网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

大柴旦盐湖嗜盐细菌多样性与功能酶挖掘  PDF

  • 许倩钰
  • 王倩倩
  • 吕佳萱
  • 朱德锐
  • 邢江娃
青海大学 医学院,基础医学研究中心,青海 西宁

最近更新:2025-04-09

DOI: 10.13343/j.cnki.wsxb.20240786

CSTR: 32112.14.j.AMS.20240786

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

目的

探究MgSO4亚型大柴旦盐湖嗜盐细菌的多样性,比较不同培养条件对可培养嗜盐细菌多样性的影响,并对嗜盐细菌的胞外功能酶活性进行筛选。

方法

采用免培养Illumina MiSeq高通量测序平台分析大柴旦盐湖细菌的群落组成多样性;选取13种培养基、2个盐度、8组富集培养天数、6个稀释梯度分离嗜盐细菌,通过16S rRNA基因测序与BLAST序列比对确定菌株系统分类学地位。选取分属于18属的45株不同种的代表菌株,采用7种筛选培养基进行蛋白酶、纤维素酶、淀粉酶和酯酶4种功能酶活性的筛选。

结果

大柴旦盐湖免培养测序结果中共得到244个细菌操作分类单元(operational taxonomic unit, OTU);获得明确分类地位的细菌有19门53纲92目133科153属,其中假单胞菌门(Pseudomonadota)和放线菌门(Actinomycetota)为主要的优势菌门。从大柴旦盐湖水泥样本中共分离出593株嗜盐细菌,分属于4门5纲8目12科22属,其中11株可能为潜在新种。Pseudomonadota和芽孢杆菌门(Bacillota)为可培养嗜盐细菌的优势菌门,盐单胞菌属(Halomonas)、枝芽孢菌属(Virgibacillus)和芽孢杆菌属(Bacillus)为主要的优势菌属。本研究比较了不同分离培养条件的分离效果。在10% NaCl浓度下分离得到的嗜盐细菌菌株数明显高于18% NaCl浓度,说明可培养嗜盐细菌中以中度嗜盐细菌居多;优势培养基为寡营养培养基2216E、1/2 R2A、1/10 2216E和1/10 TSA;最佳富集天数为7-30 d;不稀释的样本分离效果最好,其次为稀释梯度10-1和10-2。在45株代表菌株中,分别有40.0%、31.1%、40.0%和82.22%的菌株表现出蛋白酶、纤维素酶、淀粉酶和酯酶活性。大柴旦盐湖可培养嗜盐细菌的酯酶活性检出率较高,而纤维素酶活性检出率相对较低。

结论

优化分离培养方法可显著提升盐湖可培养嗜盐细菌的多样性。大柴旦盐湖水泥样本中嗜盐细菌多样性较丰富,且具有较高的嗜盐酶活性,为后续进一步研究嗜盐细菌的应用提供了依据。

嗜盐微生物通常生长于盐湖、海洋、盐碱土壤等高盐环境中,在酶制剂研发、生物制药、高盐废水处理、食品加工、化妆品研发等领域均有较高的应用价[

1-2]。嗜盐细菌属于典型的嗜盐微生物,具有丰富的物种和遗传多样[3]。其中,中度嗜盐细菌(生长盐度0.5-2.5 mol/L NaCl)和极端嗜盐细菌(生长盐度2.5-5.2 mol/L NaCl)是盐耐受性强的优势类[4]。它们具有独特的生理结构和代谢机制以适应高盐极端环境,并能产生多种耐高盐环境的生物活性物质,如各类水解[5]。研究表明,从嗜盐细菌中提取的嗜盐水解酶不仅在工业中拥有广泛的潜在用[6-7],还可用于医[8-9]、环[10]等领域。

盐湖是嗜盐细菌的重要栖息地之一。研究者们依托国内外各大盐湖开展了嗜盐细菌的相关研究。国外已研究的盐湖包括突尼斯的乔特杰里德湖、伊朗的梅根湖、美国的大盐湖[

11]以及罗马尼亚的盐[12]等。国内盐湖嗜盐细菌的研究则主要围绕新[13]、青[14]、西[15]、内蒙[16]和山西[17]等地展开。大柴旦盐湖位于青海省柴达木盆地,湖面海拔高度为3 140-3 160 m,属于典型的MgSO4亚型盐[18]。湖水pH值近中性,以高Mg2+和高MgSO4/MgCl2比值为特征,总盐度为102.62-457.03 g/L,属于超盐极端环[19]。独特的地理位置和离子组分使大柴旦盐湖蕴含丰富的嗜盐细菌资源,其生物多样性和潜在应用价值亟待挖掘。

为探究大柴旦盐湖中嗜盐细菌的多样性,优化可培养嗜盐细菌的分离培养方案,本研究从大柴旦盐湖采集水泥混合样本,在2种盐度下进行不同天数的富集培养,并选用13种筛选培养基和6个稀释梯度进行稀释涂布和纯化,获得可培养嗜盐细菌的多样性;同时结合高通量测序方法获得的免培养细菌多样性进行比较分析。选取可培养嗜盐细菌的代表菌株进行各类嗜盐酶活性的筛选,获得具有明显嗜盐酶活性的菌株。本研究可获得大量大柴旦盐湖可培养嗜盐细菌资源用于后续的应用探索,并为挖掘各类嗜盐酶的下游应用奠定基础。

1 材料与方法

1.1 材料

1.1.1 样品采集

2022年8月采集大柴旦盐湖的水泥混合样本,呈浑浊态,采样点海拔3 164 m,采样温度6.5 ℃,水样采集深度15 cm,3个采样点间隔大于100 m,分别命名为DCD1、DCD2和DCD3。样本采集后置于4 ℃车载冰箱,运回备用。大柴旦盐湖的地理坐标:95°02′-95°22′E,37°46′-37°55′N。

1.1.2 培养基

富集培养基:蛋白胨0.2 g,酵母浸出粉0.2 g,氯化铵1.0 g,硫酸镁0.2 g,乙酸钠2.0 g,丙酮酸钠1.25 g,乙二胺四乙酸1.0 g,2%磷酸二氢钾溶液10 mL,5%碳酸氢钠20 mL,陈海水1 L,pH 7.0。

分离培养基:富营养培养基采用富营养琼脂培养基(rich culture agar, RCA)[

20]、1/2 RCA培养基、胰蛋白胨大豆琼脂培养基(tryptic soy agar, TSA)[21]、1/2 TSA培养基、Oesterhelt-Stoeckenius medium (OSM)[22]、改良生长培养基(modified growth medium, MGM)和改良高氏1号培养基(modified Gao’s No. 1 medium, GS);寡营养培养基采用瑞氏2A培养基(Reasoner’s 2A medium, R2A)[23]、1/2 R2A培养基、海洋琼脂2216E培养基(Zobell marine agar 2216, 2216E)[24]、1/10 2216E培养基、碱性寡营养培养基(alkaline oligotrophic medium, AOM)和1/10 TSA培养基。

产酶活性筛选培养基:以被筛选菌株原本使用的分离培养基作为对应的基础培养基。蛋白酶筛选培养基:加入质量分数为1%的脱脂牛奶;淀粉酶筛选培养基:加入质量分数为1%的可溶性淀粉,并准备卢卡氏碘液;纤维素酶筛选培养基:基础培养基,并准备质量分数为1%的刚果红溶液和1 mol/L NaCl溶液;酯酶筛选培养基:分别加入质量分数为1%的吐温-20、吐温-40、吐温-60和吐温-80。

以上培养基在制备时,氯化钠的添加量需根据具体需求进行调整,其质量浓度可为10%和18%。配制固体培养基时,需在保持原培养基成分不变的前提下,额外加入20 g/L琼脂粉。

1.1.3 主要试剂和仪器

细菌全基因提取试剂盒、离心柱型DNA提取试剂盒,天根生化科技(北京)有限公司;细菌通用引物、0.22 µm聚醚砜醋酸纤维膜,奥科生物科技有限公司;2×Easy Taq® PCR SuperMix DNA marker,北京全式金生物技术(TransGen Biotech)有限公司;PCR仪,Bio-Rad公司;凝胶成像仪,Biosystems公司;电泳仪,北京六一生物科技有限公司。

1.2 高通量分析大柴旦盐湖微生物多样性

盐湖混合样品的总盐度和离子浓度测定采用离子色谱分析方法,参考《离子色谱分析方法通则JY/T 0575—2020[

25],由上海微谱化工技术服务有限公司检测完成。采用0.22 µm聚醚砜醋酸纤维膜对样品进行真空抽滤并裁切备用。参照细菌全基因组提取试剂盒说明提取基因组DNA,以V3-V4区域为靶标进行PCR扩增,引物为338F (5′-ACTCCTACGGGAGGCAGCAG-3′)和806R (5′-GGACTACHVGGGTWTCTAAT-3′)。PCR扩增的反应体系及反应条件参照陶宇杰[15]的方法进行。采用荧光定量系统检测PCR产物,合格产物由上海美吉生物医药科技有限公司完成高通量测序。在97%相似性水平上,利用USEARCH v.11.0软件进行操作分类单元(operational taxonomic unit, OTU)聚[26],并通过Silva数据库(https://www.arb-silva.de/)和RDP数据库(https://rdp.cme.msu.edu/)对OTUs进行注释和比对。在不同分类学水平上进行细菌群落组成分析,并利用Mothur软件进行稀疏性(rarefaction)分析和多样性指数计[27]

1.3 富集培养和菌株分离

将混匀后的水泥样本分别接种至NaCl质量浓度为10%和18%的2组富集培养基中,接种量控制在40 mL/L,随后置于25 ℃恒温培养箱中富集培养,每12 h摇匀1次,以防样品沉淀。分别在第0、7、14、21、30、45、60和90天取样,稀释梯度分别为100、10-1、10-2、10-3、10-4和10-5。将稀释液振荡混匀后,分别从每个稀释梯度的稀释液中各取200 μL进行平板涂布,并置于25 ℃恒温培养箱中进行培养。其中,10% NaCl的固体培养基培养3-7 d后取出,18% NaCl的固体培养基培养7-14 d后取出。根据菌落的形态特征挑选单菌落,并重复至少2-3次划线培养进行纯化。对纯化后的菌株进行液体培养,培养条件为:25 ℃、90 r/min摇床培养48 h。培养后的纯化菌株进行甘油保种后,置于-80 ℃环境下保存。

1.4 细菌DNA的提取、PCR扩增与测序

菌株基因组DNA的提取按照DNA提取试剂盒说明书进行操作,利用通用引物27F (5′-AGAGTTTGATCCTGGCTCAG-3′)和1492R (5′-TACGGTTACCTTGTTACGACTT-3′)扩增细菌16S rRNA基因。PCR扩增的反应体系及反应条件参考马想蓉[

28]的方法进行,经1%琼脂糖凝胶电泳检测后送至生工生物工程(上海)股份有限公司西安分公司进行测序。通过EzBioCloud数据库(https://www.ezbiocloud.net/)和NCBI BLAST数据库(https://blast.ncbi.nlm.nih.gov/Blast.cgi)将测序获得的16S rRNA基因序列进行相似性比对,明确菌株的系统分类学地位。

1.5 构建潜在新种的系统发育树

细菌的潜在新种是指与已知物种的16S rRNA基因相似性低于98.65%的菌[

29]。从NCBI数据库下载与潜在新种菌株相似性最高的16S rRNA基因序列,并选取江华岛宗植菌(Zooshikella ganghwensis) DSM15267作为系统发育树的外群,利用MEGA v.11.0软件,采用邻接(neighbor joining, NJ)法构建系统发育树(bootstrap值为1 000),分析大柴旦盐湖潜在新种菌株的系统发育地位。

1.6 数据处理

使用Excel软件进行数据统计,使用Adobe Illustrator 2024 v.28.0软件进行绘图。

1.7 嗜盐酶活性筛选

1.7.1 蛋白酶

将实验菌株以平板划线法接种于筛选培养基上,25 ℃恒温培养箱培养5-7 d。待长出明显菌落后,观察菌落周围是否有透明的蛋白水解圈产生。若有,则记录为蛋白酶阳性。

1.7.2 淀粉酶

将实验菌株以平板划线法接种于筛选培养基上,25 ℃恒温培养箱培养5-7 d。长出明显菌落后,用卢卡氏碘液铺满整个平板,直至完全覆盖生长出的菌落。此时淀粉酶筛选培养基遇碘变蓝,观察菌落周围是否有透明水解圈产生。若有,则记录为淀粉酶阳性。

1.7.3 纤维素酶

用点接法(三点接种)将实验菌株接种于筛选培养基上,25 ℃恒温培养箱培养5-7 d。长出明显菌落后,先将刚果红溶液倒入平板至全部没过菌落,静置40 min后再倒出;随后将1 mol/L NaCl溶液倒入平板,静置20 min后再倒出。此时观察菌落周围是否有透明水解圈产生。若有,则记录为纤维素酶阳性。

1.7.4 酯酶

将实验菌株以平板划线法分别接种于吐温-20、吐温-40、吐温-60和吐温-80筛选培养基上,25 ℃恒温培养箱培养5-7 d。长出明显菌落后,观察菌落周围是否有模糊状的酯酶水解圈产生。若有,则分别记录为吐温-20、吐温-40、吐温-60和吐温-80阳性。

1.8 NCBI数据提交

分离的可培养菌株的16S rRNA基因序列均已提交至NCBI数据库(http://www.ncbi.nlm.nih.gov/),登录号为PQ680680-PQ681271。

2 结果与分析

2.1 各样本细菌群落的α多样性

大柴旦盐湖水泥混合样本的总盐度为351.00 g/L,pH 6.97,Mg2+和SO42-的浓度分别为16.25 g/L和27.34 g/L,属于MgSO4亚型超盐盐湖。3个样本点共获得153 693条优化序列,平均长度427 bp。对各采样点水泥样本中的细菌群落结构进行了α多样性分析。结果显示(表1),采样点DCD2的Sobs指数、Chao1指数和ACE指数均高于采样点DCD1和DCD3,表明DCD2有较优的细菌群落丰富度。Mothur软件的分析结果显示,各样本的稀释曲线随序列增加逐渐趋于平缓,且各采样点的覆盖率均≥99.99%,表明测序结果能够反映样本多样性的真实情况。

表1  大柴旦盐湖中的细菌群落α多样性指数
Table 1  Alpha diversity indices of bacterial communities in samples from the Da Qaidam Salt Lake
SampleSobsindexChao1indexACEindexShannonindexSimpsonindexCoverageindex (%)
DCD1 92 93.5 92.73 0.65 0.81 99.99
DCD2 114 114.0 114.16 0.64 0.83 99.99
DCD3 99 99.0 99.29 0.62 0.84 99.99

2.2 大柴旦盐湖免培养细菌多样性

在大柴旦盐湖样本进行的高通量测序与物种注释中,共有244个细菌OTUs,分属于19门53纲92目133科153属。

在门水平上(图1A),优势菌门为假单胞菌门(Pseudomonadota)、放线菌门(Actinomycetota)、绿弯菌门(Chloroflexota)、芽单胞菌门(Gemmatimonadota)和拟杆菌门(Bacteroidota),其平均丰度分别为31.4%、14.0%、8.7%、8.2%和7.1%。各采样点的第一优势菌门均为Pseudomonadota,第二优势菌门均为Actinomycetota

fig

图1  大柴旦盐湖免培养细菌多样性分析。A:门水平;B:纲水平;C:目水平;D:科水平;E:属水平。

Figure 1  Culture-free bacterial diversity analysis in the Da Qaidam Salt Lake. A: Phylum; B: Class; C: Order; D: Family; E: Genus.

在纲水平上(图1B),优势菌纲为α-变形菌纲(Alphaproteobacteria)、γ-变形菌纲(Gammaproteobacteria)、放线菌纲(Actinomycetes)、绿弯菌纲(Chloroflexia)和长微菌纲(Longimicrobiia),其平均丰度分别为14.3%、13.1%、6.4%、5.9%和5.4%。采样点DCD1的第一优势菌纲为Alphaproteobacteria,占比18.5%;采样点DCD2和DCD3的第一优势菌纲均为Gammaproteobacteria,占比分别为14.0%和12.1%。

在目水平上(图1C),优势菌目为生丝微菌目(Hyphomicrobiales)、长微菌目(Longimicrobiales)、红细菌目(Rhodobacterales)、萨恰里单胞菌目(Saccharimonadales)和嗜几丁质菌目(Chitinophagales),其平均丰度分别为6.7%、5.4%、4.3%、3.7%和3.1%。采样点DCD1和DCD2的第一优势菌目均为Hyphomicrobiales,占比分别为10.9%和6.1%;采样点DCD3的第一优势菌目为巴贝菌目(Babelales),占比5.1%,该目在其他2个采样点的样本中均未被高通量测序检出。

在科水平上(图1D),优势菌科为长微菌科(Longimicrobiaceae)、unclassified、副球菌科(Paracoccaceae)、硝化杆菌科(Nitrobacteraceae)和拜叶林克氏菌科(Beijerinckiaceae),其平均丰度分别为5.4%、4.6%、4.3%、2.7%和2.3%。采样点DCD1的第一优势菌科为Longimicrobiaceae,占比8.7%;采样点DCD2的第一优势菌科为unclassified,占比5.3%;采样点DCD3的第一优势菌科为Paracoccaceae,占比4.0%。3个采样点的第一优势菌科均不同。

在属水平上(图1E),优势菌属为unclassified、微红微球菌属(Rubellimicrobium)、慢生根瘤菌属(Bradyrhizobium)、红色杆菌属(Rubrobacter)和盐地杆菌属(Salinibacter),其平均丰度分别为4.6%、2.8%、2.7%、2.2%和1.9%。采样点DCD1和DCD2的第一优势菌属均为unclassified,占比分别为6.5%和5.3%;采样点DCD3的丰度最高的优势菌属有3种,分别是RubellimicrobiumBradyrhizobium和鞘氨醇单胞菌(Sphingomonas),丰度均为3.0%。

2.3 大柴旦盐湖可培养嗜盐细菌多样性

从大柴旦盐湖水样中共分离出593株嗜盐细菌,分属于4门5纲8目12科22属55种(表2)。

表2  大柴旦盐湖可培养嗜盐细菌多样性
Table 2  Diversity of culturable halophilic bacteria from the Da Qaidam Salt Lake
PhylumClassOrderFamilyGenusStrain number
Pseudomonadota Gammaproteobacteria Oceanospirillales Halomonadaceae Halomonas 201
Vreelandella 32
Halovibrio 6
Aidingimonas 2
Salicola 1
Hahellaceae Halospina 1
Alteromonadales Idiomarinaceae Idiomarina 15
Chromatiales Ectothiorhodospiraceae Spiribacter 1
Pseudomonadales Pseudomonadaceae Pseudomonas 4
Marinobacteracea Marinobacter 1
Alphaproteobacteria Hyphomicrobiales Nitrobacteraceae Bradyrhizobium 35
Bacillota Bacilli Bacillales Bacillaceae Bacillus 102
Virgibacillus 108
Oceanobacillus 19
Alkalibacillus 14
Halobacillus 10
Gracilibacillus 1
Pseudalkalibacillus 1
Staphylococcaceae Staphylococcus 34
Planococcaceae Planococcus 2
Actinomycetota Actinomycetes Micrococcales Micrococcaceae Kocuria 2
Balneolota Balneolia Balneolales Balneolaceae Fodinibius 1

在门水平上,4门分别为Pseudomonadota (50.42%)、Bacillota (49.07%)、Actinomycetota (0.34%)和巴纽尔斯菌门(Balneolota,0.17%)。在纲水平上,优势菌纲为芽孢杆菌纲(Bacilli,49.07%)和Gammaproteobacteria (44.52%)。在目水平上,优势菌目(丰度>5.00%)为海洋螺菌目(Oceanospirillales,40.98%)、芽孢杆菌目(Bacillales,49.07%)和Hyphomicrobiales (5.90%)。在科水平上,优势菌科为盐单胞菌科(Halomonadaceae,40.81%)和芽孢杆菌科(Bacillaceae,43.00%);次优势菌科(丰度>5.00%)为Nitrobacteraceae (5.90%)和葡萄球菌科(Staphylococcaceae,5.73%)。在属水平上,丰度大于5.00%的属有盐单胞菌属(Halomonas,33.90%)、枝芽孢菌属(Virgibacillus,18.21%)、芽孢杆菌属(Bacillus,17.20%)、Vreelandella (5.40%)、Bradyrhizobium (5.90%)和葡萄球菌属(Staphylococcus, 5.73%),优势属为HalomonasVirgibacillusBacillus (图2)。

fig

图2  大柴旦盐湖可培养嗜盐细菌属水平的多样性复合条饼图

Figure 2  Genus-level diversity of culturable halophilic bacteria in the Da Qaidam Salt Lake.

2.4 不同分离条件对大柴旦盐湖可培养细菌多样性的影响

2.4.1 比较不同盐浓度的分离培养效果

大柴旦盐湖分离得到的嗜盐细菌中,18%盐度分离得到39株,占总菌数的6.58%,分属于4门4纲5目7科13属;10%盐浓度分离得到554株,占总菌数的93.42%,分属于3门4纲6目9科17属。10%盐度分离得到的菌株数量显著高于18%盐度,说明大柴旦盐湖中可培养的中度嗜盐细菌占绝大多数,而极端嗜盐细菌相对较少。

两个不同盐浓度下分离出的优势嗜盐菌属不同,但均为Halomonas属的菌株数量占比最大(图3)。对18% NaCl盐度下分离出的13个属的嗜盐细菌数量进行分类统计(图3A),Halomonas占比30.77%,其次为喜盐芽孢杆菌属(Halobacillus,17.95%)、嗜碱芽孢杆菌属(Alkalibacillus,12.82%)、嗜盐弧菌属(Halovibrio,10.26%)、艾丁湖单胞菌属(Aidingimonas,5.13%)和Bacillus (5.13%)。在10% NaCl盐度条件下,Halomonas占比34.12%,其次为Virgibacillus (19.31%)、Bacillus (18.05%)、Bradyrhizobium (6.32%)、Staphylococcus (6.14%)和Vreelandella (5.78%) (图3B)。18% NaCl分离出了5个特有属,分别为螺旋杆菌属(Spiribacter)、卤水杆菌属(Salicola)、盐刺菌属(Halospina)、Aidingimonas和矿生菌属(Fodinibius);10% NaCl分离出了9个特有属,分别为Vreelandella、海源菌属(Idiomarina)、Pseudomonas、海杆菌属(Marinobacter)、Bradyrhizobium、纤细芽孢杆菌属(Gracilibacillus)、假性嗜碱芽孢杆菌属(Pseudalkalibacillus)、Staphylococcus和游动球菌属(Planococcus)。

fig

图3  不同盐浓度下大柴旦盐湖可培养嗜盐细菌在属水平的多样性饼状图

Figure 3  Pie chart of genus-level diversity of culturable halophilic bacteria obtained at different salt concentrations in the Da Qaidam Salt Lake. A: 18% NaCl; B: 10% NaCl.

2.4.2 比较不同培养基的分离培养效果

比较11种细菌分离培养基(盐度10%和18%)及2种古菌分离培养基MGM和AOM (盐度18%)的分离培养效果(图4A)。富营养培养基中,RCA培养基共分离出3门4纲4目5科8属60株细菌,TSA培养基分离出2门2纲2目4科7属36株细菌,OSM培养基分离出2门2纲2目3科10属68株细菌,改良高氏1号培养基分离出2门2纲2目4科7属34株细菌,1/2 RCA培养基分离出2门3纲3目4科10属70株细菌,1/2 TSA培养基分离出2门3纲4目5科10属64株细菌,MGM培养基分离出2门2纲2目2科4属6株细菌。寡营养培养基中,R2A培养基共分离出3门3纲4目5科10属55株细菌,2216E培养基分离出2门2纲4目5科11属49株细菌,1/2 R2A培养基分离出2门2纲4目7科10属66株细菌,1/10 2216E培养基分离出3门4纲5目6科8属41株细菌,1/10 TSA培养基分离出2门2纲5目6科10属40株细菌,AOM培养基分离出2门2纲2目2科4属4株细菌。1/10 2216E和1/10 TSA培养基分离得到的可培养细菌在目水平的多样性最高;1/2 R2A培养基分离得到的可培养细菌在科水平的多样性最高;2216E培养基分离得到的可培养细菌在属水平的多样性最高,说明采用寡营养培养基能够有效提高可培养嗜盐细菌多样性。在属水平,11种细菌培养基均分离出HalomonasBacillusVirgibacillusStaphylococcus,这些属也为可培养结果中丰度大于5%的优势属。

fig

图4  大柴旦盐湖可培养嗜盐细菌在不同培养条件下的属水平多样性。A:不同培养基;B:不同富集时间;C:不同稀释梯度。

Figure 4  Genus-level diversity of culturable halophilic bacteria acquired under different culture conditions from the Da Qaidam Salt Lake. A: Different media; B: Different enrichment time; C: Different dilution gradients.

除2216E和1/2 RCA培养基外,其余培养基均分离出了特有属(仅出现1次)或稀有属(仅出现2次)。特有属Salicola可从OSM培养基中分离;Fodinibius可从R2A培养基中分离;Marinobacter可从1/2 R2A培养基中分离;Halospina可从TSA培养基中分离;Gracilibacillus可从1/2 TSA培养基中分离;Spiribacter可从1/10 TSA培养基中分离;Pseudalkalibacillus可从改良高氏1号培养基中分离。稀有属考克氏菌属(Kocuria)可从1/10 2216E和RCA培养基中分离;Planococcus可从1/2 R2A和改良高氏1号培养基中分离;Aidingimonas可从MGM和AOM培养基中分离。

2.4.3 比较不同富集时间的分离效果

统计不同富集时间的细菌分离效果。结果显示,富集0 d (即不富集)共得到菌株64株,归类于2门2纲2目2科4属;富集7 d共得到菌株105株,归类于2门2纲3目5科10属;富集14 d共得到菌株144株,归类于2门3纲5目7科13属;富集21 d共得到菌株63株,归类于3门4纲6目7科10属;富集30 d共得到菌株83株,归类于3门3纲3目4科9属;富集45 d共得到菌株54株细菌,归类于3门3纲3目4科8属;富集60 d共得到菌株44株,归类于2门2纲2目3科9属;富集90 d共得到菌株36株,归类于2门2纲2目3科5属(图4B)。富集21 d的样本在目水平的多样性最高;富集14 d和21 d的样本在科水平的多样性最高;富集14 d的样本在属水平的多样性最高,其次是富集7 d和21 d。

除富集0 d和90 d外,其余富集时期均分离出了特有属或稀有属。第7天分离出的特有属为HalospinaPseudomonas;第14天分离出的特有属为AidingimonasPlanococcusSpiribacter;第21天分离出的特有属为Marinobacter;第30天分离出的特有属为GracilibacillusFodinibius;第45天分离出的特有属为Pseudalkalibacillus。稀有属Idiomarina可从第14天和第21天中分离;Kocuria可从第21天和第45天中分离;Salicola可从第30天和第60天中分离。

总体来看,富集7-30 d的分离效果最好。从0 d至90 d,不同富集天数分离菌株的数量和多样性随时间大致呈现正偏态分布;第0天和第90天分离出的菌株在属水平的多样性最低,且均未出现特有属(图4B)。

2.4.4 比较不同稀释梯度的分离效果

在不同稀释梯度的分离效果中,稀释梯度为100的样本共分离出3门4纲6目9科17属112株细菌,稀释梯度为10-1的样本分离出2门3纲4目6科14属113株细菌,稀释梯度为10-2的样本分离出3门4纲7目9科14属109株细菌,稀释梯度为10-3的样本分离出2门3纲4目5科11属98株细菌,稀释梯度为10-4的样本分离出3门4纲5目6科10属81株细菌,稀释梯度为10-5的样本分离出2门3纲5目6科10属80株嗜盐细菌(图4C)。

仅稀释梯度为100、10-1和10-2时分离出了特有属。共4种特有属(MarinobacterPseudalkalibacillusFodinibiusGracilibacillus)可从稀释梯度为100的样本中分离;特有属Salicola可从稀释梯度为10-1的样本中分离;特有属HalospinaSpiribacter可从稀释梯度为10-2的样本中分离。不同稀释梯度的稀有属有4种,包括从100和10-1中分离的Halovibrio,从10-2和10-4中分离的Kocuria,从100和10-1中分离的Planococcus,以及从10-1和10-3中分离的Aidingimonas。除稀释梯度10-5外,其余稀释梯度均分离出了稀有属。稀释梯度1的样本在目、科、属水平的多样性均为最高,且分离出的特有属最多。随着稀释梯度的增加,细菌多样性和菌株数均呈下降趋势。

2.5 大柴旦盐湖可培养嗜盐细菌中潜在的新种资源

从大柴旦盐湖水样中分离的嗜盐细菌中,有11株菌可能为潜在新种(与近缘菌株的16S rRNA基因相似度<98.65%) (表3)。系统发育分析结果表明(图5),16S rRNA基因序列比对结果与建树结果基本一致,仅菌株DCBB4101未与比对时相似度较高的近缘菌株归类到同一进化分支。为明确这些潜在新种在系统发育学中的具体位置,后续需进行菌株多相分类学鉴定、全基因组测序和比较分析等工作。

表3  大柴旦盐湖嗜盐细菌潜在新种
Table 3  Potential new species of halophilic bacteria in the Da Qaidam Salt Lake
Strain No.Phylogenetically related strain16S rRNA gene similarity (%)
DCBG3011 Bacillus tequilensis strain ZL4 98.56
DCBB4011 Alkalibacillus halophilus strain ESP2_3 98.55
DCBR2051 Bradyrhizobium guangxiense strain CCBAU 53363 98.44
DCBO6112 Salicola marasensis strain 5Ma3 97.13
DCBT1121 Halospina denitrificans strain HGD 1-3 98.25
DCBB3011 Halomonas qaidamensis strain XH36 97.62
DCBB3001 Virgibacillus salarius strain VS-33 97.60
DCBT4032 Bacillus haynesii strain INH14A 97.70
DCBS4004 Staphylococcus cohnii strain S10 96.68
DCBT4043 Bacillus altitudinis strain NS7 96.60
DCBB4101 Aliifodinibius salipaludis strain WN023 95.21
fig

图5  大柴旦盐湖可培养嗜盐细菌潜在新种的系统发育分析。节点上的数字是经过1 000次重复后获得的自展值;括号内的数字代表了这些参考菌株和分离菌株的16S rRNA基因序列在GenBank中的登录号。标尺表示进化距离。

Figure 5  Phylogenetic analysis of potential new species of culturable halophilic bacteria from the Da Qaidam Salt Lake. Numbers at the nodes are bootstrap values obtained after 1 000 replicates. The numbers in parentheses represent the accession numbers in the GenBank for 16S rRNA gene sequences of those reference strains and isolated strains. The scale bar represents evolutionary distance.

2.6 大柴旦盐湖产嗜盐酶细菌筛选

从大柴旦盐湖分离的嗜盐细菌中,选取分属于18属45种的代表菌株进行蛋白酶、纤维素酶、淀粉酶、酯酶等4种胞外酶活性的检测。结果显示,45株被测菌株中,有40株至少具有1种胞外功能酶活性,酶活性菌株检出率为88.89%。具备被测酶活性的菌株分布于16个属,仅大洋芽孢杆菌属(Oceanobacillus)和Pseudalkalibacillus这2个属的菌株中未检测到被测功能酶活性。筛选出蛋白酶活性菌株18株,检出率为40.0%;纤维素酶活性菌株14株,检出率为31.1%;淀粉酶活性菌株18株,检出率为40.0%;对吐温-80有酯酶活性的菌株24株,检出率为53.3%;对吐温-60有酯酶活性的30株,检出率为66.7%;对吐温-40有酯酶活性的24株,检出率为53.3%;对吐温-20有酯酶活性的26株,检出率为57.8% (表4)。同时对4种吐温均有酯酶活性的菌株有11株,占比24.4%;至少对1种吐温有酯酶活性的菌株有37株,占比82.2%。大柴旦盐湖可培养嗜盐细菌的酯酶活性检出率最高,纤维素酶活性检出率最低。

表4  嗜盐酶活性筛选结果
Table 4  Screening results of halophilic enzyme activities
GenusStrain No.Enzyme activity
ProteaseCellulaseAmylaseTween-80Tween-60Tween-40Tween-20
Halomonas DCBB3011
DCBB2002
DCSR3011
DCBR2011
Bacillus DCBT4032
DCBT4043
DCBR2021
DCBT1021
DCSR2052
DCSR3003
DCSR3041
DCBS1032
DCBG3011
Virgibacillus DCBB3001
DCBT1022
DCBS3011
DCBE0001
DCSE7001
DCBR1021
Bradyrhizobium DCBR2051
DCBR2041
DCBR2052
Vreelandella DCBB1003
Staphylococcus DCBS4004
DCBO2003
DCBR1011
DCBO1001
Oceanobacillus DCBB1023
Idiomarina DCBB2023
Alkalibacillus DCBT1111
DCBG2041
DCBO3001
DCBB4011
Halobacillus DCBB4051
Halovibrio DCSR3002
Pseudomonas DCSE7001
DCBA1001
Planococcus DCSB2004
DCBG2012
Marinobacter DCSB3002
Kocuria DCBR3041
DCSE5121
Gracilibacillus DCBS4002
Pseudalkalibacillus DCBG5001
Fodinibius DCBB4101

+: 阳性;-: 阴性。

+: Positive; -: Negative.

表4可以看出,同时具有蛋白酶、纤维素酶、淀粉酶和酯酶4种酶活性的菌株共有5株,占比11.11%,分属于Halomonas属(2株)、Bacillus属(2株)和Bradyrhizobium属(1株),除Bacillus属外均为革兰氏阴性菌株。有9株菌同时具有3种酶活性,占比20.00%;有14株菌同时具有2种酶活性,占比31.11%;有12株菌仅检测出1种酶活性,占比26.67%。嗜盐细菌的胞外嗜盐酶活性呈现出多样性。

3 讨论

3.1 大柴旦盐湖嗜盐细菌多样性

大柴旦盐湖是一个高盐盐湖,嗜盐古菌和嗜盐细菌资源均十分丰富。本研究基于高通量测序法从大柴旦盐湖中获得的免培养嗜盐细菌分类于19门53纲92目133科153属,基于不同分离培养方法获得的可培养嗜盐细菌分类于4门5纲8目12科22属。可培养嗜盐细菌所属的4个门均在免培养结果中被检测出,其中PseudomonadotaActinomycetota为免培养测序结果中的主要优势菌门。可培养和免培养结果中的共有细菌菌属包括HalomonasHalospinaIdiomarinaPseudomonasBradyrhizobiumBacillusVirgibacillusKocuriaFodinibius,其中可培养结果中的优势菌属Bradyrhizobium也为免培养测序结果中的优势菌属,证明了本培养方案的有效性。

与其他盐湖分离培养的嗜盐细菌多样性结果对比,大柴旦盐湖水泥样本中分离获得的4种嗜盐细菌门类与马欣[

30]从MgSO4亚型盐湖尕斯库勒盐湖分离获得的细菌门类一致,且包含了在MgSO4亚型达布逊盐[31]中全部可培养细菌门类,说明MgSO4亚型盐湖可培养嗜盐细菌在分类学水平为门时具有较高的一致性。在属水平上,大柴旦盐湖分离出的22属嗜盐细菌明显高于尕斯库勒盐湖中分离得到的13属,HalomonasHalovibrioSpiribacterBacillusVirgibacillusHalobacillusPlanococcusKocuriaFodinibius为2个盐湖的共有属,且2个盐湖的可培养优势属均包括BacillusHalomonas。此外,张田田[22]从MgSO4亚型盐湖茶卡盐湖中分离出的优势属为BacillusHalomonas,从MgSO4亚型盐湖小柴旦盐湖中分离出的优势属为Halomonas,这些结果均与大柴旦盐湖的优势属相符。综上所述,不同MgSO4亚型盐湖的可培养嗜盐细菌在门和属水平上均存在一定的相似性。BacillusHalomonas是MgSO4亚型高盐盐湖中可培养嗜盐细菌的典型优势菌群。

田蕾[

13]从新疆艾丁湖土样中分离出嗜盐细菌18个属,有7个属为与大柴旦盐湖的共有属,包括KocuriaBacillusGracilibacillusHalobacillusVirgibacillusMarinobacterHalomonas。其中,Kocuria属于嗜盐放线菌属。杨丹丹[32]在岱山盐场中分离出嗜盐细菌7个属,有5个属为与大柴旦盐湖的共有属,包括HalomonasPseudomonasMarinobacterIdiomarinaHalobacillus;优势属为Halomonas,占嗜盐细菌总数的46.8%,与本研究优势属一致。Guan[11]发现,目前已有的高盐盐湖生态系统中的细菌主要由16个属组成,包括Bacillus、需盐色盐杆菌属(Chromohalobacter)、GracilibacillusHalobacillus、嗜碱盐乳杆菌属(Halolactibacillus)、HalomonasHalovibrioIdiomarinaOceanobacillus、鱼芽孢杆菌属(Piscibacillus)、Salicola、盐渍微菌属(Salimicrobium)、盐渍球菌属(Salinicoccus)、Staphylococcus、深海芽孢杆菌属(Thalassobacillus)和Virgibacillus

3.2 嗜盐细菌分离培养方法

本研究中的优势培养基为2216E、1/2 R2A、1/10 2216E和1/10 TSA培养基,均为寡营养培养基,说明寡营养培养法可显著提升细菌的分离培养效果,与Pulschen等在南极洲的研究结[

23]一致。富集培养法可通过富集未培养细菌的丰度、解除难培养嗜盐细菌的休眠状[33]等机制增加可培养嗜盐细菌的多样性。本研究结果显示,嗜盐细菌的最佳富集天数为7-30 d,富集天数过长并不能显著提升可培养嗜盐细菌的多样性。绝迹稀释法常被应用于环境微生物的分离培[34]。然而,本研究表明,过度稀释(稀释梯度≥10-3)会显著降低可培养嗜盐细菌的菌株数量和多样性,稀释梯度100、10-1和10-2的联合使用更适合嗜盐细菌的分离。这一发现与本课题组马欣、马想蓉等的前期研究结[28,30]相一致。与10% NaCl相比,18% NaCl条件下分离得到的嗜盐细菌数量较少,这不仅表明中度嗜盐细菌的数量大于极端嗜盐细菌的数量,也可能与极端嗜盐菌中嗜盐古菌的比例更[4,35]有关。此外,本研究设置的细菌培养温度为25 ℃,虽与大多数已有分菌研究的嗜盐微生物培养温度较为一[4,30,36-38],但仍存在一定的局限性,可能会丢失一部分嗜低温的嗜盐细菌。

3.3 大柴旦盐湖嗜盐细菌产酶活性

本研究筛选出了一批具有产多种胞外嗜盐酶的嗜盐细菌,共分布于16个不同的属。其中,产淀粉酶菌株涉及11属,产蛋白酶菌株涉及11属,产纤维素酶菌株涉及8属,产酯酶菌株涉及14属。不同盐湖的理化特性不同,其分离菌株的胞外水解酶活性也存在差[

39]。大柴旦盐湖属于MgSO4亚型超盐盐湖,可培养嗜盐细菌的酯酶阳性率最高(82.2%),其次为蛋白酶(40.0%)、淀粉酶(40.0%)和纤维素酶(31.1%),其高酯酶活性检出率可能与Mg2+的激活作用有[40]。新疆艾丁湖属于Na2SO4亚型盐[41],其分离得到的中度嗜盐菌酯酶活性较好,阳性菌株占比72.7%;淀粉酶活性相对较差,占比22.7%[13]。伊朗中部沙漠区Howz Soltan高盐盐湖的主要化学成分包括NaCl、KCl、MgSO4、MgCl2和Na2SO4,其分离出的280株嗜盐细菌中,分别有69.6%、63.2%、35.7%和24.3%的菌株具有脂肪酶、淀粉酶、蛋白酶和纤维素酶活[42]。其中,淀粉酶阳性率明显高于本研究结果,而蛋白酶和纤维素酶的阳性率较低,与本研究结果相似。进一步比较发现,Howz Soltan高盐盐湖和大柴旦盐湖具有胞外嗜盐酶活性的嗜盐细菌中,革兰氏阳性菌的菌株数量均明显高于革兰氏阴性菌,但在菌属多样性方面,大柴旦盐湖中的革兰氏阳性菌属和阴性菌属的数量基本一致。印度Marakkanam盐田中分离出8株嗜盐细菌,分属于ChromohalobacterHalovibrioStaphylococcus这3个属,均能产生脂肪酶和蛋白[43]。智利北部阿塔卡马沙漠中分离出嗜盐细菌HalomonasIdiomarina 2个属,其中大多数菌株具有1-2种胞外酶活[44]。以上研究表明,不同盐环境来源的嗜盐细菌在产酶活性方面既具有多样性,也存在一定的共性。

4 结论

大柴旦盐湖水泥样本中嗜盐细菌的多样性较为丰富,且具有较高的嗜盐酶活性,在酶学应用方面具有很大的潜力,值得进一步研究。采用寡营养培养基、富集培养方法和适度样本稀释能显著增加可培养嗜盐细菌的多样性,可为后续盐湖嗜盐微生物的分离培养方法优化提供参考。

作者贡献声明

许倩钰:数据采集与处理、论文撰写和修改;王倩倩:数据分析、论文修改;吕佳萱:数据采集与绘图;朱德锐:论文修改;邢江娃:研究构思与设计、论文修改。

利益冲突

作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。

参考文献

1

CORRAL P, AMOOZEGAR MA, VENTOSA A. Halophiles and their biomolecules: recent advances and future applications in biomedicine[J]. Marine Drugs, 2019, 18(1): 33. [百度学术] 

2

LIU CL, BAFFOE DK, ZHAN YL, ZHANG MY, LI YH, ZHANG GC. Halophile, an essential platform for bioproduction[J]. Journal of Microbiological Methods, 2019, 166: 105704. [百度学术] 

3

LACH J, JĘCZ P, STRAPAGIEL D, MATERA-WITKIEWICZ A, STĄCZEK P. The methods of digging for “gold” within the salt: characterization of halophilic prokaryotes and identification of their valuable biological products using sequencing and genome mining tools[J]. Genes, 2021, 12(11): 1756. [百度学术] 

4

李泉泉, 王芸, 王科珂, 倪萍, 孙鹏, 苏为涌, 张碧柳. 新疆两盐湖可培养极端嗜盐菌组成及功能多样性研究[J]. 微生物学报, 2022, 62(6): 2074-2089. [百度学术] 

LI QQ, WANG Y, WANG KK, NI P, SUN P, SU WY, ZHANG BL. Composition and functional diversity of extreme halophiles isolated from two salt lakes in Xinjiang[J]. Acta Microbiologica Sinica, 2022, 62(6): 2074-2089 (in Chinese). [百度学术] 

5

RATHAKRISHNAN D, GOPALAN AK. Isolation and characterization of halophilic isolates from Indian salterns and their screening for production of hydrolytic enzymes[J]. Environmental Challenges, 2022, 6: 100426. [百度学术] 

6

WADITEE-SIRISATTHA R, KAGEYAMA H, TAKABE T. Halophilic microorganism resources and their applications in industrial and environmental biotechnology[J]. AIMS Microbiology, 2016, 2(1): 42-54. [百度学术] 

7

RUGINESCU R, ENACHE M, POPESCU O, GOMOIU I, COJOC R, BATRINESCU-MOTEAU C, MARIA G, DUMBRAVICIAN M, NEAGU S. Characterization of some salt-tolerant bacterial hydrolases with potential utility in cultural heritage bio-cleaning[J]. Microorganisms, 2022, 10(3): 644. [百度学术] 

8

CHAKRABORTY S, KHOPADE A, BIAO R, JIAN W, LIU XY, MAHADIK K, CHOPADE B, ZHANG LX, KOKARE C. Characterization and stability studies on surfactant, detergent and oxidant stable α-amylase from marine haloalkaliphilic Saccharopolyspora sp. A9[J]. Journal of Molecular Catalysis B: Enzymatic, 2011, 68(1): 52-58. [百度学术] 

9

SHETGAONKAR PP, REDDY AB, SONAWANE T, RAVICHANDRAN V, JOBBY R. Salting up our knowledge: the fascinating halophiles and their bioactive metabolites with biomedical implications[M]//Trends in Biotechnology of Polyextremophiles. Cham: Springer Nature Switzerland, 2024: 203-230. [百度学术] 

10

OYEWUSI HA, WAHAB RA, HUYOP F. Dehalogenase-producing halophiles and their potential role in bioremediation[J]. Marine Pollution Bulletin, 2020, 160: 111603. [百度学术] 

11

GUAN TW, LIN YJ, OU MY, CHEN KB. Isolation and diversity of sediment bacteria in the hypersaline aiding lake, China[J]. PLoS One, 2020, 15(7): e0236006. [百度学术] 

12

RUGINESCU R, GOMOIU I, POPESCU O, COJOC R, NEAGU S, LUCACI I, BATRINESCU-MOTEAU C, ENACHE M. Bioprospecting for novel halophilic and halotolerant sources of hydrolytic enzymes in brackish, saline and hypersaline lakes of Romania[J]. Microorganisms, 2020, 8(12): 1903. [百度学术] 

13

田蕾, 李恩源, 关统伟, 唐蜀昆, 刘晓飞, 张小平. 艾丁湖可培养嗜盐菌多样性及功能酶、抗菌活性筛选[J]. 微生物学通报, 2017, 44(11): 2575-2587. [百度学术] 

TIAN L, LI EY, GUAN TW, TANG SK, LIU XF, ZHANG XP. Diversity and functional enzymes, antimicrobial activity screening of culturable halophilic bacteria from Aiding Lake[J]. Microbiology China, 2017, 44(11): 2575-2587 (in Chinese). [百度学术] 

14

杨海山, 邹忠阳, 张鑫, 赵玲莉, 张翔, 张海霞, 朱德锐, 李永臻. 青海盐湖抑菌活性嗜盐菌的筛选及其生物学特征研究[J/OL]. 海洋湖沼通报, (2024-01-25). https://kns.cnki.net/kcms/detail/37.1141.P.20240125.0945.006.html. [百度学术] 

YANG HS, ZOU ZY, ZHANG X, ZHAO LL, ZHANG X, ZHANG HX, ZHU DR, LI YZ. Screening and biological characteristics of halophilic bacteria with antibacterial activity in Qinghai Salt Lake[J/OL]. Transactions of Oceanology and Limnology, (2024-01-25). https://kns.cnki.net/kcms/detail/37.1141.P.20240125.0945.006.html(in Chinese). [百度学术] 

15

陶宇杰, 舒志万, 郭敏, 高翔, 王嵘, 沈国平, 韩睿, 朱德锐. 西藏扎布耶盐碱湖细菌的多样性与分离菌株的生长特性[J]. 微生物学通报, 2023, 50(12): 5286-5299. [百度学术] 

TAO YJ, SHU ZW, GUO M, GAO X, WANG R, SHEN GP, HAN R, ZHU DR. Bacterial diversity and growth characteristics of isolates from Zabuye Lake, Xizang[J]. Microbiology China, 2023, 50(12): 5286-5299 (in Chinese). [百度学术] 

16

洪煜, 高波, 严冬, 安晓英, 颜华, 贾良辉. 吉兰泰盐湖土壤嗜盐菌的分离及其产四氢嘧啶的研究[J]. 西北农林科技大学学报(自然科学版), 2019, 47(6): 115-123, 131. [百度学术] 

HONG Y, GAO B, YAN D, AN XY, YAN H, JIA LH. Isolation and ectoine-producing characteristics of halophiles from soil of Jilantai Saline Lake[J]. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(6): 115-123, 131 (in Chinese). [百度学术] 

17

桑进. 运城盐湖嗜盐细菌多样性分析及四株嗜盐新菌的多相分类[D]. 济南: 山东大学硕士学位论文, 2018. [百度学术] 

SANG J. Analysis of bacterial diversity in Yuncheng Salt Lake and polyphasic taxonomy of four novel halophilic bacteria[D]. Jinan: Master’s Thesis of Shandong University, 2018 (in Chinese). [百度学术] 

18

GAO CL, YU JQ, MIN XY, CHENG AY, HONG RC, ZHANG LS, LI TW. The sedimentary evolution of da Qaidam Salt Lake in Qaidam Basin, northern Tibetan Plateau: implications for hydro-climate change and the formation of pinnoite deposit[J]. Environmental Earth Sciences, 2019, 78(15): 463. [百度学术] 

19

沈国平, 韩睿, 缪增强, 邢江娃, 李永臻, 王嵘, 朱德锐. 青藏高原4类典型水化学特征湖泊的细菌多样性差异及影响因素[J]. 生物多样性, 2022, 30(4): 21420. [百度学术] 

SHEN GP, HAN R, MIAO ZQ, XING JW, LI YZ, WANG R, ZHU DR. Bacterial diversity differences and influence factors of four types of hydrochemical characteristic lakes in the Qinghai-Xizang Plateau[J]. Biodiversity Science, 2022, 30(4): 21420 (in Chinese). [百度学术] 

20

周留艳. 基于代谢组学的海洋难培养微生物分离培养研究[D]. 济南: 山东大学硕士学位论文, 2020. [百度学术] 

ZHOU LY. Study on the separation and cultivation of yet-to-be cultured marine microorganism based on metabolomics[D]. Jinan: Master’s Thesis of Shandong University, 2020 (in Chinese). [百度学术] 

21

LAW A, SOLANO O, BROWN CJ, HUNTER SS, FAGNAN M, TOP EM, STALDER T. Biosolids as a source of antibiotic resistance plasmids for commensal and pathogenic bacteria[J]. Frontiers in Microbiology, 2021, 12: 606409. [百度学术] 

22

张田田, 李永臻, 沈国平, 王嵘, 朱德锐, 邢江娃. 高盐盐湖可分离嗜盐耐盐菌的种群多样性及四氢嘧啶产量评价[J]. 生物技术通报, 2022, 38(1): 168-178. [百度学术] 

ZHANG TT, LI YZ, SHEN GP, WANG R, ZHU DR, XING JW. Population diversity of isolated halophilic and halotolerant bacteria from hypersaline salt lakes and evaluation of ectoine production[J]. Biotechnology Bulletin, 2022, 38(1): 168-178 (in Chinese). [百度学术] 

23

PULSCHEN AA, BENDIA AG, FRICKER AD, PELLIZARI VH, GALANTE D, RODRIGUES F. Isolation of uncultured bacteria from Antarctica using long incubation periods and low nutritional media[J]. Frontiers in Microbiology, 2017, 8: 1346. [百度学术] 

24

孙创, 王金燕, 张钰琳, 张蕴慧, 朱晓雨, 陈朝晖, 张晓华. 利用改良培养基探究西太平洋海水可培养细菌多样性[J]. 微生物学报, 2021, 61(4): 845-861. [百度学术] 

SUN C, WANG JY, ZHANG YL, ZHANG YH, ZHU XY, CHEN ZH, ZHANG XH. Exploring the diversity of cultivated bacteria in the Western Pacific waters through improved culture media[J]. Acta Microbiologica Sinica, 2021, 61(4): 845-861 (in Chinese). [百度学术] 

25

中华人民共和国教育部. 离子色谱分析方法通则: JY/T 0575—2020[S]. 北京: 中国标准出版社, 2020. [百度学术] 

Ministry of Education of the People’s Republic of China. General rules of analytical methods for ion chromatography: JY/T 0575—2020[S]. Beijing: Standards Press of China, 2020 (in Chinese). [百度学术] 

26

BATES ST, CLEMENTE JC, FLORES GE, WALTERS WA, PARFREY LW, KNIGHT R, FIERER N. Global biogeography of highly diverse protistan communities in soil[J]. The ISME Journal, 2013, 7(3): 652-659. [百度学术] 

27

SBAOUI Y, EZAOUINE A, TOUMI M, FARKAS R, KBAICH MA, HABBANE M, EL MOUTTAQUI S, KADIRI FZ, EL MESSAL M, TÓTH E, BENNIS F, CHEGDANI F. Effect of climate on bacterial and archaeal diversity of Moroccan marine microbiota[J]. Microorganisms, 2022, 10(8): 1622. [百度学术] 

28

马想蓉, 马欣, 陈胤勋, 龙启福, 王嵘, 邢江娃. 柴达木盆地昆特依盐湖可培养嗜盐细菌多样性研究[J]. 生物技术通报, 2024, 40(7): 285-298. [百度学术] 

MA XR, MA X, CHEN YX, LONG QF, WANG R, XING JW. Diversity of culturable halophilic bacteria in the chloride type Kunteyi Salt Lake in the Qaidam Basin[J]. Biotechnology Bulletin, 2024, 40(7): 285-298 (in Chinese). [百度学术] 

29

DELBARI Y, MOHASSEL Y, KAKAEI E, BAHRAMI Y. Identification and anti-bacterial property of endophytic actinobacteria from Thymes kotschyanus, Allium hooshidaryae, and Cerasus microcarpa[J]. Scientific Reports, 2023, 13(1): 13145. [百度学术] 

30

马欣, 马想蓉, 朱德锐, 李轩领, 沈国平, 邢江娃. 青藏高原尕斯库勒盐湖可培养嗜盐耐盐微生物的群落结构与分离方法对比研究[J]. 海洋与湖沼, 2024, 55(4): 916-930. [百度学术] 

MA X, MA XR, ZHU DR, LI XL, SHEN GP, XING JW. Community structure of culturable halophilic and halotolerant microorganisms in Gasikule Salt Lake on the Qinghai-Xizang Plateau and comparison of different isolation methods[J]. Oceanologia et Limnologia Sinica, 2024, 55(4): 916-930 (in Chinese). [百度学术] 

31

赵婉雨, 杨渐, 董海良, 吴耿, 王尚, 孙永娟, 赖忠平, 蒋宏忱. 柴达木盆地达布逊盐湖微生物多样性研究[J]. 地球与环境, 2013, 41(4): 398-405. [百度学术] 

ZHAO WY, YANG J, DONG HL, WU G, WANG S, SUN YJ, LAI ZP, JIANG HC. Microbial diversity in the hypersaline Dabuxun Lake in Qaidam Basin, China[J]. Earth and Environment, 2013, 41(4): 398-405 (in Chinese). [百度学术] 

32

杨丹丹, 黎乾, 黄晶晶, 陈敏. 岱山盐场可培养嗜盐菌的多样性及其产酶活性筛选[J]. 应用生态学报, 2012, 23(11): 3103-3108. [百度学术] 

YANG DD, LI Q, HUANG JJ, CHEN M. Diversity and enzyme-producing activity of culturable halophilic bacteria in Daishan Saltern of East China[J]. Chinese Journal of Applied Ecology, 2012, 23(11): 3103-3108 (in Chinese). [百度学术] 

33

MU DS, LIANG QY, WANG XM, LU DC, SHI MJ, CHEN GJ, DU ZJ. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing[J]. Microbiome, 2018, 6(1): 230. [百度学术] 

34

BENÍTEZ X, GARCÍA J, GONZALEZ EG, de La CALLE F. Dilution-to-extinction platform for the isolation of marine bacteria-producing antitumor compounds[J]. Methods in Molecular Biology, 2021, 2296: 77-87. [百度学术] 

35

许瑶. 高盐环境原核生物多样性及一株嗜盐古菌的多相分类学研究[D]. 芜湖: 安徽师范大学硕士学位论文, 2019. [百度学术] 

XU Y. Species diversity in hypersaline environments and polyphasic taxonomic identification of a haloarcheal new species[D]. Wuhu: Master’s Thesis of Anhui Normal University, 2019 (in Chinese). [百度学术] 

36

依妮皮姑丽·麦麦提依明, 迪丽拜尔·托乎提, 阿依安·布胡达西, 果海尔·克热木. 新疆尉犁县黑湖嗜盐嗜碱菌的分离及系统发育学分析[J]. 微生物学通报, 2016, 43(12): 2601-2608. [百度学术] 

Henipigul Memetimin, Dilbar Tohty, Ayan Bughdash, Goher Kerem. Isolation and phylogenetic analysis of haloalkalophilic bacteria in the black lake of Yuli County in Xinjiang[J]. Microbiology China, 2016, 43(12): 2601-2608 (in Chinese). [百度学术] 

37

CHOI EJ, BEATTY DS, PAUL LA, FENICAL W, JENSEN PR. Mooreia alkaloidigena gen. nov., sp. nov. and Catalinimonas alkaloidigena gen. nov., sp. nov., alkaloid-producing marine bacteria in the proposed families Mooreiaceae fam. nov. and Catalimonadaceae fam. nov. in the phylum Bacteroidetes[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt 4): 1219-1228. [百度学术] 

38

郭丽丽. 西太平洋海山区微生物多样性与适应性研究[D]. 杭州: 浙江大学博士学位论文, 2020. [百度学术] 

GUO LL. Study on microbial diversity and adaption in the seamount area of western Pacific Ocean[D]. Hangzhou: Doctoral Dissertation of Zhejiang University, 2020 (in Chinese). [百度学术] 

39

BABAVALIAN H, AMOOZEGAR MA, ZAHRAEI S, ROHBAN R, SHAKERI F, MOGHADDAM MM. Comparison of bacterial biodiversity and enzyme production in three hypersaline lakes; Urmia, Howz-Soltan and Aran-Bidgol[J]. Indian Journal of Microbiology, 2014, 54(4): 444-449. [百度学术] 

40

王昭凯, 易志伟, 刘洋, 产竹华, 曾润颖. 产酯酶海洋中度嗜盐菌Halomonas sp. LYG1-1的分离鉴定及其酶学性质[J]. 热带海洋学报, 2014, 33(1): 69-73. [百度学术] 

WANG ZK, YI ZW, LIU Y, CHAN ZH, ZENG RY. Isolation, identification and characterization of an esterase-producing marine moderately halophilic strain Halomonas sp. LYG1-1[J]. Journal of Tropical Oceanography, 2014, 33(1): 69-73 (in Chinese). [百度学术] 

41

董秀黄. 结合BIOLOG碳源筛选研究新疆两盐湖可培养嗜盐菌多样性[D]. 乌鲁木齐: 新疆大学硕士学位论文, 2013. [百度学术] 

DONG XH. Diversity of halophilic bacteria in Xinjiang Two Salt Lakes using an integrated approach of BIOLOG carbon source screening and culture-dependent methods[D]. Urumqi: Master’s Thesis of Xinjiang University, 2013 (in Chinese). [百度学术] 

42

ROHBAN R, AMOOZEGAR MA, VENTOSA A. Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran[J]. Journal of Industrial Microbiology & Biotechnology, 2009, 36(3): 333-340. [百度学术] 

43

JOHN J, SIVA V, KUMARI R, ARYA A, KUMAR A. Unveiling cultivable and uncultivable halophilic bacteria inhabiting Marakkanam Saltpan, India and their potential for biotechnological applications[J]. Geomicrobiology Journal, 2020, 37(8): 691-701. [百度学术] 

44

RUGINESCU R, PURCĂREA C, DORADOR C, LAVIN P, COJOC R, NEAGU S, LUCACI I, ENACHE M. Exploring the hydrolytic potential of cultured halophilic bacteria isolated from the Atacama Desert[J]. FEMS Microbiology Letters, 2019, 366(17): fnz224. [百度学术]