能内生细菌菌群能够降解有机污染物。功能菌群通过细菌之间的共代谢作用,突破了单一菌株的局限性,具有降解谱广、稳定性高、可控性好等优势。Li[

103]从长期农药污染的草莓田中分离筛选出功能菌群PCS-1,与未接种PCS-1的紫花苜蓿相比,接种功能菌群的紫花苜蓿的鲜重、株高和根长显著增加,同时PCS-1还降低了紫花苜蓿根茎叶中的农药残留。Han[105]针对阿特拉津除草剂污染,通过盆栽试验发现,在整个实验期间(0-72 h),所有菌株组合的表现都优于单一菌株利沃夫氏不动杆菌(Acinetobacter lwoffii) DNS32,其中表现最好的是菌群CPD [由简单近芽孢杆菌(Peribacillus simplex) C1、肠杆菌属(Enterobacter sp.) P1和利沃夫氏不动杆菌DNS32组成],相较其他组合,其总生物量增加了1.33-3.14倍,阿特拉津降解速率增加了0.55-1.85倍,达到83.2%。因此,针对不同的条件构建不同的菌群组合,可以创造出能够降解污染物及其中间代谢物的最佳菌群组合,从而实现污染物的全面矿化,具有更为广阔的应用前景。

表2  功能内生细菌菌群消减有机污染
Table 2  Functional endophytic bacterial consortia for degrading organic pollution

有机污染物

Organic contaminants

功能菌群名称

Name of the consortia

微生物种类

Flora species

降解效率

Degradation efficiency (%)

参考文献

References

低、高分子量多环芳烃

LMW-PAHs, HMW-PAHs

CEB

马赛菌属、鞘氨醇菌属、有益杆菌属、分枝杆菌属、

分枝菌酸小杆菌属

Massilia sp., Sphingobium sp., Diaphorobacter sp., Mycobacterium sp., Mycolicibacterium sp.

81.26, 70.72 [49]
多环芳烃PAHs J-3 变形菌门、拟杆菌门Proteobacteria, Bacteroidetes 71.09 [99]
多氯联苯PCBs - 假单胞菌属、粪产碱菌Pseudomonas sp., Alcaligenes faecalis 66.70 [100]

芽孢杆菌属、无色杆菌属、施氏假单胞菌、枯草芽孢杆菌

Bacillus sp., Achromobacter sp., Pseudomonas stutzeri, Bacillus subtilis

54.00 [101]

邻苯二甲酸二正丁酯

DBP

-

鞘氨醇菌属、代尔夫特菌属、假单胞菌属、无色杆菌属、根瘤菌属

Sphingobium sp., Delftia sp., Pseudomonas sp.,Achromobacter sp., Rhizobium sp.

63.06 [88]
SynCom F+L381 芽孢杆菌属Bacillus sp. 93.40-99.20 [102]

低分子量邻苯二甲酸酯

LMW-PAEs

EN

假单胞菌属、代尔夫特菌属、异根瘤菌属

Pseudomonas sp., Delftia sp., Allorhizobium sp.

94.05 [85]

杀虫剂

Pesticides

PCS-1

假单胞菌属、肠杆菌属、副球菌属、无色杆菌属

Pseudomonas sp., Enterobacter sp., Paracoccus sp., Achromobacter sp.

61.46-84.27 [103]

氟磺胺草醚

Fomesafen

-

芽孢杆菌属、假单胞菌属

Bacillus sp., Pseudomonas sp.

79.70 [104]

阿特拉津

Atrazine

CPD

利沃夫氏不动杆菌、肠杆菌属、简单近芽孢杆菌

Acinetobacter lwoffii, Enterobacter sp., Peribacillus simplex

83.20 [105]
总石油烃TPHs T2 芽孢杆菌属、假单胞菌属Bacillus sp., Pseudomonas sp. 78.00 [106]
-

苏云金芽孢杆菌、蜡样芽孢杆菌

Bacillus thuringiensis, Bacillus cereus

87.45 [107]

-表示功能菌群未命名。

- indicates that the functional consortia have not been named.

5 总结与展望

本文总结了作物体内有毒有机污染物的污染现状、降解功能内生细菌及其应用。从受污染的作物体内富集筛选的功能内生细菌具有促生、消污的功能。与单一功能菌株相比,人工装配或富集驯化筛选的功能内生菌群在有毒有机污染物的降解方面表现出高效性和广谱性,在作物体内有机污染物污染风险控制方面具有广阔的应用前景。未来需要在以下几个方面开展相关研究。

(1) 受作物生长环境等因素的影响,目前仍无法完全解释内生细菌定殖后,内生细菌和作物之间相互作用的机理,如内生细菌在作物定殖后的转移规律和持久性等。

(2) 功能内生菌群消减作物体内有毒有机污染是未来的研究热点之一,未来可以借助高通量测序、微生物宏转录组学、宏基因组测序等现代生物技术手段,明确菌群中不同菌株间的共代谢作用机制、代谢过程中的关键基因和中间产物以及污染物的代谢过程,从而构建具有靶向性、稳定、高效的降解有机污染物的功能菌群。

(3) 为了将功能内生菌群成功应用到实际中,未来应从微生物学、生态学、植物学、土壤学和基因工程技术等多学科角度进行综合研究,完善功能内生菌群消减有毒有机物的技术,以期为我国污染区农业生产安全提供理论和技术参考。

作者贡献声明

陈卓涵:论文构思和设计、检索文献、图表绘制、论文撰写和修订;周贤:检索文献资料和论文修订;李鹏飞:确定论文框架结构、审核和修正论文内容及图表;李凯:检索文献、整理表格数据;王建:综述选题和论文框架的确定、论文审阅和修订。

利益冲突

作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。

参考文献

1

彭超月, 任翀, 申浩欣, 王艳锋, 段海静, 王玉龙, 李旭辉, 刘德新, 马建华. 黄河下游悬河段饮用水源地土壤重金属污染、来源及健康风险[J]. 环境科学, 2023, 44(12): 6710-6719. [百度学术] 

PENG CY, REN C, SHEN HX, WANG YF, DUAN HJ, WANG YL, LI XH, LIU DX, MA JH. Soil heavy metal contamination, sources, and health risk of typical drinking water sources in the suspended reach of the lower Yellow River[J]. Environmental Science, 2023, 44(12): 6710-6719 (in Chinese). [百度学术] 

2

WANG J, ZHANG XF, LING WT, LIU R, LIU J, KANG FX, GAO YZ. Contamination and health risk assessment of PAHs in soils and crops in industrial areas of the Yangtze River Delta region, China[J]. Chemosphere, 2017, 168: 976-987. [百度学术] 

3

环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. 北京: 环境保护部, 国土资源部, 2014. [百度学术] 

Ministry of Environmental Protection, Ministry of Land and Resources. National Survey Report on Soil Pollution[R]. Beijing: Ministry of Environmental Protection, Ministry of Land and Resources, 2014 (in Chinese). [百度学术] 

4

LI PF, ZHOU X, WEI T, WANG J, GAO YZ. Potential mechanisms of synthetic endophytic bacterial community to reduce PAHs accumulation in vegetables[J]. Environment International, 2024, 194: 109129. [百度学术] 

5

MUSHTAQ S, SHAFIQ M, TARIQ MR, SAMI A, NAWAZ-UL-REHMAN MS, BHATTI MHT, HAIDER MS, SADIQ S, ABBAS MT, HUSSAIN M, SHAHID MA. Interaction between bacterial endophytes and host plants[J]. Frontiers in Plant Science, 2023, 13: 1092105. [百度学术] 

6

张志明. 利用根表功能细菌RS2减低植物菲污染的机理初探[D]. 南京: 南京农业大学硕士学位论文, 2019. [百度学术] 

ZHANG ZM. Preliminary study on the mechanism of reducing phenanthrene pollution in plants by using root surface functional bacteria RS2[D]. Nanjing: Master’s Thesis of Nanjing Agricultural University, 2019 (in Chinese). [百度学术] 

7

HOLLIDAY P. A Dictionary of Plant Pathology[M]. Cambridge: Cambridge University Press, 1989. [百度学术] 

8

曹焜, 王晓楠, 孙宇峰, 李振伟, 潘冬梅, 赵越. 植物根部内生细菌多样性及其生防作用研究进展[J]. 农业与技术, 2017, 37(17): 1-3, 5. [百度学术] 

CAO K, WANG XN, SUN YF, LI ZW, PAN DM, ZHAO Y. Research progress on diversity of endophytic bacteria in plant roots and their biocontrol effects[J]. Agriculture and Technology, 2017, 37(17): 1-3, 5 (in Chinese). [百度学术] 

9

宋薇薇, 朱辉, 余凤玉, 牛晓庆, 唐庆华, 覃伟权. 植物内生菌及其对植物病害的防治作用综述[J]. 江苏农业科学, 2018, 46(6): 12-16. [百度学术] 

SONG WW, ZHU H, YU FY, NIU XQ, TANG QH, QIN WQ. Plant endophytes and their control effects on plant diseases: a review[J]. Jiangsu Agricultural Sciences, 2018, 46(6): 12-16 (in Chinese). [百度学术] 

10

翟凯辉, 张影影, 高夕全. 种子内生菌促生机制和抗病机理研究进展[J]. 农业生物技术学报, 2023, 31(9): 1965-1979. [百度学术] 

ZHAI KH, ZHANG YY, GAO XQ. Research progress on mechanisms of growth promotion and disease resistance of seed endophytes[J]. Journal of Agricultural Biotechnology, 2023, 31(9): 1965-1979 (in Chinese). [百度学术] 

11

PAPIK J, FOLKMANOVA M, POLIVKOVA-MAJOROVA M, SUMAN J, UHLIK O. The invisible life inside plants: deciphering the riddles of endophytic bacterial diversity[J]. Biotechnology Advances, 2020, 44: 107614. [百度学术] 

12

陈丽莹, 方荣祥, 吴建祥, 张莉莉. 植物内生细菌测定方法的研究进展[J]. 微生物学通报, 2022, 49(3): 1105-1119. [百度学术] 

CHEN LY, FANG RX, WU JX, ZHANG LL. Research progress in the detection methods of endophytic bacteria[J]. Microbiology China, 2022, 49(3): 1105-1119 (in Chinese). [百度学术] 

13

FRANK AC, SALDIERNA GUZMÁN JP, SHAY JE. Transmission of bacterial endophytes[J]. Microorganisms, 2017, 5(4): 70. [百度学术] 

14

HUANG YH. Comparison of rhizosphere and endophytic microbial communities of Chinese leek through high-throughput 16S rRNA gene Illumina sequencing[J]. Journal of Integrative Agriculture, 2018, 17(2): 359-367. [百度学术] 

15

杨立军, 徐源, 高涵, 贾艳娇, 陈琼, 叶润, 段鸿斌. 基于高通量技术分析粉防己不同组织内生细菌多样性及功能预测[J]. 江苏农业科学, 2023, 51(17): 19-28. [百度学术] 

YANG LJ, XU Y, GAO H, JIA YJ, CHEN Q, YE R, DUAN HB. Analysis of endophytic bacterial diversity and function in different tissues of Stephania tetrandra based on high throughput technology[J]. Jiangsu Agricultural Sciences, 2023, 51(17): 19-28 (in Chinese). [百度学术] 

16

郝建华, 张秀娟, 李君剑. 不同灌丛根际土壤和根内生细菌的群落结构特征[J]. 环境科学, 2024, 45(11): 6756-6765. [百度学术] 

HAO JH, ZHANG XJ, LI JJ. Characterization of the community structure of rhizosphere soil and root-endophytic bacteria in different shrubs[J]. Environmental Science, 2024, 45(11): 6756-6765 (in Chinese). [百度学术] 

17

肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 甘蔗间作不同豆科作物对甘蔗植株内生细菌多样性的影响[J]. 热带作物学报, 2021, 42(11): 3188-3198. [百度学术] 

XIAO J, CHEN SY, SUN Y, YANG SD, TAN HW. Effect of intercropping with different legume crops on endophytic bacterial diversity of sugarcanes[J]. Chinese Journal of Tropical Crops, 2021, 42(11): 3188-3198 (in Chinese). [百度学术] 

18

LIU HW, CARVALHAIS LC, CRAWFORD M, SINGH E, DENNIS PG, PIETERSE CMJ, SCHENK PM. Inner plant values: diversity, colonization and benefits from endophytic bacteria[J]. Frontiers in Microbiology, 2017, 8: 2552. [百度学术] 

19

ZHANG ZY, LI J, ZHANG ZQ, LIU YZ, WEI YQ. Tomato endophytic bacteria composition and mechanism of suppressiveness of wilt disease (Fusarium oxysporum)[J]. Frontiers in Microbiology, 2021, 12: 731764. [百度学术] 

20

HWANG HH, CHIEN PR, HUANG FC, YEH PH, HUNG SW, DENG WL, HUANG CC. A plant endophytic bacterium Priestia megaterium strain BP-R2 isolated from the halophyte Bolboschoenus planiculmis enhances plant growth under salt and drought stresses[J]. Microorganisms, 2022, 10(10): 2047. [百度学术] 

21

LI QQ, YAO SY, WEN H, LI WQ, JIN L, HUANG XX. Improving lead phytoremediation using endophytic bacteria isolated from the pioneer plant Ageratina adenophora (Spreng.) from a mining area[J]. Toxics, 2024, 12(4): 291. [百度学术] 

22

ZHU XZ, WANG WQ, SUN K, LIN XH, LI S, WAIGI MG, LING WT. Inoculating wheat (Triticum aestivum L.) with the endophytic bacterium Serratia sp. PW7 to reduce pyrene contamination[J]. International Journal of Phytoremediation, 2017, 19(8): 718-724. [百度学术] 

23

VANDEPLASSCHE E, COENYE T, CRABBÉ A. Developing selective media for quantification of multispecies biofilms following antibiotic treatment[J]. PloS One, 2017, 12(11): e0187540. [百度学术] 

24

汤佳豪. 农田土壤中含氧多环芳烃的自然衰减及共存微塑料的效应[D]. 济南: 齐鲁工业大学硕士学位论文, 2024. [百度学术] 

TANG JH. Natural attenuation of oxygen-containing polycyclic aromatic hydrocarbons in farmland soil and the effect of coexisting microplastics[D]. Jinan: Master’s Thesis of Qilu University of Technology, 2024 (in Chinese). [百度学术] 

25

胡静伊, 龙明华, 孙俏建, 乔双雨, 赵体跃, 陈忠良. 6种茄果类蔬菜中多环芳烃分布特征及健康风险评估[J]. 食品安全质量检测学报, 2022, 13(23): 7742-7749. [百度学术] 

HU JY, LONG MH, SUN QJ, QIAO SY, ZHAO TY, CHEN ZL. Distribution characteristics and health risk assessment of polycyclic aromatic hydrocarbons in 6 kinds of solanaceous vegetables[J]. Journal of Food Safety & Quality, 2022, 13(23): 7742-7749 (in Chinese). [百度学术] 

26

张亚萍, 吕占禄, 王先良, 张晗, 郭凌川, 丁秀丽, 张金良. 电子垃圾拆解废渣-土壤-蔬菜中多氯联苯污染特征与健康风险评估[J]. 环境科学, 2022, 43(1): 490-499. [百度学术] 

ZHANG YP, LÜ ZL, WANG XL, ZHANG H, GUO LC, DING XL, ZHANG JL. Pollution characteristics and health risk assessment of polychlorinated biphenyls in E-waste disposal residue-soil-vegetable[J]. Environmental Science, 2022, 43(1): 490-499 (in Chinese). [百度学术] 

27

钟姣, 杜凤龄, 杨友聪, 董天明. 2013-2016年文山州新鲜蔬菜中含磷有机农药残留量监测结果分析[J]. 食品安全质量检测学报, 2017, 8(10): 3809-3813. [百度学术] 

ZHONG J, DU FL, YANG YC, DONG TM. Analysis of monitoring data of organophosphorus pesticides residues in fresh vegetables in Wenshan in 2013-2016[J]. Journal of Food Safety & Quality, 2017, 8(10): 3809-3813 (in Chinese). [百度学术] 

28

史美佳, 祝世军, 吴益春, 罗海军, 郭海波, 朱鲜燕. 浙江地区果蔬中PAEs污染状况及健康风险评估[J]. 食品工业, 2023, 44(6): 326-331. [百度学术] 

SHI MJ, ZHU SJ, WU YC, LUO HJ, GUO HB, ZHU XY. Pollution status and health risk assessment of phthalate esters in fruits and vegetables in different regions of Zhejiang Province[J]. The Food Industry, 2023, 44(6): 326-331 (in Chinese). [百度学术] 

29

陈海燕, 张娟, 刘小华. 某市市售食品中环境雌激素的污染状况调查[J]. 食品安全导刊, 2020(31): 74-76. [百度学术] 

CHEN HY, ZHANG J, LIU XH. Investigation on the pollution of environmental estrogens in food sold in a city[J]. China Food Safety Magazine, 2020(31): 74-76 (in Chinese). [百度学术] 

30

李婉怡, 於维维, 余琼阳, 赵玲, 王月梅, 宋家音, 马文亭, 张宁, 张光华, 董荷玲, 滕应, 骆永明. 土壤重金属-有机物复合污染环境效应与修复技术研究进展[J]. 土壤, 2023, 55(3): 453-463. [百度学术] 

LI WY, YU WW, YU QY, ZHAO L, WANG YM, SONG JY, MA WT, ZHANG N, ZHANG GH, DONG HL, TENG Y, LUO YM. Environmental effects and remediation technologies of heavy metal-organic pollutant co-contaminated soil: a review[J]. Soils, 2023, 55(3): 453-463 (in Chinese). [百度学术] 

31

谢萌. 钢铁场地有机物污染的植物-微生物及表面活性剂强化修复技术[D]. 济南: 山东大学硕士学位论文, 2021. [百度学术] 

XIE M. Plant-microorganism and surfactant enhanced remediation technology for organic pollution in iron and steel sites[D]. Jinan: Master’s Thesis of Shandong University, 2021 (in Chinese). [百度学术] 

32

WAIGI MG, WANG J, YANG B, GUDDA FO, LING WT, LIU J, GAO YZ. Endophytic bacteria in in planta organopollutant detoxification in crops[J]. Reviews of Environmental Contamination and Toxicology, 2020, 252: 1-50. [百度学术] 

33

王雪, 林超霸, 王丹琴, 朱雪竹, 赵海燕, 吕百韬. 嗜麦芽寡养单胞菌PX1的降解芘特性及定殖效能[J]. 应用生态学报, 2022, 33(9): 2547-2556. [百度学术] 

WANG X, LIN CB, WANG DQ, ZHU XZ, ZHAO HY, LÜ BT. Colonization performance and pyrene degradation characteristics of Stenotrophomonas maltophilia PX1[J]. Chinese Journal of Applied Ecology, 2022, 33(9): 2547-2556 (in Chinese). [百度学术] 

34

LIN CB, ZHANG FY, CHEN R, LIN SP, JIAO PY, MA YJ, ZHU XZ, LV BT. Potential of a novel endophytic diazotrophic Serratia sp. Wed4 for pyrene biodegradation[J]. International Biodeterioration & Biodegradation, 2024, 186: 105705. [百度学术] 

35

MITTER EK, KATAOKA R, RENATO de FREITAS J, GERMIDA JJ. Potential use of endophytic root bacteria and host plants to degrade hydrocarbons[J]. International Journal of Phytoremediation, 2019, 21(9): 928-938. [百度学术] 

36

BAOUNE H, APARICIO JD, PUCCI G, OULD EL HADJ-KHELIL A, POLTI MA. Bioremediation of petroleum-contaminated soils using Streptomyces sp. Hlh1[J]. Journal of Soils and Sediments, 2019, 19(5): 2222-2230. [百度学术] 

37

YADAV U, ANAND V, KUMAR S, SRIVASTAVA S, MISHRA SK, CHAUHAN PS, SINGH PC. Endophytic biofungicide Bacillus subtilis (NBRI-W9) reshapes the metabolic homeostasis disrupted by the chemical fungicide, propiconazole in tomato plants to provide sustainable immunity against non-target bacterial pathogens[J]. Environmental Pollution, 2024, 343: 123144. [百度学术] 

38

FENG FY, GE J, LI YS, CHENG JJ, ZHONG JF, YU XY. Isolation, colonization, and chlorpyrifos degradation mediation of the endophytic bacterium Sphingomonas strain HJY in Chinese chives (Allium tuberosum)[J]. Journal of Agricultural and Food Chemistry, 2017, 65(6): 1131-1138. [百度学术] 

39

杨云, 肖霞霞, 陈小龙, 程金金, 余向阳, 王亚, 马桂珍. 一株植物内生枯草芽孢杆菌对6种邻苯二甲酸酯的共代谢降解[J]. 江苏农业学报, 2023, 39(2): 393-404. [百度学术] 

YANG Y, XIAO XX, CHEN XL, CHENG JJ, YU XY, WANG Y, MA GZ. Co-metabolic degradation of six phthalic acid esters by an endophytic Bacillus subtilis[J]. Jiangsu Journal of Agricultural Sciences, 2023, 39(2): 393-404 (in Chinese). [百度学术] 

40

SÁNCHEZ-PÉREZ BN, ZENTENO-ROJAS A, RINCÓN-MOLINA CI, RUÍZ-VALDIVIEZO VM, GUTIÉRREZ-MICELI FA, VENCES-GUZMÁN MA, VILLALOBOS-MALDONADO JJ, RINCÓN-ROSALES R. Rhizosphere and endophytic bacteria associated to Ocimum basilicum L. with decaclorobiphenyl removal potential[J]. Water, Air, & Soil Pollution, 2020, 231(3): 134. [百度学术] 

41

彭安萍, 刘娟, 凌婉婷, 陈则友. 功能内生细菌对植物体内有机污染物代谢的影响[J]. 农业环境科学学报, 2013, 32(4): 668-674. [百度学术] 

PENG AP, LIU J, LING WT, CHEN ZY. Effects of endophytic bacteria on the metabolism of organic pollutants in plant[J]. Journal of Agro-Environment Science, 2013, 32(4): 668-674 (in Chinese). [百度学术] 

42

KHANNA K, LOPEZ-GARRIDO J, POGLIANO K. Shaping an endospore: architectural transformations during Bacillus subtilis sporulation[J]. Annual Review of Microbiology, 2020, 74: 361-386. [百度学术] 

43

LIU LH, ZHANG JY, TANG GX, HUANG YH, XIE XQ, GENG J, LÜ HX, LI H, LI YW, MO CH, ZHAO HM, CAI QY. Endophytic phthalate-degrading Bacillus subtilis N-1-gfp colonizing in soil-crop system shifted indigenous bacterial community to remove di-N-butyl phthalate[J]. Journal of Hazardous Materials, 2023, 449: 130993. [百度学术] 

44

靳瑮. 植物内生细菌对多环芳烃污染响应及菲降解内生细菌的筛选[D]. 南京: 南京农业大学硕士学位论文, 2014. [百度学术] 

JIN L. Response of endophytic bacteria in plant to polycyclic aromatic hydrocarbon pollution and screening of endophytic bacteria for phenanthrene degradation[D]. Nanjing: Master’s Thesis of Nanjing Agricultural University, 2014 (in Chinese). [百度学术] 

45

CHEN S, MA Z, LI SY, WAIGI MG, JIANG JD, LIU J, LING WT. Colonization of polycyclic aromatic hydrocarbon-degrading bacteria on roots reduces the risk of PAH contamination in vegetables[J]. Environment International, 2019, 132: 105081. [百度学术] 

46

PRODHAN MY, RAHMAN MB, RAHMAN A, AKBOR MA, GHOSH S, NAHAR MN, SIMO, SHAMSUZZOHA M, CHO KM, HAQUE MA. Characterization of growth-promoting activities of consortia of chlorpyrifos mineralizing endophytic bacteria naturally harboring in rice plants: a potential bio-stimulant to develop a safe and sustainable agriculture[J]. Microorganisms, 2023, 11(7): 1821. [百度学术] 

47

魏通, 段振宇, 张贵驰, 凌婉婷, 王建. 接种功能内生细菌Diaphorobacter sp. Phe15减少蔬菜亚细胞菲积累的体外试验研究[J]. 微生物学报, 2022, 62(9): 3437-3448. [百度学术] 

WEI T, DUAN ZY, ZHANG GC, LING WT, WANG J. In vitro experiment on reducing phenanthrene accumulation in vegetable subcells with inoculation of endophytic bacteria Diaphorobacter sp. Phe15[J]. Acta Microbiologica Sinica, 2022, 62(9): 3437-3448 (in Chinese). [百度学术] 

48

NGUYEN BT, HSIEH JL, LO SC, WANG SY, HUNG CH, HUANG E, HUNG SH, CHIN WC, HUANG CC. Biodegradation of dioxins by Burkholderia cenocepacia strain 869T2: role of 2-haloacid dehalogenase[J]. Journal of Hazardous Materials, 2021, 401: 123347. [百度学术] 

49

ZHANG GC, WANG J, ZHAO H, LIU J, LING WT. PAH degradation and gene abundance in soils and vegetables inoculated with PAH-degrading endophytic bacteria[J]. Applied Soil Ecology, 2021, 168: 104193. [百度学术] 

50

吴玥. 浅析植物内生细菌研究进展[J]. 农业科技与信息, 2023, 20(9): 117-121. [百度学术] 

WU Y. Research progress of endophytic bacteria in plants[J]. Agricultural Science-Technology and Information, 2023, 20(9): 117-121 (in Chinese). [百度学术] 

51

薛江鹏, 蔡吉祥, 李有文, 莫治新, 查向浩. 植物修复环境污染技术应用研究进展[J]. 北方园艺, 2024(2): 131-138. [百度学术] 

XUE JP, CAI JX, LI YW, MO ZX, ZHA XH. Research progress on application of phytoremediation technology for environmental pollution[J]. Northern Horticulture, 2024(2): 131-138 (in Chinese). [百度学术] 

52

卢映菲. 功能复合菌群参与水稻中毒死蜱降解及胁迫适应的研究[D]. 合肥: 安徽农业大学硕士学位论文, 2023. [百度学术] 

LU YF. Study on functional complex flora participating in chlorpyrifos degradation and stress adaptation in rice[D]. Hefei: Master’s Thesis of Anhui Agricultural University, 2023 (in Chinese). [百度学术] 

53

ANDERSEN HR, RAMBAUD L, RIOU M, BUEKERS J, REMY S, BERMAN T, GOVARTS E. Exposure levels of pyrethroids, chlorpyrifos and glyphosate in EU: an overview of human biomonitoring studies published since 2000[J]. Toxics, 2022, 10(12): 789. [百度学术] 

54

郭晓青, 王秀娟, 孙爱丽, 李德祥, 史西志. 环境中拟除虫菊酯类农药微生物降解技术研究进展[J]. 中国生物工程杂志, 2017, 37(5): 126-132. [百度学术] 

GUO XQ, WANG XJ, SUN AL, LI DX, SHI XZ. Research progress on microbial degradation of pyrethroid insecticides[J]. China Biotechnology, 2017, 37(5): 126-132 (in Chinese). [百度学术] 

55

ASWATHI A, PANDEY A, SUKUMARAN RK. Rapid degradation of the organophosphate pesticide– Chlorpyrifos by a novel strain of Pseudomonas nitroreducens AR-3[J]. Bioresource Technology, 2019, 292: 122025. [百度学术] 

56

HUANG YH, ZHANG WP, PANG SM, CHEN JM, BHATT P, MISHRA S, CHEN SH. Insights into the microbial degradation and catalytic mechanisms of chlorpyrifos[J]. Environmental Research, 2021, 194: 110660. [百度学术] 

57

JOHN EM, SHAIKE JM. Chlorpyrifos: pollution and remediation[J]. Environmental Chemistry Letters, 2015, 13(3): 269-291. [百度学术] 

58

孙建波. 毒死蜱降解菌株的分离鉴定及降解条件优化[D]. 长春: 长春工业大学硕士学位论文, 2021. [百度学术] 

SUN JB. Isolation and identification of chlorpyrifos-degrading strain and optimization of degradation conditions[D]. Changchun: Master’s Thesis of Changchun University of Technology, 2021 (in Chinese). [百度学术] 

59

SIDHU GK, SINGH S, KUMAR V, DHANJAL DS, DATTA S, SINGH J. Toxicity, monitoring and biodegradation of organophosphate pesticides: a review[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(13): 1135-1187. [百度学术] 

60

GAO Y, CHEN SH, HU MY, HU QB, LUO JJ, LI YN. Purification and characterization of a novel chlorpyrifos hydrolase from Cladosporium cladosporioides Hu-01[J]. PLoS One, 2012, 7(6): e38137. [百度学术] 

61

JAISWAL DK, VERMA JP, KRISHNA R, GAURAV AK, YADAV J. Molecular characterization of monocrotophos and chlorpyrifos tolerant bacterial strain for enhancing seed germination of vegetable crops[J]. Chemosphere, 2019, 223: 636-650. [百度学术] 

62

LI XH, HE J, LI SP. Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene[J]. Research in Microbiology, 2007, 158(2): 143-149. [百度学术] 

63

BARMAN DN, HAQUE MA, ISLAM SMA, YUN HD, KIM MK. Cloning and expression of ophB gene encoding organophosphorus hydrolase from endophytic Pseudomonas sp. BF1-3 degrades organophosphorus pesticide chlorpyrifos[J]. Ecotoxicology and Environmental Safety, 2014, 108: 135-141. [百度学术] 

64

YANG Y, ZHOU WX, YANG LY, CHEN YL, SUN-WATERHOUSE D, LI DP. Transcriptomic analysis of molecular mechanisms underlying the biodegradation of organophosphorus pesticide chlorpyrifos by Lactobacillus delbrueckii ssp. bulgaricus in skimmed milk[J]. Food Science and Human Wellness, 2024, 13(5): 3018-3030. [百度学术] 

65

MOU BL, GONG GY, WU SM. Biodegradation mechanisms of polycyclic aromatic hydrocarbons: combination of instrumental analysis and theoretical calculation[J]. Chemosphere, 2023, 341: 140017. [百度学术] 

66

WU FJ, GUO CL, LIU SS, LIANG XJ, LU GN, DANG Z. Pyrene degradation by Mycobacterium gilvum: metabolites and proteins involved[J]. Water, Air, & Soil Pollution, 2019, 230(3): 67. [百度学术] 

67

周子康, 崔洁, 许平, 唐鸿志. 细菌降解低分子量多环芳烃的研究进展[J]. 生物工程学报, 2019, 35(11): 2069-2080. [百度学术] 

ZHOU ZK, CUI J, XU P, TANG HZ. Progress in biodegradation of low molecular weight polycyclic aromatic hydrocarbons[J]. Chinese Journal of Biotechnology, 2019, 35(11): 2069-2080 (in Chinese). [百度学术] 

68

李花, 赵立坤, 包仕钰, 余晓龙, 毛旭辉, 陈超琪. 多环芳烃降解菌及其应用研究进展[J]. 环境工程技术学报, 2023, 13(5): 1663-1676. [百度学术] 

LI H, ZHAO LK, BAO SY, YU XL, MAO XH, CHEN CQ. Research progress on polycyclic aromatic hydrocarbons degrading bacteria and their applications[J]. Journal of Environmental Engineering Technology, 2023, 13(5): 1663-1676 (in Chinese). [百度学术] 

69

XU XJ, LIU WM, WANG W, TIAN SH, JIANG P, QI QG, LI FJ, LI HY, WANG QY, LI H, YU HW. Potential biodegradation of phenanthrene by isolated halotolerant bacterial strains from petroleum oil polluted soil in Yellow River Delta[J]. Science of the Total Environment, 2019, 664: 1030-1038. [百度学术] 

70

孙姗姗. Mycobacterium sp. WY10和Rhodococcus sp. WB9的PAHs降解机制及其对污染土壤的修复作用研究[D]. 杭州: 浙江大学博士学位论文, 2021. [百度学术] 

SUN SS. Study on PAHs degradation mechanism of Mycobacterium sp. WY10 and Rhodococcus sp. WB9 and their remediation effect on contaminated soil[D]. Hangzhou: Doctoral Dissertation of Zhejiang University, 2021 (in Chinese). [百度学术] 

71

SCHWAB AP. Bioremediation of polyaromatic hydrocarbons in soils: a review of recent progress[J]. Current Pollution Reports, 2024, 10: 710-721. [百度学术] 

72

WANG QL, HOU JY, HUANG Y, LIU WX, CHRISTIE P. Metagenomics reveals mechanism of pyrene degradation by an enriched bacterial consortium from a coking site contaminated with PAHs[J]. Science of the Total Environment, 2023, 904: 166759. [百度学术] 

73

LÜ HX, WEI JL, TANG GX, CHEN YS, HUANG YH, HU RW, MO CH, ZHAO HM, XIANG L, LI YW, CAI QY, LI QX. Microbial consortium degrading of organic pollutants: source, degradation efficiency, pathway, mechanism and application[J]. Journal of Cleaner Production, 2024, 451: 141913. [百度学术] 

74

ZHENG TY, LIU R, CHEN JJ, GU XJ, WANG J, LI LM, HOU LQ, LI N, WANG YJ. Fire phoenix plant mediated microbial degradation of pyrene: increased expression of functional genes and diminishing of degraded products[J]. Chemical Engineering Journal, 2021, 407: 126343. [百度学术] 

75

SUN SS, WANG HZ, CHEN YZ, LOU J, WU LS, XU JM. Salicylate and phthalate pathways contributed differently on phenanthrene and pyrene degradations in Mycobacterium sp. WY10[J]. Journal of Hazardous Materials, 2019, 364: 509-518. [百度学术] 

76

FIELD JA, SIERRA-ALVAREZ R. Microbial transformation and degradation of polychlorinated biphenyls[J]. Environmental Pollution, 2008, 155(1): 1-12. [百度学术] 

77

FURUKAWA K, FUJIHARA H. Microbial degradation of polychlorinated biphenyls: biochemical and molecular features[J]. Journal of Bioscience and Bioengineering, 2008, 105(5): 433-449. [百度学术] 

78

HASHMI MZ, MUGHAL AF. Microbial and chemically induced reductive dichlorination of polychlorinated biphenyls in the environment[J]. Environmental Science and Pollution Research, 2025, 32: 2167-2181. [百度学术] 

79

XIANG Y, XING ZY, LIU J, QIN W, HUANG X. Recent advances in the biodegradation of polychlorinated biphenyls[J]. World Journal of Microbiology & Biotechnology, 2020, 36(10): 145. [百度学术] 

80

CHEN R, QIN RL, BAI H, JIA XQ. Recent advances and optimization strategies for the microbial degradation of PCBs: from monocultures to microbial consortia[J]. Critical Reviews in Environmental Science and Technology, 2024, 54(14): 1023-1049. [百度学术] 

81

ZHOU HY, YIN H, GUO ZY, ZHU MH, QI X, DANG Z. Methanol promotes the biodegradation of 2,2′,3,4,4′,5,5′- heptachlorobiphenyl (PCB 180) by the microbial consortium QY2: metabolic pathways, toxicity evaluation and community response[J]. Chemosphere, 2023, 322: 138206. [百度学术] 

82

XING ZY, HU T, XIANG Y, QI P, HUANG X. Degradation mechanism of 4-chlorobiphenyl by consortium of Pseudomonas sp. strain CB-3 and Comamonas sp. strain CD-2[J]. Current Microbiology, 2020, 77(1): 15-23. [百度学术] 

83

GARRIDO-SANZ D, MANZANO J, MARTÍN M, REDONDO-NIETO M, RIVILLA R. Metagenomic analysis of a biphenyl-degrading soil bacterial consortium reveals the metabolic roles of specific populations[J]. Frontiers in Microbiology, 2018, 9: 232. [百度学术] 

84

LIN QH, YANG YY, ZHANG SS, SUN FQ, SHEN CF, SU XM. Enhanced biodegradation of polychlorinated biphenyls by co-cultivation of resuscitated strains with unique advantages[J]. Environmental Research, 2024, 261: 119699. [百度学术] 

85

ZUO XZ, ZHANG S, LING WT, CZECH B, OLESZCZUK P, GAO YZ. Colonization of phthalate-degrading endophytic bacterial consortium altered bacterial community and enzyme activity in plants[J]. Environmental Pollution, 2024, 363(Pt 1): 125079. [百度学术] 

86

张贵驰. 定殖复合功能内生细菌削减叶菜类蔬菜中PAHs的效能及机制[D]. 南京: 南京农业大学硕士学位论文, 2020. [百度学术] 

ZHANG GC. Efficiency and mechanism of colonizing compound functional endophytic bacteria in reducing PAHs in leafy vegetables[D].Nanjing: Master’s Thesis of Nanjing Agricultural University, 2020 (in Chinese). [百度学术] 

87

李爽, 左尚武, 王万清, 王金嵩, 权成伟, 朱雪竹. 菌株Serratia sp. PW7不同定殖方式对黑麦草中芘污染去除及其内生菌群的影响[J]. 农业环境科学学报, 2018, 37(12): 2755-2764. [百度学术] 

LI S, ZUO SW, WANG WQ, WANG JS, QUAN CW, ZHU XZ. Determining the effects of Serratia sp. PW7 on pyrene removal and the endophytic bacterial community in ryegrass (Lolium multiflorum L.) via different inoculation methods[J]. Journal of Agro-Environment Science, 2018, 37(12): 2755-2764 (in Chinese). [百度学术] 

88

张帅, 王建, 马俊超, 高彦征, 左翔之, 凌婉婷. 邻苯二甲酸酯降解功能内生菌群的筛选及定殖效能[J]. 中国环境科学, 2024, 44(3): 1554-1561. [百度学术] 

ZHANG S, WANG J, MA JC, GAO YZ, ZUO XZ, LING WT. Screening and performance of phthalate-degrading endophytic floras[J]. China Environmental Science, 2024, 44(3): 1554-1561 (in Chinese). [百度学术] 

89

周贺洋. 微生物菌群QY2对PCB180的降解机制及其在土壤修复中的应用[D]. 广州: 华南理工大学硕士学位论文, 2023. [百度学术] 

ZHOU HY. Degradation mechanism of PCB180 by microbial flora QY2 and its application in soil remediation[D]. Guangzhou: Master’s Thesis of South China University of Technology, 2023 (in Chinese). [百度学术] 

90

黄婷, 段星春, 陶雪琴, 谢莹莹, 党志, 卢桂宁. 2, 2′,4,4′-四溴联苯醚高效好氧降解菌的鉴定及其降解路径[J]. 环境科学学报, 2017, 37(12): 4705-4714. [百度学术] 

HUANG T, DUAN XC, TAO XQ, XIE YY, DANG Z, LU GN. Identification of an aerobic strain efficiently degrading 2,2′,4,4′-tetrabromodiphenyl ether and its biodegradation pathway[J]. Acta Scientiae Circumstantiae, 2017, 37(12): 4705-4714 (in Chinese). [百度学术] 

91

柴阳阳, 程江峰, 余向阳. 1株邻苯二甲酸二丁酯降解内生菌的分离鉴定及降解特性[J]. 江苏农业科学, 2018, 46(23): 296-300. [百度学术] 

CHAI YY, CHENG JF, YU XY. Isolation and identification of a DBP degrading endophyte and its degradation characteristics[J]. Jiangsu Agricultural Sciences, 2018, 46(23): 296-300 (in Chinese). [百度学术] 

92

YANG J, GU YJ, CHEN ZG, SONG Y, SUN FF, LIU J, WAIGI MG. Colonization and performance of a pyrene-degrading bacterium Mycolicibacterium sp. Pyr9 on root surfaces of white clover[J]. Chemosphere, 2021, 263: 127918. [百度学术] 

93

LIU J, XIANG YB, ZHANG ZM, LING WT, GAO YZ. Inoculation of a phenanthrene-degrading endophytic bacterium reduces the phenanthrene level and alters the bacterial community structure in wheat[J]. Applied Microbiology and Biotechnology, 2017, 101(12): 5199-5212. [百度学术] 

94

潘丽丽. 长三角农田土壤PCBs污染特征及其在水稻中的代谢转化[D]. 杭州: 浙江大学博士学位论文, 2018. [百度学术] 

PAN LL. Characteristics of PCBs pollution in farmland soil in Yangtze River Delta and its metabolic transformation in rice[D]. Hangzhou: Doctoral Dissertation of Zhejiang University, 2018 (in Chinese). [百度学术] 

95

Dal CO A, van VLIET S, KIVIET DJ, SCHLEGEL S, ACKERMANN M. Short-range interactions govern the dynamics and functions of microbial communities[J]. Nature Ecology & Evolution, 2020, 4(3): 366-375. [百度学术] 

96

KEHE J, KULESA A, ORTIZ A, ACKERMAN CM, THAKKU SG, SELLERS D, KUEHN S, GORE J, FRIEDMAN J, BLAINEY PC. Massively parallel screening of synthetic microbial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(26): 12804-12809. [百度学术] 

97

KONG WT, MELDGIN DR, COLLINS JJ, LU T. Designing microbial consortia with defined social interactions[J]. Nature Chemical Biology, 2018, 14: 821-829. [百度学术] 

98

WANG J, LIU J, LING WT, HUANG QG, GAO YZ. Composite of PAH-degrading endophytic bacteria reduces contamination and health risks caused by PAHs in vegetables[J]. Science of the Total Environment, 2017, 598: 471-478. [百度学术] 

99

孙雨豪. 固定化功能土著菌群降解土壤中多环芳烃的规律及机制研究[D]. 南京: 南京农业大学硕士学位论文, 2022. [百度学术] 

SUN YH. Study on the law and mechanism of polycyclic aromatic hydrocarbons degradation in soil by immobilized functional indigenous flora[D]. Nanjing: Master’s Thesis of Nanjing Agricultural University, 2022 (in Chinese). [百度学术] 

100

SALIMIZADEH M, SHIRVANI M, SHARIATMADARI H, NIKAEEN M, LEILI MOHEBI NOZAR S. Coupling of bioaugmentation and phytoremediation to improve PCBs removal from a transformer oil-contaminated soil[J]. International Journal of Phytoremediation, 2018, 20(7): 658-665. [百度学术] 

101

CERVANTES-GONZÁLEZ E, GUEVARA-GARCÍA MA, GARCÍA-MENA J, OVANDO-MEDINA VM. Microbial diversity assessment of polychlorinated biphenyl-contaminated soils and the biostimulation and bioaugmentation processes[J]. Environmental Monitoring and Assessment, 2019, 191(2): 118. [百度学术] 

102

LIU LH, YUAN T, ZHANG JY, TANG GX, LÜ HX, ZHAO HM, LI H, LI YW, MO CH, TAN ZY, CAI QY. Diversity of endophytic bacteria in wild rice (Oryza meridionalis) and potential for promoting plant growth and degrading phthalates[J]. Science of the Total Environment, 2022, 806: 150310. [百度学术] 

103

LI HY, QIU YZ, YAO T, MA YC, ZHANG HR, YANG XL, LI CN. Evaluation of seven chemical pesticides by mixed microbial culture (PCS-1): degradation ability, microbial community, and Medicago sativa phytotoxicity[J]. Journal of Hazardous Materials, 2020, 389: 121834. [百度学术] 

104

ZHAO GQ, ZHOU J, TIAN YN, CHEN QF, MAO DM, ZHU JC, HUANG X. Remediation of fomesafen contaminated soil by Bacillus sp. Za: degradation pathway, community structure and bioenhanced remediation[J]. Environmental Pollution, 2023, 336: 122460. [百度学术] 

105

HAN SY, TAO Y, ZHAO LW, CUI YH, ZHANG Y. Metabolic insights into how multifunctional microbial consortium enhances atrazine removal and phosphorus uptake at low temperature[J]. Journal of Hazardous Materials, 2024, 461: 132539. [百度学术] 

106

DHOTE M, KUMAR A, JAJOO A, JUWARKAR A. Assessment of hydrocarbon degradation potentials in a plant-microbe interaction system with oil sludge contamination: a sustainable solution[J]. International Journal of Phytoremediation, 2017, 19(12): 1085-1092. [百度学术] 

107

MADDELA NR, SCALVENZI L, VENKATESWARLU K. Microbial degradation of total petroleum hydrocarbons in crude oil: a field-scale study at the low-land rainforest of Ecuador[J]. Environmental Technology, 2017, 38(20): 2543-2550. [百度学术]