网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

真菌凋亡样细胞死亡和靶向药物的研究进展  PDF

  • 王柳茜
  • 李珑捷
  • 田庆庆
  • 杜春梅
黑龙江大学 生命科学学院,农业微生物技术教育部工程研究中心,黑龙江省寒区植物基因与生物发酵重点 实验室,黑龙江省普通高校微生物重点实验室,黑龙江 哈尔滨

最近更新:2025-07-04

DOI: 10.13343/j.cnki.wsxb.20240825

CSTR: 32112.14.j.AMS.20240825

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

目前,治疗真菌感染的药物数量有限且已产生脱靶效应,研发新型抗真菌药物迫在眉睫。真菌凋亡样细胞死亡(apoptosis-like cell death, ALCD)是生物体在正常发育阶段细胞发生的死亡现象。本文概述了真菌ALCD的特征、所涉及的信号通路及关键因子,介绍了可诱导真菌凋亡的天然药物和人工合成药物。其中,天然药物包括来自微生物源的脂肽、法尼醇、他汀类、生物碱,来自植物源的有机酸、精油,以及来自昆虫的蜂毒素,并绘制了药物诱导真菌ALCD的基础分子景观。本文为制定新的抗病原真菌策略和研发靶向抗真菌药物提供了理论依据。

真菌性动植物病原体和产毒素真菌不仅对全球生态系统的稳定和粮食安全构成重大威[

1],还对人类的健康和生命造成不可忽视的损害。据不完全统计,全球每年约有10亿人感染真菌病原体,150万-200万人死于真菌疾[2-4]。这意味着人类对杀真菌剂有巨大的需求,已知2019年杀真菌剂的市场规模为187亿美[5]。随着高毒菌株的出现以及病原体的地理扩张,杀真菌剂的市场份额将继续增[5]。然而,目前用于治疗动物和植物真菌感染的药物数量有限,主要分为唑类(靶向麦角甾醇生物合成)、多烯类(靶向膜麦角甾醇)、氟胞嘧啶(抗代谢物)和棘白菌素类(干扰细胞壁生物合成)四大类;这些药物多数是通过使细胞坏死(necrosis)来杀死真菌,或者只是抑制真菌细胞的生长而非杀灭真菌(如唑类),通常可诱导病原体产生耐药[6]。药物导致的细胞坏死通常是极端浓度化学刺激引起的被动直接过程,靶点往往单一,因此更易产生脱靶效应;同时高水平的化学刺激可能超出宿主细胞可承受的生理阈值,也会对宿主细胞造成损伤或挑[7]。目前常见的抗真菌药物绝大多数存在使用年限过长、目标菌株耐药性增加的问题,甚至许多药物已经出现了脱靶效[6]。抗/耐药菌株的出现和上升对当前真菌性病害的治疗策略提出了挑战,迫切需要开发新的抗真菌药物和疗法来积极应对这种挑[7-8]

在生物体的正常发育阶段,内/外源因素会触发细胞发生调节性细胞死亡(regulated cell death, RCD)[

9]。细胞程序性死亡(programmed cell death, PCD)是RCD中研究最广泛的一种,包括自噬(autophagy)、凋亡(apoptosis)、铁亡(ferroptosis)等;凋亡也被称为I型PCD,是受基因调控的有序的细胞自杀过程,已经在多种真菌中观察到了类似于动物细胞凋亡的特征,然而真菌凋亡的机制与植物和后生动物具有一定的可比[9],但又存在明显区[10],并且真菌(特别是单细胞真菌)是否发生细胞凋亡一直存在争议,因此真菌的凋亡现象被称作凋亡样细胞死亡(apoptosis-like cell death, ALCD)[11]。真菌的ALCD过程同样具有自主性和复杂性,涉及多种调控因子和信号通路;因此,通过启动细胞固有的ALCD自毁程序来控制病原体可以避免耐药性和脱靶效应的产生,为控制真菌性疾病提供了另一种可能的途径;另外,真菌ALCD通路具备显著区别于动植物细胞的独特性,赋予了靶向病原真菌ALCD药物更高的生物安全[11]。因此,开发靶向真菌凋亡因子和相关通路的新药成为当前和未来的关注热点。本文主要介绍真菌凋亡的特征、凋亡通路、关键元件和信号,总结近年来靶向凋亡药物的研究进展,以期为抗真菌药物的研发提供科学依据。

1 真菌凋亡样细胞死亡的普遍性、典型特征和重要事件

在自然界中,真菌ALCD现象广泛存在。尽管不同诱因引发的ALCD通路不同,但凋亡特征和凋亡过程中的几个重要事件具有共性。

1.1 ALCD的普遍性

自首次在酵母中发现ALCD现象后,其他真菌中也陆续观察到类似现象,如念珠菌(Candida spp.)[

12]、甘薯黑斑病菌(Ceratocystis fimbriata)[13]、曲霉(Aspergillus spp.)[14]、粗糙脉孢菌(Neurospora crassa)、葡枝根霉(Rhizopus stolonifer)[15]、镰孢菌(Fusarium spp.)[16-17]、立枯丝核菌(Rhizoctonia solani)[18]、稻瘟病菌(Magnaporthe oryzae)[19]等。因此,ALCD可能存在于所有单细胞和多细胞真菌中。真菌ALCD可由衰老、突变、染色体不亲和信号等内源性因素介导,也可由病毒感染、氧化胁迫、药物等外源刺激触发,从而参与调控多种重要的生命过程,在生长、发育、应激反应、营养竞争、衰老以及宿主-病原体相互作用中起到重要作[20-21]。在宿主抵抗真菌侵染的过程中,也会通过触发真菌ALCD来维持体内平[11]。在真菌-真菌拮抗相互作用过程中,竞争对手分泌的化合物可能引发ALCD,为夺取营养物质提供显著优[10]

1.2 ALCD的典型特征

真菌ALCD的典型标志与后生动物的凋亡相似,尽管不同类型的RCD之间存在显著差异,但似乎质膜的不稳定是一个共同的机[

11]。这涉及活性氧(reactive oxygen species, ROS)累积、线粒体膜电位(mitochondrial membrane potential, MMP/Δψm)下降/耗散、线粒体去极化、质膜内小叶的磷脂酰丝氨酸(phosphatidylserine, PS)外翻、核小体DNA断裂、染色质固缩/凝聚和断裂等特[22]。ROS和MMP可以相互影响,MMP是维持线粒体内外膜间电荷不对称分布所必需的,其改变可能导致线粒体中ROS的积[23]

1.3 ALCD的重要事件

尽管诱因不同,但在ALCD典型特征形成的过程中存在一些具有共性的事件,如ROS积累、Ca2+过载和细胞色素c (cytochrome, Cyt-c)释放、细胞周期阻滞和细胞壁应激等,前3个事件都与线粒体直接相关。因此,干扰真菌线粒体稳态可能是未来抗真菌药物的重要方向。

1.3.1 ROS积累

在生物体中,ROS既可以触发内质网应激,也可以造成线粒体MMP的改变;因此,它既是凋亡的早期现象,也是各种类型细胞凋亡的早期诱因;外源性和内源性ROS过高都会激活与细胞凋亡相关的蛋白质激酶和核酸,从而介导凋亡现象的发[

23]。然而ROS的积累往往先于Ca2+的堆积,并影响Ca2+[24]。与ROS产生相关的因子都可能直接或间接影响细胞凋亡,H2O2在各种ROS产生者中起核心作[25]。因此,人们通常使用H2O2来创造氧化应激,构建凋亡模型,以此来分析细胞凋亡的分子机理。

1.3.2 Ca2+过载

内质网是真菌重要的Ca2+库,并存在鞘脂类物质敏感的Ca2+通道;内质网应激会导致Ca2+过载,Ca2+被释放到细胞质中,进而被运输到线粒体;Ca2+进入线粒体的过度运动破坏了ATP的产生、氧化还原反应和蛋白质的输入,导致线粒体膜的去极化和通透性过渡孔的形成,进而释放Cyt-c[

24]。在酵母中,液泡也是重要的Ca2+库,甚至比内质网持有更多的Ca2+[26]。因此,液泡Ca2+通道可能是与酵母ALCD相关的主要Ca2+释放机[27]。然而,酵母细胞凋亡与液泡之间的关系尚不清楚。

1.3.3 Cyt-c释放

Cyt-c由线粒体向细胞质转移是细胞凋亡的标志性事件,与Cyt-c氧化酶活性的降低直接相[

28]。线粒体去极化导致Cyt-c和其他促凋亡因子释放到细胞质中;在酵母中,这导致元半胱天冬酶(metacaspase, meCAS) Mcal的激活,进而级联激活ALCD;然而,也有研究表明,在动物凋亡中Cyt-c的释放先于MMP降[29]

1.3.4 细胞周期阻滞

有报道称,一些天然药物如喜树碱(camptothecin)、紫杉醇(paclitaxel)等诱导的ALCD总是伴随着细胞周期阻[

30]。这些药物下调编码周期蛋白质依赖性激酶(mitotic cyclin-dependent kinase, CDKs)的cdc28基因,该基因参与G2/M转变,对真核生物细胞周期的进展具有重要影响,其下调导致细胞周期阻[31]

1.3.5 细胞壁应激

外源刺激触发的ALCD往往与真菌的细胞壁完整性(cell wall integrity, CWI)通路相[

32]。细胞壁应激可能是触发ROS累积和Ca2+过载的重要原因,细胞壁或细胞膜上的蛋白质传感器一旦检测到化学物质或渗透压的改变,便会激活CWI信号级联途径来维持细胞稳[32-33],而持续的细胞壁压力或损伤则触发ALCD[34]。因此,了解真菌的CWI通路有助于开发对动物宿主安全性更高的靶向凋亡或细胞壁干扰药[35]

2 ALCD途径分类

尽管动物细胞PCD的精确分子基础已经得到表征,但动物PCD的外源和内源性途径的核心调节元件在真菌基因组中都不存[

9]。因此,动物的PCD机理对理解真菌ALCD的帮助是有限的。真菌ALCD的诱因不同,所涉及的关键因子和信号通路既存在一定的共性,也有显著的差异;即使诱因相同,在不同真菌物种中ALCD的反应通路也存在显著差[9]。目前认为由线粒体外膜透化(mitochondrial outer membrane permeabilization, MOMP)触发的真菌ALCD可分为线粒体途[28]、内质网途[36-37]和死亡受体途[38]。线粒体途径和内质网途径属于内源性途径,死亡受体途径属于外源性途径;大多数内/外源胁迫所导致的真菌凋亡都是通过线粒体途径所诱导的,内质网途径诱导真菌凋亡的例子较少,而死亡受体途径可能是基于动物细胞凋亡模式的推测,目前在真菌中几乎未见报道。另外,一些关键凋亡事件,如Cyt-c的释放可能在3种途径中都存在,因此这种划分是否适当还需要更多的研究来证实。根据是否依赖于半胱天冬酶(caspase, CAS)/meCAS,真菌ALCD可被分为CAS/meCAS依赖型和非依赖型两大类,但在有些真菌中CAS/meCAS依赖型和非依赖型ALCD可能会同时发[39]

3 ALCD关键因子

目前发现的真菌ALCD关键因子主要有凋亡诱导因子(apoptosis-inducing factor, AIF)、凋亡抑制蛋白(inhibitors of apoptosis proteins, IAPs)、IAP拮抗蛋白(IAP-antagonist proteins, IAP-APs)、谷胱甘肽(glutathione, GSH)、鞘脂[

40-42]。然而,在不同真菌和不同环境背景下,并非所有因子都同时参与凋亡。

3.1 凋亡诱导因子AIF

AIF是真核生物中位于线粒体膜间隙的保守的黄素蛋白,通过上调ROS触发PCD,是不依赖于CAS/meCAS的凋亡效应因子,而细胞质中往往存在AIF同源线粒体相关死亡诱导因子AMID[

41,43-44]。已经在多种真菌中发现了AIF或/和AMID,单细胞真菌往往只有1个AIF,但丝状真菌通常有几个AIF或AMID类似[45-49]。酿酒酵母(Saccharomyces cerevisiae)的Aif1p (378 aa)在第61位氨基酸位点有1个潜在的蛋白质水解VRL/TV裂解基序;在凋亡刺激下,其锚定在线粒体中的蛋白质水解基序被水解,从而使其从线粒体易位到细胞核,这导致大规模的染色质浓缩和DNA断[50-51]。另外,在新生隐球菌(Cryptococcus neoformans)[45]和白色念珠菌(Candida albicans)[46]中,Aif1也是诱导ALCD的关键因子。值得注意的是,在C. albicans中Aif1在调节细胞死亡方面发挥双重作用,Aif1缺失突变体的ALCD在较低药物浓度下减弱,在较高药物浓度下增[46]。裂殖酵母(Schizosaccharomyces pombe)内聚蛋白质Rad21也发挥AIF的功能,但其易位是从细胞核转移到线粒[52]。构巢曲霉(Aspergillus nidulans)的AifA在氧化应激下从线粒体释放到细胞质中,而非转移到细胞核,并且其过表达突变体对抗凋亡应激的能力提[41]。另外,在N. crassa、柄孢霉(Podospora anserina)[40]和灰盖拟鬼伞(Coprinopsis cinerea)[53]中,AIF/AMID也参与应激ALCD。可见,AIF或AMID的功能受到细胞类型、凋亡损伤及其固有的DNA结合能力的影响。

在正常情况下,AIF和AMID参与呼吸复合物I的组装,在氧化磷酸化和氧化还原控制中发挥重要作用,帮助调节ROS水[

54-55]。ROS积累是AIF羰基化、蛋白质水解裂解和从线粒体释放的先决条件,线粒体是真菌解毒和毒力机制的重要调节因子,靶向线粒体呼吸链可能为抗真菌药物开发提供一个新的平台。一项针对酵母中32种与凋亡相关的蛋白质的靶向蛋白质组学研究揭示了氧化还原酶Oye32可能是许多应激源共同的凋亡标志[56]

3.2 半胱天冬酶(CAS)/元半胱天冬酶(meCAS)

CAS/meCAS被认为是真菌ALCD的关键因子,在真菌中ALCD既可以是CAS/meCAS依赖的,也可以是独立的,通常由线粒体所介[

57]。CAS、meCAS和副半胱天冬酶(paracaspase, paCAS)具有相同的结构特性,同属于半胱氨酸依赖(cysteine-dependent, CD)族蛋白酶的C14家[58-59] (图1C)。三者都含有典型的肽酶C14结构域(pfam00656),也被称为CASc,具有高度保守且独特的α/β-折叠三级结构和半胱天冬酶-血红蛋白酶(caspase-hemoglobinase, CHF)折叠;根据底物特异性,C14家族又分为C14A和C14B亚家族;C14A亚家族的成员都是CAS,CAS具有严格的底物特异性,在酸性天冬氨酸(Asp)后切割目标蛋白质触发凋亡。C14B亚家族则包括paCAS和meCAS,它们缺乏Asp特异性;paCAS在碱性精氨酸(Arg)或赖氨酸(Lys)后切割目标蛋白质,而meCAS在碱性Arg后切割目标蛋白质触发凋[60]。从进化上看,meCAS和paCAS是CAS的祖先,它们在结构拓扑、底物特异性和激活机制方面存在差异,meCAS表现出比CAS和paCAS更广泛的结构变[61-62]S. cerevisiae中的YCA1/Mca1是在真菌中鉴定的第1个具有细胞功能的meCAS[63]。目前已在多种真菌中都检测到CAS/meCAS活[64-66]。meCAS根据结构被分成3种类型:I型在N端有富含脯氨酸结构域,具有锌指基序;Ⅱ型不具有N端结构域,但其CHF的p20和p10亚基被一个长的连接区隔开;Ⅲ型的p20和p10亚基的基因顺序相对于I型和Ⅱ型是左右调换[26]。然而,烟曲霉(Aspergillus fumigatus)和A. nidulans的CAS活性却与meCAS无关,这意味着在不同的真菌物种中meCAS是否参与凋亡存在个性化,还需要更多的实验证据来判断其对凋亡的控[67-69]。CAS/meCAS不仅影响真菌的RCD,还影响细胞中未折叠蛋白质和蛋白质聚集体的积累,从而影响真菌的寿命,如S. cerevisiae中的YCA1/Mca1[63]、黑穗病菌(Ustilago maydis)的YCA1同源物Mca1[39,66]M. oryzae的YCA1同源物MoMca1和MoMca2[70]都有这种功能。在P. anserina中,衰老培养物中的RCD是由氧化应激诱导的,并在YCA1同源物PaMCA1和PaMCA2激活后发生,PaMCA1和PaMCA2的缺失降低了生长速度,但延长了老化菌株的寿[71]。用S-乙基乙基亚硫酸钠(S-ethyl ethanethiosulfinate, ALE)处理产黄青霉(Penicillium chrysogenum)的孢子,直接导致ALCD特征,用ALE处理菌丝可以检测到ROS依赖的meCAS活[64]。meCAS基因缺失的N. crassa或AIF缺失的P. anserina菌株不受“异核不相容”介导的RCD的影[71]

fig

图1  真菌和动物C14家族蛋白酶和凋亡抑制蛋白的区[

59]。A:C14家族蛋白酶;B:动物IAPs;C:真菌IAPs。

Figure 1  The differences between C14 family proteases and inhibitors of apoptosis proteins in fungi and animals[

59]. A: C14 family proteases; B: Animal IAPs; C: Fungal IAPs.

目前尚无用于测量和抑制meCAS活性的特异性分子探针,这导致对meCAS参与的细胞生物学过程的研究还面临一定的困境。然而,在急性内质网应激条件下,CAS修饰核孔复合体可能是一种抑制mRNA输出、减少蛋白质合成和折叠负荷的应激补偿机[

36]。在慢性内质网应激情况下,CAS持续较长时间,这可能会危及细胞稳[37]。这提出了一个发人深省的问题,真菌中的meCAS是否以死亡为中心?鉴于meCAS在结构上的特异性及其参与细胞稳态的可能性,暗示开发靶向meCAS的药物有可能是抗真菌的良好策略。

3.3 凋亡抑制蛋白(IAPs)

IAPs是CAS活性的调节剂,在真核生物中广泛保守存在,但其运作背景在很大程度上仍然处于未知状态。在哺乳动物中,IAP可以通过抑制CAS依赖性和非依赖性细胞死亡来调节先天免疫应答,也调节自噬和细胞分[

72-74]。IAP也是癌细胞逃避凋亡的关键,是治疗癌症的关键靶[75-76]。最新研究表明,IAP具有抑制细胞死亡以外的作[77]。哺乳动物的IAP家族由8个成员组成(图1B):XIAP、cIAP1、cIAP2、ML-IAP、NAIP、ILP2、survivin和bruce[72,77]。IAP的典型结构特征是其N端保守且独特的杆状病毒IAP重复结构域(baculovirus IAP repeat, BIR);BIR结构域长度约为70个氨基酸残基,是促进蛋白质-蛋白质相互作用的锌结合域,由3个保守的半胱氨酸和1个组氨酸残基协调一个Zn2+离子来稳定BIR折[74,77]。根据是否存在深的肽结合口袋可将BIR分成I型和Ⅱ型;Ⅱ型BIRs含有独特的疏水性裂缝,通过该裂缝BIR与CAS或IAP-APs等互作伙伴的特定的N端IAP结合基序(IAP-binding motif, IBM) (内联蛋白结合基序)相结合;I型BIRs只有1个浅口袋,不能与CAS或IAP拮抗剂相互作用,靶向其他功能蛋[77]。典型的IAPs通常包含2种BIR结构域(I型和Ⅱ型)、泛素相关(ubiquitin-associated, UBA)结构域和really interesting new gene (RING)锌指结构域;而I型和Ⅱ型BIR共存保证了IAPs不仅能够调控凋亡,还能参与其他细胞过[77]。RING结构域允许IAPs作为E3-连接酶(E3-ligase)发挥作用,同时也是IAPs实现自我不可逆切割来抑制自身活性的功能域;而UBA和泛素共轭结构域(ubiquitin-conjugating domain, UBC)负责与多泛素化蛋白和底物的结合,有一些IAP还具有CAS招募结构域(caspase activation and recruitment domain, CARD)[77]。在稳态活细胞中,IAPs通过泛素化作用促进活性CAS和AIF的降解;在ALCD过程中,IAPs通过自我切割抑制自身活[78]

真菌的IAP-like蛋白质通常被称为Bir1,一般包含2个BIR结构域(图1C)。在结构域构成上,真菌的Bir1与人类的IAP存活蛋白(IAP survivin)类似。然而在氨基酸组成上,真菌的Bir1比哺乳动物、昆虫或病毒的IAP平均要大至少几百个氨基酸,且缺乏关键的自抑制介导的RING结构域,不太可能进行自泛素化调节,因此推测真菌中存在不同于其他真核生物的调节机[

79]。目前,已在多种丝状真菌中发现了Bir1,如A. nidulans的AnBir1[80]、假禾谷镰孢菌(Fusarium pseudograminearum)的FpBir1[81]、寄生隐丛赤壳菌(Cryphonectria parasitica)的CpBIR1[82]M. oryzae的MoBIR1[83]、灰葡萄孢(Botrytis cinerea)的BcBIR1[84]。真菌Bir1定位于细胞核和细胞质,这表明在细胞核和细胞质之间的穿梭对于IAPs参与调节的生命过程是必不可少[84]。真菌IAPs可能通过它们保守的BIR结构域调节相似的生命过程,并通过可变的C端结构域的进化参与物种特异性生命过程的调[78,81,83]。预测AnBir1在C端有2A1904和PTZ00449超家族结构域,CaBir1有MSCRAMM_SdrC超家族结构域,该结构域包含YSIRK-type信号肽和LPXTG蛋白锚定基序,FpBir1具有PHA03307超家族结构域,该家族蛋白有ICP4 (单纯疱疹病毒-1唯一必需的转录激活因子)型转录因子功能,ICP4是一种结合双链DNA的病毒核蛋白,可能靶向沉默组蛋[85]

在酵母中,Bir1p与多种蛋白质形成着丝点乘客复合物(kinetochore passenger complex)[

52],当Bir1被删除时,突变的S. cerevisiae细胞表现出染色体错分离和缺失等表型,这可以通过Bir1碳末端的过表达来挽救。这表明BIR是染色体凝聚和染色体分离保真度所必需的,很可能也是调节细胞周期事件不可或缺的。BIR1的缺失对某些真菌可能是致命的,将M. oryzae的MoBIR1在S. cerevisiae中表达,可以延缓细胞的时间衰老并抑制H2O2诱导的细胞死亡,延迟老化由MoBIR1的碳末端负责调[78,83,85]。因此,靶向IAPs可能为治疗真菌病害提供有效的治疗方案。

3.4 IAP拮抗蛋白IAP-APs

在动物细胞中,IAP-APs能灭活IAP,解除CAS活性的IAP抑制。哺乳动物的IAP-APs有线粒体蛋白SMAC (在细胞凋亡诱导过程中从线粒体释放到细胞质中)、丝氨酸蛋白酶Omi/HtrA2、XIAP相关因子XAF1和ARTS[

86]。反之,IAP也可以通过降解SMAC和ARTS来减缓细胞凋亡;SMAC和Omi/HtrA2都含有一个保守的IBM基序,是四氨基酸结构域(AVPI/F)。SMAC是第二线粒体衍生的半胱天冬酶激活剂(second mitochondria-derived activator of caspase),SMAC通过IBM基序与IAP的BIR结构域相互作用,从而拮抗IAP[86]。IAP-APs在有些生物中定位于线粒体的内膜空间,在有些生物中定位于细胞质;不同的IAP-APs的作用机制不同,有的通过竞争性结合取代CAS和促进自泛素化抑制活性,有的通过结合和不可逆地切割IAP来抑制IAP活[28,87-88]

已分别在S. cerevisiaeB. cinerea中发现了Omi/HtrA2的同源物Nma111p和BcNma[

89-90]。在酵母中,Nma111p通过其N端结构域与Bir1p相互作用并水解Bir1p,促进ALCD[89]。当在Δnma111细胞中表达BcNma时,细胞对氧化和温度应激条件的敏感性能恢复到野生型水平,说明BcNma在功能上与Nma111p互补,它们的功能具有保守[90]。Nma111p和BcNma都只定位于细胞核,而Bir1p在细胞核和细胞质中都有定位,这表明细胞质中的Bir1p可能由其他蛋白质调[89-90]

3.5 谷胱甘肽

细胞凋亡与GSH耗竭有关。GSH与氧化型谷胱甘肽(oxidized glutathione disulfide, GSSG)是细胞内最主要的氧化还原缓冲对之一,负责清除ROS和相关信号传导,其比例的失调是诱导细胞凋亡的重要因素之[

91]。GSSG可引发Ca2+释放,此过程可能涉及质膜和线粒体膜的离子通道及蛋白质磷酸化,与鞘脂关系密切。研究发现,GSSG能与群体感应信号分子法尼醇结合,被C. albicans耐药蛋白Cdr1p排出细胞外,导致胞内GSH的耗竭,破坏细胞内氧化还原平衡,进而导致氧化应激,诱导细胞凋[91]。但GSH是否还通过巯基-二硫键转换的细胞信号传导作用调控真菌ALCD尚无明确报道。

3.6 鞘脂

在生物体中,鞘脂既是结构成分也是信号枢纽。一般来说,鞘氨醇-1-磷酸(sphingosine-1-phosphate, S1P)促进细胞存活和分化,而神经酰胺(ceramide, Cer)则诱导细胞凋[

92]。Cer是脂质第二信使,越来越多的证据表明其调控细胞自噬、细胞凋亡等PCD过程和细胞周期进程,间接激活CAS诱导凋亡,是内在凋亡和外部死亡受体凋亡途径的关键调控因子,然而经典的Ca2+释放通路也依赖鞘脂信号转导途[93]。尽管鞘脂的变化被认为是线粒体驱动动物细胞死亡的重要步骤,然而在真菌中关于鞘脂的研究多集中于其对质膜结构、生长发育和致病力的影响,其对ALCD的影响还缺乏系统性研究。已有少数研究证实了鞘脂对真菌ALCD的影响,例如,抗真菌植物防御素RsAFP2通过与C. albicans细胞壁中的中性鞘糖脂相互作用阻断了C. albicans的形态转化,从而导致ALCD[94];Castro[95]的研究表明植物鞘氨醇(phytosphingosine)能诱导N. crassa的ALCD,使分生孢子活力降低、萌发受损、DNA浓缩和片段化以及ROS积累;S. cerevisiae的神经鞘磷脂酶(inositolphosphosphingolipid phospholipase C, Isc1p)与氧化应激所致的凋亡密切相关,Isc1p通过调节离子水平使细胞达到氧化还原稳[96]。凋亡关键元件及其作用见表1

表1  凋亡关键元件及其作用
Table 1  Key elements of apoptosis and their roles
Key elementsInhibit/Activate apoptosisDrug-target suitabilityComparison with animals or humansReferences
AIF Activate Yes Different [45,56]
meCAS Activate Yes Fungi specific [68]
IAPs Inhibit Yes Fungi specific [82]
IAP-APs Activate Yes Fungi specific [89]
GSH Inhibit No Lack of specificity [91]
Sphingolipids Activate Yes Different [92]

4 真菌凋亡样细胞死亡的主要分子景观

由于已报道的真菌ALCD多属于现象观察,极少涉及深层次的分子机制。因此,真菌ALCD的机制并不清晰,尤其是丝状真菌的ALCD缺乏范式研究。图2对真菌ALCD所涉及的关键因子和信号通路进行了整合,并展示了它们之间的关联(图2)。外源和内源胁迫均可导致真菌细胞膜和线粒体产生ROS,当少量的ROS在细胞内积累时,会引发自噬;当大量的ROS在细胞内积累时,会导致细胞凋亡。在CAS/meCAS依赖性凋亡中,ROS导致MMP/Δψm降低,形成线粒体膜通透孔,导致Cyt-c释放,激活meCAS/CAS。IAPs可抑制meCAS/CAS的凋亡作用,IAP-APs可阻碍IAPs的功能。在meCAS/CAS非依赖性细胞凋亡中,AIF从线粒体膜间隙转移到细胞核,从而诱导细胞凋[

45]。ROS或其他因素导致内质网应激,进而释放Ca2+,导致线粒体Ca2+[97]。Ca2+超载和Δψm降低触发细胞凋[27]。前面已经提到,鞘脂参与真菌的凋亡,但是机制不明。在动物细胞中,鞘脂通路的关键成分Cer参与内源性和外源性细胞凋亡的路径比较清晰,ROS可导致Cer的积累,在线粒体膜上形成Cer通道,释放Cyt-c,激活CAS,导致细胞凋[98]。此外,Cer可分解为酰基和鞘氨醇,鞘氨醇被磷酸化生成鞘氨醇-1-磷酸(S1P),S1P参与生长和分化。GSH耗竭导致Ca2+释放和Δψm降低,进而诱导细胞凋亡,此过程可能与鞘脂相[91]。由于有些胁迫只能触发一种凋亡,而有些胁迫可以同时触发meCAS/CAS依赖型和非依赖性凋亡,因此在图2的同一细胞中同时表现了CAS依赖型和非依赖型凋亡,但实际上有些真菌由于缺乏某个关键元件,可能只能依赖其中一种方式凋亡。另外,PCD是非常复杂的过程,可以广泛地相互作[93]。细胞凋亡和自噬之间存在串扰,当细胞受到凋亡刺激时,细胞自噬的变化有2种可能性:一种可能是被激活以增强细胞存活率,减少细胞凋亡的发生;另一种可能是与凋亡协同作用,促进细胞死[17]。因此,自噬相关蛋白质可能影响凋亡通路。

fig

图2  真菌凋亡样细胞死亡的分子机制

Figure 2  The molecular mechanism of fungal apoptosis-like cell death.

5 诱导真菌凋亡的药物

由于真菌ALCD和动物细胞凋亡之间的关键因子和信号通路存在显著的差异,诱导真菌内源性ALCD可能是未来治疗真菌疾病的良好策略,具有靶标性强、安全性高、持效期长等优势,是当前和未来新药研发的重点靶标。然而那些触发真菌细胞ALCD的化合物比抑制真菌生长的化合物出现抗/耐药性病原菌的可能性更低,更具有治疗优势。筛选靶向ALCD途径的化合物或者筛选包括靶向ALCD的多靶点药物,能有效延缓耐药性菌株和脱靶效应的浮现,提高疗效。

5.1 化学药物和人工合成材料

目前的抗真菌药物主要分为抗生素和化学合成药物两大类(表2)。其中有些药物能间接触发ALCD,如棘白菌素,但多数与ALCD无关[

99-103]。唑类药物虽然不直接靶向凋亡,但会间接诱导细胞凋亡,例如克霉唑。三唑衍生物能触发线粒体途径凋[104]。溴喹啉可诱导A. fumigatus细胞凋亡,并且在缺铁情况下作用增[105]。人工设计的螺旋蛋白质rocaglates (也被称为flavagline)通过抑制哺乳动物细胞和S. cerevisiae的翻译起始,或通过与eIF4A结合抑制耳念珠菌(Candida auris)的翻译起始来激活细胞死亡程[106]。人工设计的HKK肽(以组氨酸-赖氨酸-赖氨酸为基序)[107]是靶向细胞凋亡的抗真菌剂,含有戊二酸酯和联吡啶基配体的三维铜金属有机骨架(Cu-MOFs)[108]、辣木壳聚糖纳米颗粒(M-CNPs)[109]、h-和α-三氧化钼纳米颗[110]均可以触发丝状真菌的ALCD。此外,Cu2+和Zn2+能够诱导水生丝状真菌(Varicosporium elodeaeHeliscus submersusFlagellospora curta)的细胞凋[111]

表2  临床应用的抗真菌药物
Table 2  Antifungal drugs for clinical application
Drug classificationDrug nameTargetWhether it triggers apoptosisReferences
Polyenes Nystatin Mainly binds ergosterol Indirect triggering [99]
Amphotericin
Echinocandins Caspofungin Inhibition of glucan synthesis Indirect triggering [100]
Mycamine
Anidulafungin
Pyrimidines 5-flucytosine Interference with DNA synthesis No report [101]
5-fluorouracil
Azole (imidazole) Ketoconazole Inhibition of ergosterol synthesis Some indirectly trigger mitochondrial pathway apoptosis [102]
Clotrimazole
Azole (triazoles) Itraconazole
Voriconazole
Posaconazole
Allylamines Naftifine Inhibition of ergosterol synthesis No report [103]
Terbinafine
Butenafine

5.2 天然产物及其修饰物

来源于微生物、植物和动物的天然产物作为抗真菌药物的重要来源,为靶向药物的设计提供了许多新的思路。

5.2.1 微生物源天然产物

微生物源天然产物是开发靶向真菌ALCD药物的首选(表3),其中包括脂肽[

112-116]、法尼[54]和他汀类药[117]。脂肽诱导真菌ALCD可能是自然环境中芽胞杆菌抗真菌的一种常见机制,包括CAS/meCAS依赖性和非依赖性凋[17-18]。已发现丰原素(fengycins)[112]、伊枯草菌素(iturins)[16,113]、表面活性素(surfactins)[114,118]、脂七肽(lipoheptapeptides)等脂肽都具有诱导真菌ALCD的效果,对酵母型和丝状真菌都有作[15-16]。本课题组王家[119]发现比基尼链霉菌(Streptomyces bikiniensis)产生的脂肽在低浓度下会导致M. oryzae ROS累积、PS外翻、MMP下降、Ca2+超载、meCAS基因表达显著上调、DNA内切酶激活、DNA断裂、细胞凋亡。真菌群体感应分子法尼醇能够引发C. albicans的凋亡,阻止酵母型向菌丝型转化和生物膜的形[54],也能触发R. solani AG1-IA的凋亡样特[120]。他汀类药物能诱导人类毛霉病(mucormycosis)病菌米根霉(Rhizopus oryzae)的细胞凋亡,导致其黏附、侵袭和损伤内皮细胞的毒力显著降低,另外,还可以诱导总状毛霉(Mucor racemosus)等真菌的凋[117]。来源于细菌的生物碱星孢菌素(staurosporine)诱导真菌ALCD涉及Ca2+动态水平和质膜脂质的不平[121-123],并受到细胞死亡活化锌簇转录因子CZT-1的调控,说明在真菌中调节耐药性和细胞死亡的途径可能互相干[124]

表3  诱导真菌细胞凋亡样细胞死亡的天然药物
Table 3  Natural drugs that induce apoptosis-like cell death in fungal cells
Natural drugsSourceTarget fungiReference
Microbial products
C17 fengycin B Bacillus subtilis Fusarium oxysporum [16]
Farnesol Various fungi Candida albicans [54]
Lipopeptide AF (3) Bacillus subtilis Candida albicans [112]
Iturins Bacillus amyloliquefaciens Aspergillus niger [113]
Surfactin Bacillus velezensis Fusarium concentricum [114]
Lipid 7 peptide mixture Neobacillus drentensis Candida albicans [115]
2-chloro-1,3-dimethoxy-5-methylbenzene Hericium erinaceus Candida albicans [116]
Statins Aspergillus terreus Rhizopus oryzae [117]
Botanical products
Monoterpene nerol Flores aurantii Ceratocystis fimbriata [13]
Anacardic acid Cashew nut Magnaporthe oryzae [19]
Silymarin Silybum marianum Candida albicans [97]
Coptisine Coptis chinensis Cryptococcus neoformans [125]
α-tomatine Lycopersico esculentum Fusarium oxysporum [126]
Chlorogenic acid Various plants Candida albicans [128]
Lauric acid Galla chinensis Rhizoctonia solani [129]
Cinnamaldehyde Cinnamon Candida albicans [130]
Thyme essential oil Thymus mongolicus Aspergillus flavus [131]
Eugenol Clove Candida albicans [134]
Artemisia argyi essential oil Artemisia argyi Candida albicans [137]
Antimycotic peptide Satureja khuzistanica Aspergillus fumigatus [138]
Purpurin Madder root Candida dubliniensis [139]
Andrographolide Andrographis paniculata Candida albicans [140]
Animal products
Melittin European bee venom Aspergillus, Botrytis, Candida [141]
Scopoletin Centipede Fungi [142]

5.2.2 动植物源天然产物

植物源天然产物种类丰富,也是开发靶向药物的重要资源(表3)。小檗碱是一种天然存在的化合物,来源于各种植物,对多种真菌物种表现出强大的抗真菌功效,包括Candida sp.、Aspergillus sp.和皮肤癣[

125]。α-番茄素(α-tomatine)是番茄(Lycopersicon esculentum)中的主要皂[126],它可以结合到细胞膜上,使膜内组分外泄从而杀死细胞。研究发现,番茄素可以诱导尖孢镰孢菌(Fusarium oxysporum)菌丝凋亡,据推测番茄素通过激活酪氨酸激酶和G蛋白信号途径导致Ca2+浓度上升以及ROS积[111]。从植物红花矾根(Heuchera sanguinea)种子中分离的一种植物防御素HsAFP1能抑制C. albicans、克柔念珠菌(Candida krusei)、黄曲霉(Aspergillus flavus)等真[127],诱导真菌的ALCD。漆树酸、6-十五烷基水杨[19]、绿原[128]、月桂[129]等有机酸,肉桂醛(cinnamaldehyde, CA)[130]、橙花酚单萜(nerol monoterpenes, NEL)[13]、百里香精[131]、紫苏[132-133]、丁香[134]等植物精油都能诱导真菌的ALCD[89]。CA和NEL触发真菌ALCD的机制见图3。CA在细胞内引发ROS和Ca2+积累,激活内质网中的IRE1、TERK和ATF6途径,形成凋亡小体并导致DNA片段化。ROS和Ca2+积累还导致MMP降低,线粒体外膜通透性增加,Cyt-c释放到细胞质中,与Apaf-1结合形成凋亡复合物,激活CAS/meCAS,导致C. albicans[135]。CA还可以通过上调BAX和下调Bcl-2来增加线粒体膜的通透性,从而诱导细胞凋亡。NEL进入C. fimbriata细胞后,导致麦角甾醇生物合成途径中3个关键基因ERG6ERG7ERG25下调,进而导致ROS积累,促进能量代谢,导致MMP下降,ATP相关基因ATP12的表达下调,DNA断裂。同时,细胞周期蛋白依赖性蛋白激酶编码基因cdc28显著下调,导致细胞周期阻[136]。另外,艾叶挥发油可诱导C. albicans凋亡,凋亡进程可能与线粒体损伤有[137]。水飞蓟(Silybum marianum)[97]、唇形科植物Satureja khuzistanica[138]、茜[139]、穿心[140]也是提取靶向凋亡药物的重要植物。

fig

图3  肉桂醛(CA)和橙花酚单萜(NEL)诱导真菌ALCD的分子机制

Figure 3  Molecular mechanism of apoptosis induced by cinnamaldehyde and monoterpene nerolol in fungi.

此外,动物源物质也有开发靶向ALCD药物的潜力(表3)。蜂毒素(melittin)[

141]和东莨菪内酯(scolopendin)[142]可以激活真菌细胞的CAS依赖性凋亡。壳寡糖是自然界中唯一含有正电荷的碱性氨基寡糖,可以从甲壳类动物、植物中提取。崔[143]发现壳寡糖可以诱导交链孢菌属(Aternaria sp.)的细胞凋亡。

6 总结与展望

随着对PCD的深入研究,人们逐渐意识到PCD对真菌致病性和多细胞水平发育的重要性。病原真菌PCD中的ALCD对于宿主细胞的有性发育、细胞分化、同种异型识别等生态互作、入侵和定殖等不同过程至关重[

11]。在病原真菌抗/耐药性日益增强的社会背景下,了解真菌ALCD的分子机制和已有的靶向真菌ALCD的药剂,对于制定新的防治策略和开发新药具有重要的意义。与哺乳动物细胞凋亡类似,真菌细胞在受到外界药物刺激后,也可通过一系列生化和形态学改变表现出ALCD特[38]。这种死亡方式通常涉及ROS的产生、细胞膜损伤、内质网应激、线粒体功能失调等多个信号通路。然而,真菌ALCD是如何被控制和执行的?药物诱导不同真菌ALCD的共性和差异有哪些?这些关键问题仍然需要我们去探寻。

更深入地了解病原真菌ALCD的分子机制能为控制真菌感染提供更有利的策略。未来关于真菌ALCD应该关注的问题主要集中在以下4个方面。(1) 深度解析真菌ALCD的分子机制,为建立一个或几个典型的ALCD模式奠定基础。加大对不同真菌的凋亡信号通路和元件的深入研究,阐明病原真菌如何通过操纵这些关键因子来平衡细胞和群体的未来走向,即继续生长发育还是走向凋亡?(2) 解析鞘脂类物质作为“变阻器”和信号分子在ALCD中的作用。尽管在动物细胞凋亡中已经提供了大量的证据支持鞘脂(尤其是Cer)在PCD中的重要作用,但在真菌的ALCD中,人们对鞘脂的功能及作用模式还缺乏足够的了解。(3) 继续挖掘宿主和真菌ALCD之间的相互作用。加深对宿主和病原真菌之间相互作用的了解,为靶向治疗提供精确的靶点,甚至可以为操纵宿主免疫系统的疗法提供理论基础。(4) 建立靶向ALCD的抗真菌天然药物资源库。为筛选特异性靶向真菌ALCD的特效药物,以及涉及ALCD的多靶向药物奠定基础,提高药物的选择性、减少对宿主细胞的毒性和延缓抗药性和脱靶效应的浮现。总之,广泛并且深入挖掘真菌ALCD的分子机理能为真菌性疾病的治疗带来深远的影响。

作者贡献声明

王柳茜:绘制图片以及文章的撰写和整理;李珑捷:绘制图片以及参与论文选题讨论;田庆庆:文献收集及整理;杜春梅:论文选题、撰写、修改和审阅。

利益冲突

作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。

参考文献

1

SCHUSTER M, KILARU S, STEINBERG G. Azoles activate type I and type Ⅱ programmed cell death pathways in crop pathogenic fungi[J]. Nature Communications, 2024, 15: 4357. [百度学术] 

2

LEITER É, CSERNOCH L, PÓCSI I. Programmed cell death in human pathogenic fungi: possible therapeutic target[J]. Expert Opinion on Therapeutic Targets, 2018, 22(12): 1039-1048. [百度学术] 

3

KULKARNI M, STOLP ZD, HARDWICK JM. Targeting intrinsic cell death pathways to control fungal pathogens[J]. Biochemical Pharmacology, 2019, 162: 71-78. [百度学术] 

4

WANI MY, ALGHAMIDI MSS, SRIVASTAVA V, AHMAD A, AQLAN FM, AL-BOGAMI AS. Click synthesis of pyrrolidine-based 1,2,3-triazole derivatives as antifungal agents causing cell cycle arrest and apoptosis in Candida auris[J]. Bioorganic Chemistry, 2023, 136: 106562. [百度学术] 

5

BUGEDA A, GARRIGUES S, GANDÍA M, MANZANARES P, MARCOS JF, COCA M. The antifungal protein AfpB induces regulated cell death in its parental fungus Penicillium digitatum[J]. Msphere, 2020, 5(4): e00595-20. [百度学术] 

6

BOJSEN R, REGENBERG B, FOLKESSON A. Persistence and drug tolerance in pathogenic yeast[J]. Current Genetics, 2017, 63(1): 19-22. [百度学术] 

7

BERMAN J, KRYSAN DJ. Drug resistance and tolerance in fungi[J]. Nature Reviews Microbiology, 2020, 18(6): 319-331. [百度学术] 

8

BONGOMIN F, GAGO S, OLADELE RO, DENNING DW. Global and multi-national prevalence of fungal diseases-estimate precision[J]. Journal of Fungi, 2017, 3(4): 57. [百度学术] 

9

RICO-RAMÍREZ AM, GONALVES AP, GLASS NL. Fungal cell death: the beginning of the end[J]. Fungal Genetics and Biology, 2022, 159: 103671. [百度学术] 

10

SHLEZINGER N, GOLDFINGER N, SHARON A. Apoptotic-like programed cell death in fungi: the benefits in filamentous species[J]. Frontiers in Oncology, 2012, 2: 97. [百度学术] 

11

HARDWICK JM. Do fungi undergo apoptosis-like programmed cell death[J]. mBio, 2018, 9(4): e00948-18. [百度学术] 

12

LASTAUSKIENĖ E, NOVICKIJ V, ZINKEVIČIENĖ A, GIRKONTAITĖ I, PAŠKEVIČIUS A, ŠVEDIENĖ J, MARKOVSKAJA S, NOVICKIJ J. Application of pulsed electric fields for the elimination of highly drug-resistant Candida grown under modelled microgravity conditions[J]. International Journal of Astrobiology, 2019, 18(5): 405-411. [百度学术] 

13

LI XZ, LIU M, HUANG TG, YANG KL, ZHOU SH, LI YX, TIAN J. Antifungal effect of nerol via transcriptome analysis and cell growth repression in sweet potato spoilage fungi Ceratocystis fimbriata[J]. Postharvest Biology and Technology, 2021, 171: 111343. [百度学术] 

14

NÖSSING C, RYAN KM. 50 years on and still very much alive: ‘Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics’[J]. British Journal of Cancer, 2023, 128(3): 426-431. [百度学术] 

15

TANG QY, BIE XM, LU ZX, LV FX, TAO Y, QU XX. Effects of fengycin from Bacillus subtilis fmbJ on apoptosis and necrosis in Rhizopus stolonifer[J]. Journal of Microbiology, 2014, 52(8): 675-680. [百度学术] 

16

DENG YJ, CHEN Z, CHEN YP, WANG JP, XIAO RF, WANG X, LIU B, CHEN MC, HE J. Lipopeptide C fengycin B exhibits a novel antifungal mechanism by triggering metacaspase-dependent apoptosis in Fusarium oxysporum[J]. Journal of Agricultural and Food Chemistry, 2024, 72(14): 7943-7953. [百度学术] 

17

ZHANG LL, SUN CM. Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation[J]. Applied Environmental Microbiology, 2018, 84(18): e00445-18. [百度学术] 

18

QI GF, ZHU FY, DU P, YANG XF, QIU DW, YU ZN, CHEN JY, ZHAO XY. Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway[J]. Peptides, 2010, 31(11): 1978-1986. [百度学术] 

19

MUZAFFAR S, BOSE C, BANERJI A, NAIR BG, CHATTOO BB. Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae[J]. Applied Microbiology and Biotechnology, 2016, 100(1): 323-335. [百度学术] 

20

GONÇALVES AP, HELLER J, DASKALOV A, VIDEIRA A, GLASS NL. Regulated forms of cell death in fungi[J]. Frontiers in Microbiology, 2017, 8: 1837. [百度学术] 

21

HÄCKER G. Apoptosis in infection[J]. Microbes Infection, 2018, 20(9-10): 552-559. [百度学术] 

22

CARMONA-GUTIERREZ D, EISENBERG T, BÜTTNER S, MEISINGER C, KROEMER G, MADEO F. Apoptosis in yeast: triggers, pathways, subroutines[J]. Cell Death & Differentiation, 2010, 17(5): 763-773. [百度学术] 

23

SCHECKHUBER CQ, HAMANN A, BRUST D, OSIEWACZ HD. Cellular homeostasis in fungi: impact on the aging process[J]. Subcellular Biochemistry, 2012, 57: 233-250. [百度学术] 

24

GULER EM, BOZALI K. Synthesised thymoquinone-oxime induces cytotoxicity, genotoxicity and apoptosis in hepatocellular cancer cells: in vitro study[J]. Natural Product Research, 2024, 38(10): 1695-1703. [百度学术] 

25

PERRONE GG, TAN SX, DAWES IW. Reactive oxygen species and yeast apoptosis[J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2008, 1783(7): 1354-1368. [百度学术] 

26

COLL NS, VERCAMMEN D, SMIDLER A, CLOVER C, VAN BREUSEGEM F, DANGL JL, EPPLE P. Arabidopsis type I metacaspases control cell death[J]. Science, 2010, 330(6009): 1393-1397. [百度学术] 

27

GUPTA SS, TON VK, BEAUDRY V, RULLI S, CUNNINGHAM K, RAO R. Antifungal activity of amiodarone is mediated by disruption of calcium homeostasis[J]. Journal of Biological Chemistry, 2003, 278(31): 28831-28839. [百度学术] 

28

KALKAVAN H, GREEN DR. MOMP, cell suicide as a BCL-2 family business[J]. Cell Death & Differentiation, 2018, 25(1): 46-55. [百度学术] 

29

MENDEZ DL, AKEY IV, AKEY CW, KRANZ RG. Oxidized or reduced cytochrome c and axial ligand variants all form the apoptosome in vitro[J]. Biochemistry, 2017, 56(22): 2766-2769. [百度学术] 

30

BURGESS RC, BURMAN B, KRUHLAK MJ, MISTELI T. Activation of DNA damage response signaling by condensed chromatin[J]. Cell Reports, 2014, 9(5): 1703-1717. [百度学术] 

31

DORTER I, MOMANY M. Fungal cell cycle: a unicellular versus multicellular comparison[J]. Microbiology Spectrum, 2016, 4(6): FUNK-0025-2016. [百度学术] 

32

DICHTL K, EBEL F, DIRR F, ROUTIER FH, HEESEMANN J, WAGENER J. Farnesol misplaces tip-localized Rho proteins and inhibits cell wall integrity signalling in Aspergillus fumigatus[J]. Molecular microbiology, 2010, 76(5): 1191-1204. [百度学术] 

33

蔡永超. 细胞壁完整性信号途径的磷酸化平衡调控稻瘟病菌生长发育和致病力的机制研究[D]. 南京: 南京农业大学博士学位论文, 2022. [百度学术] 

CAI YC. Homeostasis of cell wall integrity pathway phosphorylation regulates the growth and pathogenicity of rice blast fungus Magnaporthe oryzae[D]. Nanjing: Doctoral Dissertation of Nanjing Agricultural University, 2022 (in Chinese). [百度学术] 

34

张小华, 孙业盈, 卞伟华, 许聪, 武玉永, 刘向勇. 真菌细胞壁抑制剂刚果红诱导酵母细胞凋亡及其机制研究[J]. 河南农业科学, 2015, 44(12): 65-69. [百度学术] 

ZHANG XH, SUN YY, BIAN WH, XU C, WU YY, LIU XY. Fungal cell wall-perturbing agent Congo Red-induced yeast apoptosis and its underlying mechanisms[J]. Journal of Henan Agricultural Sciences, 2015, 44(12): 65-69 (in Chinese). [百度学术] 

35

SANZ AB, GARCÍA R, RODRÍGUEZ-PEÑA JM, ARROYO J. The CWI pathway: regulation of the transcriptional adaptive response to cell wall stress in yeast[J]. Journal of Fungi, 2017, 4(1): 1. [百度学术] 

36

DENG HQ, CHEN WY, ZHANG BY, ZHANG YW, HAN LY, ZHANG QP, YAO S, WANG HW, SHEN XL. Excessive ER-phagy contributes to ochratoxin A-induced apoptosis[J]. Food and Chemical Toxicology, 2023, 176: 113793. [百度学术] 

37

KHOI CS, LIN YW, CHEN JH, LIU BH, LIN TY, HUNG KY, CHIANG CK. Selective activation of endoplasmic reticulum stress by reactive-oxygen-species-mediated ochratoxin A-induced apoptosis in tubular epithelial cells[J]. International Journal of Molecular Sciences, 2021, 22(20): 10951. [百度学术] 

38

D’ARCY MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biology International, 2019, 43(6): 582-592. [百度学术] 

39

MUKHERJEE D, GUPTA S, SARAN N, DATTA R, GHOSH A. Induction of apoptosis-like cell death and clearance of stress-induced intracellular protein aggregates: dual roles for Ustilago maydis metacaspase Mca1[J]. Molecular Microbiology, 2017, 106(5): 815-831. [百度学术] 

40

BRUST D, HAMANN A, OSIEWACZ HD. Deletion of PaAif2 and PaAmid2, two genes encoding mitochondrial AIF-like oxidoreductases of Podospora anserina, leads to increased stress tolerance and lifespan extension[J]. Current Genetics, 2010, 56(3): 225-235. [百度学术] 

41

NOVO N, FERREIRA P, MEDINA M. The apoptosis-inducing factor family: moonlighting proteins in the crosstalk between mitochondria and nuclei[J]. IUBMB Life, 2021, 73(3): 568-581. [百度学术] 

42

NAGAMINE T. Apoptotic arms races in insect-baculovirus coevolution[J]. Physiological Entomology, 2022, 47(1): 1-10. [百度学术] 

43

SU CH, HO YC, LEE MW, TSENG CC, LEE SS, HSIEH MK, CHEN HH, LEE CY, WU SW, KUAN YH. 1-nitropyrene induced reactive oxygen species-mediated apoptosis in macrophages through AIF nuclear translocation and AMPK/Nrf-2/HO-1 pathway activation[J]. Oxidative Medicine and Cellular Longevity, 2021: 9314342. [百度学术] 

44

HERRMANN JM, RIEMER J. Apoptosis inducing factor and mitochondrial NADH dehydrogenases: redox-controlled gear boxes to switch between mitochondrial biogenesis and cell death[J]. Biological Chemistry, 2021, 402(3): 289-297. [百度学术] 

45

SEMIGHINI CP, AVERETTE AF, PERFECT JR, HEITMAN J. Deletion of Cryptococcus neoformans AIF ortholog promotes chromosome aneuploidy and fluconazole-resistance in a metacaspase-independent manner[J]. PLoS Pathogens, 2011, 7(11): e1002364. [百度学术] 

46

MA FY, ZHANG YQ, WANG YZ, WAN YJ, MIAO YH, MA TY, YU QL, LI MC. Role of Aif1 in regulation of cell death under environmental stress in Candida albicans[J]. Yeast, 2016, 33(9): 493-506. [百度学术] 

47

CARNEIRO P, DUARTE M, VIDEIRA A. Characterization of apoptosis-related oxidoreductases from Neurospora crassa[J]. PLoS One, 2012, 7(3): e34270. [百度学术] 

48

ELGUINDY MM, NAKAMARU-OGISO E. Apoptosis-inducing factor (AIF) and its family member protein, AMID, are rotenone-sensitive NADH: ubiquinone oxidoreductases (NDH-2)[J]. Journal of Biological Chemistry, 2015, 290(34): 20815-20826. [百度学术] 

49

DINAMARCO TM, PIMENTEL BDE C, SAVOLDI M, MALAVAZI I, SORIANI FM, UYEMURA SA, LUDOVICO P, GOLDMAN MHS, GOLDMAN GH. The roles played by Aspergillus nidulans apoptosis-inducing factor (AIF)-like mitochondrial oxidoreductase (AifA) and NADH-ubiquinone oxidoreductases (NdeA-B and NdiA) in farnesol resistance[J]. Fungal Genetics and Biology, 2010, 47(12): 1055-1069. [百度学术] 

50

FAGNANI E, COCOMAZZI P, PELLEGRINO S, TEDESCHI G, SCALVINI FG, COSSU F, DA VELA S, ALIVERTI A, MASTRANGELO E, MILANI M. CHCHD4 binding affects the active site of apoptosis inducing factor (AIF): structural determinants for allosteric regulation[J]. Structure, 2024, 32(5): 594-602. [百度学术] 

51

DELAVALLÉE L, CABON L, GALÁN-MALO P, LORENZO HK, SUSIN SA. AIF-mediated caspase-independent necroptosis: a new chance for targeted therapeutics[J]. IUBMB Life, 2011, 63(4): 221-232. [百度学术] 

52

AZZOPARDI M, FARRUGIA G, BALZAN R. Cell-cycle involvement in autophagy and apoptosis in yeast[J]. Mechanisms of Ageing and Development, 2017, 161: 211-224. [百度学术] 

53

FANG JN, ZHOU G, ZHAO HF, XIE DD, ZHANG JN, KÜES U, XIAO YZ, FANG ZM, LIU JJ. An apoptosis-inducing factor controls programmed cell death and laccase expression during fungal interactions[J]. Applied Microbiology and Biotechnology, 2024, 108(1): 135. [百度学术] 

54

HANGEN E, BLOMGREN K, BENIT P, KROEMER G, MODJTAHEDI N. Life with or without AIF[J]. Trends in Biochemical Sciences, 2010, 35(5): 278-287. [百度学术] 

55

JOZA N. Genetic elucidation of the roles of apoptosis-inducing factor (AIF) in mitochondrial respiration and programmed cell death[D]. Canada: Doctoral Dissertation of University of Toronto, 2005. [百度学术] 

56

AMADOR-GARCÍA A, ZAPICO I, BORRAJO A, MALMSTRÖM J, MONTEOLIVA L, GIL C. Extending the proteomic characterization of Candida albicans exposed to stress and apoptotic inducers through data-independent acquisition mass spectrometry[J]. Msystems, 2021, 6(5): e0094621. [百度学术] 

57

SHARON A, FINKELSTEIN A, SHLEZINGER N, HATAM I. Fungal apoptosis: function, genes and gene function[J]. FEMS Microbiology Reviews, 2009, 33(5): 833-854. [百度学术] 

58

UREN AG, O’ROURKE K, ARAVIND LA, PISABARRO MT, SESHAGIRI S, KOONIN EV, DIXIT VM. Identification of paracaspases and metacaspases two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma[J]. Molecular Cell, 2000, 6(4): 961-967. [百度学术] 

59

LI LJ, DU CM. Fungal apoptosis-related proteins[J]. Microorganisms, 2024, 12(11): 2289. [百度学术] 

60

WATANABE N, LAM E. Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast[J]. The Journal of Biological Chemistry, 2005, 280(15): 14691-14699. [百度学术] 

61

MCLUSKEY K, MOTTRAM JC. Comparative structural analysis of the caspase family with other clan CD cysteine peptidases[J]. Biochemical Journal, 2015, 466(2): 219-232. [百度学术] 

62

TSIATSIANI L, van BREUSEGEM F, GALLOIS P, ZAVIALOV A, LAM E, BOZHKOV PV. Metacaspases[J]. Cell Death and Differentiation, 2011, 18(8): 1279-1288. [百度学术] 

63

MADEO F, HERKER E, MALDENER C, WISSING S, LÄCHELT S, HERLAN M, FEHR M, LAUBER K, SIGRIST SJ, WESSELBORG S, FRÖHLICH KU. A caspase-related protease regulates apoptosis in yeast[J]. Molecular Cell, 2002, 9(4): 911-917. [百度学术] 

64

QI FL, ZHANG C, JIANG SS, WANG Q, KUERBAN K, LUO M, DONG MX, ZHOU XG, WU LM, JIANG B, YE L. S-ethyl ethanethiosulfinate, a derivative of allicin, induces metacaspase-dependent apoptosis through ROS generation in Penicillium chrysogenum[J]. Bioscience Reports, 2019, 39(6): BSR20190167. [百度学术] 

65

厉晓东, 卢建平, 刘小红, 林福呈. 稻瘟病菌(Magnaporthe oryzae)的凋亡诱导和检测[J]. 植物病理学报, 2011, 41(4): 361-370. [百度学术] 

LI XD, LU JP, LIU XH, LIN FC. Induction and detection of apoptosis in rice blast fungus, Magnaporthe oryzae[J]. Acta Phytopathologica Sinica, 2011, 41(4): 361-370 (in Chinese). [百度学术] 

66

HILL SM, HAO X, LIU B, NYSTRÖM T. Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae[J]. Science, 2014, 344(6190): 1389-1392. [百度学术] 

67

SHLEZINGER N, IRMER H, DHINGRA S, BEATTIE SR, CRAMER RA, BRAUS GH, SHARON A, HOHL TM. Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death[J]. Science, 2017, 357(6355): 1037-1041. [百度学术] 

68

GUIRAO-ABAD JP, WEICHERT M, ASKEW DS. Cell death induction in Aspergillus fumigatus: accentuating drug toxicity through inhibition of the unfolded protein response (UPR)[J]. Current Research in Microbial Sciences, 2022, 3: 100119. [百度学术] 

69

AMARE MG, WESTRICK NM, KELLER NP, KABBAGE M. The conservation of IAP-like proteins in fungi, and their potential role in fungal programmed cell death[J]. Fungal Genetics and Biology, 2022, 162: 103730. [百度学术] 

70

FERNANDEZ J, LOPEZ V, KINCH L, PFEIFER MA, GRAY H, GARCIA N, GRISHIN NV, KHANG CH, ORTH K. Role of two metacaspases in development and pathogenicity of the rice blast fungus Magnaporthe oryzae[J]. mBio, 2021, 12(1): e03471-20. [百度学术] 

71

HAMANN A, BRUST D, OSIEWACZ HD. Deletion of putative apoptosis factors leads to lifespan extension in the fungal ageing model Podospora anserina[J]. Molecular Microbiology, 2007, 65(4): 948-958. [百度学术] 

72

ABBAS R, LARISCH S. Killing by degradation: regulation of apoptosis by the ubiquitin-proteasome-system[J]. Cells, 2021, 10(12): 3465. [百度学术] 

73

LALAOUI N, VAUX DL. Recent advances in understanding inhibitor of apoptosis proteins[J]. F1000Research, 2018, 7. [百度学术] 

74

HRDINKA M, YABAL M. Inhibitor of apoptosis proteins in human health and disease[J]. Genes and Immunity, 2019, 20(8): 641-650. [百度学术] 

75

GAO T, MAGNANO S, RYNNE A, O’KANE L, BARROETA PH, ZISTERER DM. Targeting inhibitor of apoptosis proteins (IAPs) enhances susceptibility of oral squamous carcinoma cells to cisplatin[J]. Experimental Cell Research, 2024, 437(1): 113995. [百度学术] 

76

MANAVALAN JS, PAL I, PURSLEY A, WARD GA, SMYTH T, SIMS M, TAYLOR JA, FEITH DJ, LOUGHRAN TP, O’CONNOR OA, MARCHI E. Tolinapant, a non-peptidomimetic antagonist of inhibitors of apoptosis proteins, cIAP1/2 and XIAP, in combination with the hypomethylating agents, azacytidine and decitabine are highly synergistic in in vitro models of T cell lymphoma[J]. Blood, 2022, 140(Sup 1): 11552-11553. [百度学术] 

77

KUMAR S, FAIRMICHAEL C, LONGLEY DB, TURKINGTON RC. The multiple roles of the IAP super-family in cancer[J]. Pharmacology & Therapeutics, 2020, 214: 107610. [百度学术] 

78

ZHANG J, WEBSTER JD, DUGGER DL, GONCHAROV T, ROOSE-GIRMA M, HUNG J, KWON YC, VUCIC D, NEWTON K, DIXIT VM. Ubiquitin ligases cIAP1 and cIAP2 limit cell death to prevent inflammation[J]. Cell Reports, 2019, 27(9): 2679-2689. [百度学术] 

79

DUMÉTIER B, ZADOROZNYJ A, DUBREZ L. IAP-mediated protein ubiquitination in regulating cell signaling[J]. Cells, 2020, 9(5): 1118. [百度学术] 

80

AMARE MG. Negating death: the role of fungal inhibitors of apoptosis proteins in regulating programmed cell death and other fundamental processes in fungi[D]. Madison: The University of Wisconsin-Madison, 2023. [百度学术] 

81

CHEN LL, MA YM, PENG MY, CHEN WB, XIA HQ, ZHAO JY, ZHANG YK, FAN Z, XING XP, LI HL. Analysis of apoptosis-related genes reveals that apoptosis functions in conidiation and pathogenesis of Fusarium pseudograminearum[J]. mSphere, 2021, 6(1):e01140-20 . [百度学术] 

82

GAO K, XIONG Q, XU J, WANG KJ, WANG KR. CpBir1 is required for conidiation, virulence and anti-apoptotic effects and influences hypovirus transmission in Cryphonectria parasitica[J]. Fungal Genetics and Biology, 2013, 51: 60-71. [百度学术] 

83

ZHANG LS, ZHONG KL, LV RL, ZHENG XB, ZHANG ZG, ZHANG HF. The inhibitor of apoptosis protein MoBir1 is involved in the suppression of hydrogen peroxide-induced fungal cell death, reactive oxygen species generation, and pathogenicity of rice blast fungus[J]. Applied Microbiology and Biotechnology, 2019, 103(16): 6617-6627. [百度学术] 

84

SHLEZINGER N, MINZ A, GUR Y, HATAM I, DAGDAS YF, TALBOT NJ, SHARON A. Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection[J]. PLoS Pathogens, 2011, 7(8): e1002185. [百度学术] 

85

DREMEL SE, DELUCA NA. Herpes simplex viral nucleoprotein creates a competitive transcriptional environment facilitating robust viral transcription and host shut off[J]. eLife, 2019, 8: e51109. [百度学术] 

86

CONG H, XU LJ, WU YG, QU Z, BIAN TF, ZHANG WN, XING CG, ZHUANG CL. Inhibitor of apoptosis protein (IAP) antagonists in anticancer agent discovery: current status and perspectives[J]. Journal of Medicinal Chemistry, 2019, 62(12): 5750-5772. [百度学术] 

87

VASUDEVAN D, RYOO HD. Regulation of cell death by IAPs and their antagonists[J]. Current Topics in Developmental Biology, 2015, 114: 185-208. [百度学术] 

88

YANG C, DAVIS JL, ZENG R, VORA P, SU XM, COLLINS LI, VANGVERAVONG S, MACH RH, PIWNICA-WORMS D, WEILBAECHER KN, FACCIO R, NOVACK DV. Antagonism of inhibitor of apoptosis proteins increases bone metastasis via unexpected osteoclast activation[J]. Cancer Discovery, 2013, 3(2): 212-223. [百度学术] 

89

WALTER D, WISSING S, MADEO F, FAHRENKROG B. The inhibitor-of-apoptosis protein Bir1p protects against apoptosis in S. cerevisiae and is a substrate for the yeast homologue of Omi/HtrA2[J]. Journal of Cell Science, 2006, 119(9): 1843-1851. [百度学术] 

90

FINKELSHTEIN A, SHLEZINGER N, BUNIS O, SHARON A. Botrytis cinerea BcNma is involved in apoptotic cell death but not in stress adaptation[J]. Fungal Genetics and Biology, 2011, 48(6): 621-630. [百度学术] 

91

ZHU J, KROM BP, SANGLARD D, INTAPA C, DAWSON CC, PETERS BM, SHIRTLIFF ME, JABRA-RIZK MA. Farnesol-induced apoptosis in Candida albicans is mediated by Cdr1-p extrusion and depletion of intracellular glutathione[J]. PLoS One, 2011, 6(12): e28830. [百度学术] 

92

IESSI E, MARCONI M, MANGANELLI V, SORICE M, MALORNI W, GAROFALO T, MATARRESE P. On the role of sphingolipids in cell survival and death[J]. International Review of Cell and Molecular Biology, 2020, 351: 149-195. [百度学术] 

93

PILÁTOVÁ MB, SOLÁROVÁ Z, MEZENCEV R, SOLÁR P. Ceramides and their roles in programmed cell death[J]. Advances in Medical Sciences, 2023, 68(2): 417-425. [百度学术] 

94

卓少恩, 林瀛栩, 胡琪, 曾斌, 蒋春苗. 真菌鞘糖脂的生物学功能及应用研究进展[J]. 微生物学杂志, 2023, 43(4): 109-121. [百度学术] 

ZHUO SE, LIN YX, HU Q, ZENG B, JIANG CM. Advances in biological functions and applications of fungal glycosphingolipids[J]. Journal of Microbiology, 2023, 43(4): 109-121 (in Chinese). [百度学术] 

95

CASTRO A, LEMOS C, FALCÃO A, GLASS NL, VIDEIRA A. Increased resistance of complex I mutants to phytosphingosine-induced programmed cell death[J]. Journal of Biological Chemistry, 2008, 283(28): 19314-19321. [百度学术] 

96

戴宝娣, 曹颖瑛, 徐勇刚, 高平挥, 王彦, 姜远英. 致病真菌凋亡机制的研究进展[J]. 第二军医大学学报, 2008, 11: 1390-1394. [百度学术] 

DAI BD, CAO YY, XU YG, GAO PH, WANG Y, JIANG YY. Apoptotic mechanism of pathogenic fungi: recent progress[J]. Academic Journal of Naval Medical University, 2008, 11: 1390-1394 (in Chinese). [百度学术] 

97

YUN DG, LEE DG. Silibinin triggers yeast apoptosis related to mitochondrial Ca2+ influx in Candida albicans[J]. International Journal of Biochemistry & Cell Biology, 2016, 80: 1-9. [百度学术] 

98

ABOU-GHALI M, STIBAN J. Regulation of ceramide channel formation and disassembly: Insights on the initiation of apoptosis[J]. Saudi Journal of Biological Sciences, 2015, 22(6): 760-772. [百度学术] 

99

余小婷, 张展鹏, 张宏. 新型抗真菌药物靶点研究进展[J]. 中国真菌学杂志, 2024, 19(1): 100-103, 108. [百度学术] 

YU XT, ZHANG ZP, ZHANG H. Research progress of new antifungal drug targets[J]. Chinese Journal of Mycology, 2024, 19(1): 100-103, 108 (in Chinese). [百度学术] 

100

初芍洁, 郑岩, 苏霜霜, 吴雪松, 闫闳, 陈少欣, 王宏博. 天然来源抗真菌药物的研究进展[J]. 药学学报, 2025, 60(1): 48-57. [百度学术] 

CHU SJ, ZHENG Y, SU SS, WU XS, YAN H, CHEN SX, WANG HB. Research progress of antifungal drugs from natural sources[J]. Acta Pharmaceutica Sinica, 2025, 60(1): 48-57 (in Chinese). [百度学术] 

101

徐贝雪, 刘泉波. 抗真菌药物临床应用及研究进展[J]. 现代医药卫生, 2022, 38(14): 2435-2440. [百度学术] 

XU BX, LIU QB. Clinical application and research progress of antifungal drugs[J]. Journal of Modern Medicine & Health, 2022, 38(14): 2435-2440 (in Chinese). [百度学术] 

102

宋晓婷, 赵作涛, 王爱平. 新型系统性抗真菌药物研究进展[J]. 中国真菌学杂志, 2023, 18(4): 370-376. [百度学术] 

SONG XT, ZHAO ZT, WANG AP. Research progress of novel systemic antifungal agents[J]. Chinese Journal of Mycology, 2023, 18(4): 370-376 (in Chinese). [百度学术] 

103

车斌, 谢为民. 抗真菌药物的分类及研究进展概述[J]. 海峡药学, 2008, 20(12): 111-114. [百度学术] 

CHE B, XIE WM. Classification and research progress of antifungal drugs[J]. Strait Pharmaceutical Journal, 2008, 20(12): 111-114 (in Chinese). [百度学术] 

104

KAVAKÇıOĞLU B, TARHAN L. Yeast caspase-dependent apoptosis in Saccharomyces cerevisiae BY4742 induced by antifungal and potential antitumor agent clotrimazole[J]. Archives of Microbiology, 2018, 200: 97-106. [百度学术] 

105

BEN YAAKOV D, SHADKCHAN Y, ALBERT N, KONTOYIANNIS DP, OSHEROV N. The quinoline bromoquinol exhibits broad-spectrum antifungal activity and induces oxidative stress and apoptosis in Aspergillus fumigatus[J]. Journal of Antimicrobial Chemotherapy, 2017, 72(8): 2263-2272. [百度学术] 

106

IYER KR, WHITESELL L, PORCO JA, HENKEL T, BROWN LE, ROBBINS N, COWEN LE. Translation inhibition by rocaglates activates a species-specific cell death program in the emerging fungal pathogen Candida auris[J]. mBio, 2020, 11(2): e03329-19. [百度学术] 

107

PARK SC, KIM JY, KIM EJ, CHEONG GW, LEE Y, CHOI W, LEE JR, JANG MK. Hydrophilic linear peptide with histidine and lysine residues as a key factor affecting antifungal activity[J]. International Journal of Molecular Sciences, 2018, 19(12): 3781. [百度学术] 

108

VEERANA M, KIM HC, MITRA S, ADHIKARI BC, PARK G, HUH S, KIM SJ, KIM Y. Analysis of the effects of Cu-MOFs on fungal cell inactivation[J]. RSC Advances, 2021, 11(2): 1057-1065. [百度学术] 

109

HAFEEZ R, GUO J, AHMED T, IBRAHIM E, ALI MA, RIZWAN M, IJAZ M, AN Q, WANG Y, WANG J, LI B. Integrative transcriptomic and metabolomic analyses reveals the toxicity and mechanistic insights of bioformulated chitosan nanoparticles against Magnaporthe oryzae[J]. Chemosphere, 2024, 356: 141904. [百度学术] 

110

CHAVES-LOPEZ C, NGUYEN HN, OLIVEIRA RC, NADRES ET, PAPARELLA A, RODRIGUES DF. A morphological, enzymatic and metabolic approach to elucidate apoptotic-like cell death in fungi exposed to h- and α-molybdenum trioxide nanoparticles[J]. Nanoscale, 2018, 10(44): 20702-20716. [百度学术] 

111

厉晓东, 卢建平, 李海娇, 林福呈. 丝状真菌的细胞凋亡[J]. 微生物学通报, 2011, 38(2): 242-249. [百度学术] 

LI XD, LU JP, LI HJ, LIN FC. Apoptosis in filamentous fungi[J]. Microbiology China, 2011, 38(2): 242-249 (in Chinese). [百度学术] 

112

RAMESH S, ROY U, ROY S, RUDRAMURTHY SM. A promising antifungal lipopeptide from Bacillus subtilis: its characterization and insight into the mode of action[J]. Applied Microbiology and Biotechnology, 2024, 108(1): 161. [百度学术] 

113

WANG S, XU M, HAN Y, ZHOU Z. Exploring mechanisms of antifungal lipopeptide iturin A from Bacillus against Aspergillus niger[J]. Journal of Fungi, 2024, 10(3): 172. [百度学术] 

114

CHEN MC, DENG YJ, ZHENG MX, XIAO RF, WANG X, LIU B, HE J, WANG JP. Lipopeptides from Bacillus velezensis induced apoptosis-like cell death in the pathogenic fungus Fusarium concentricum[J]. Journal of Applied Microbiology, 2024, 135(3): lxae048. [百度学术] 

115

ROUTHU SR, RAGI NC, YEDLA P, SHAIK AB, VENKATARAMAN G, CHEEMALAMARRI C, CHITYALA GK, AMANCHY R, SRIPADI P, KAMAL A. Identification, characterization and evaluation of novel antifungal cyclic peptides from Neobacillus drentensis[J]. Bioorganic Chemistry, 2021, 115: 105180. [百度学术] 

116

ZHANG Q, ZHANG MX, WANG YC, ZHEN TT, WANG RJ, WANG SH, DU Y, YU RR, YI P, SONG YF, ZHI YS, SONG X, GUO YP, HE ZD, CHEN T, LI CY. Natural compound 2-chloro-1,3-dimethoxy-5-methylbenzene, isolated from Hericium Erinaceus, inhibits fungal growth by disrupting membranes and triggering apoptosis[J]. Journal of Agricultural and Food Chemistry, 2022, 70(21): 6444-6454. [百度学术] 

117

BELLANGER AP, TATARA AM, SHIRAZI F, GEBREMARIAM T, ALBERT ND, LEWIS RE, IBRAHIM AS, KONTOYIANNIS DP. Statin concentrations below the minimum inhibitory concentration attenuate the virulence of Rhizopus oryzae[J]. The Journal of Infectious Diseases, 2016, 214(1): 114-121. [百度学术] 

118

WANG JW, PING Y, LIU W, HE X, DU CM. Improvement of lipopeptide production in Bacillus subtilis HNDF2-3 by overexpression of the sfp and ComA genes[J]. Preparative Biochemistry & Biotechnology, 2024, 54(2): 184-192. [百度学术] 

119

王家雯. 链霉菌产生的脂肽对稻瘟病菌细胞自噬和凋亡的影响[D]. 哈尔滨: 黑龙江大学硕士学位论文, 2024. [百度学术] 

WANG JW. Effects of lipopeptides produced by Streptomyces on autophagy and apoptosis in blast cells[D]. Harbin: Master’s Thesis of Heilongjiang University, 2024 (in Chinese). [百度学术] 

120

NASSIMI Z, TAHERI P, TARIGHI S. Farnesol altered morphogenesis and induced oxidative burst-related responses in Rhizoctonia solani AG1-IA[J]. Mycologia, 2019, 111(3): 359-370. [百度学术] 

121

GONCALVES AP, CORDEIRO JM, MONTEIRO J, MUNOZ A, CORREIA-DE-SÁ P, READ ND, VIDEIRA A. Activation of a TRP-like channel and intracellular Ca2+ dynamics during phospholipase-C-mediated cell death[J]. Journal of Cell Science, 2014, 127(17): 3817-3829. [百度学术] 

122

GONÇALVES AP, CORDEIRO JM, MONTEIRO J, LUCCHI C, CORREIA-DE-SÁ P, VIDEIRA A. Involvement of mitochondrial proteins in calcium signaling and cell death induced by staurosporine in Neurospora crassa[J]. Biochimica et Biophysica Acta, 2015, 1847(10): 1064-1074. [百度学术] 

123

SANTOS FC, LOBO GM, FERNANDES AS, VIDEIRA A, DE ALMEIDA RFMD. Changes in the biophysical properties of the cell membrane are involved in the response of Neurospora crassa to staurosporine[J]. Frontiers in Physiology, 2018, 9: 1375. [百度学术] 

124

GONÇALVES AP, HALL C, KOWBEL DJ, GLASS NL, VIDEIRA A. CZT-1 is a novel transcription factor controlling cell death and natural drug resistance in Neurospora crassa[J]. G3, 2014, 4(6): 1091-1102. [百度学术] 

125

ZHONG XJ, LIU SR, ZHANG CW, ZHAO YS, SAYED A, RAJOKA MS, HE ZD, SONG X. Natural alkaloid coptisine, isolated from Coptis chinensis, inhibits fungal growth by disrupting membranes and triggering apoptosis[J]. Pharmacological Research - Modern Chinese Medicine, 2024, 10: 100383. [百度学术] 

126

ITO S, IHARA T, TAMURA H, TANAKA S, IKEDA T, KAJIHARA H, DISSANAYAKE C, ABDEL-MOTAAL FF, EL-SAYED MA. α-tomatine, the major saponin in tomato, induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum[J]. FEBS Letters, 2007, 581(17): 3217-3222. [百度学术] 

127

施高翔, 严园园, 邵菁, 汪天明, 汪长中. 白念珠菌凋亡诱导研究进展[J]. 微生物学通报, 2014, 41(2): 376-383. [百度学术] 

SHI GX, YAN YY, SHAO J, WANG TM, WANG CZ. Advances in apoptosis induction in Candida albicans[J]. Microbiology China, 2014, 41(2): 376-383 (in Chinese). [百度学术] 

128

ROCHA DA SILVA C, SÁ LGDAV, DOS SANTOS EV, FERREIRA TL, COUTINHO TDNP, MOREIRA LEA, DE SOUSA CAMPOS R, DE ANDRADE CR, BARBOSA DA SILVA WM, DE SÁ CARNEIRO I, SILVA J, DOS SANTOS HS, MARINHO ES, CAVALCANTI BC, DE MORAES MO, JÚNIOR HVN, ANDRADE NETO JB. Evaluation of the antifungal effect of chlorogenic acid against strains of Candida spp. resistant to fluconazole: apoptosis induction and in silico analysis of the possible mechanisms of action[J]. Journal of Medical Microbiology, 2022, 71(5): 001526. [百度学术] 

129

WANG J, YANG CL, HU XF, YAO XL, HAN L, WU XM, LI RY, WEN TC, MING L. Lauric acid induces apoptosis of rice sheath blight disease caused by Rhizoctonia solani by affecting fungal fatty acid metabolism and destroying the dynamic equilibrium of reactive oxygen species[J]. Journal of Fungi, 2022, 8(2): 153. [百度学术] 

130

CHEN L, WANG Z, LIU L, QU S, MAO YY, PENG X, LI YX, TIAN J. Cinnamaldehyde inhibits Candida albicans growth by causing apoptosis and its treatment on vulvovaginal candidiasis and oropharyngeal candidiasis[J]. Applied Microbiology and Biotechnology, 2019, 103(3): 9037-9055. [百度学术] 

131

OLIVEIRA RC, CARVAJAL-MORENO M, CORREA B, ROJO-CALLEJAS F. Cellular, physiological and molecular approaches to investigate the antifungal and anti-aflatoxigenic effects of thyme essential oil on Aspergillus flavus[J]. Food Chemistry, 2020, 315: 126096. [百度学术] 

132

TIAN H, QU S, WANG YZ, LU ZQ, ZHANG M, GAN YY, ZHANG P, TIAN J. Calcium and oxidative stress mediate perillaldehyde-induced apoptosis in Candida albicans[J]. Applied Microbiology and Biotechnology, 2017, 101(8): 3335-3345. [百度学术] 

133

QU S, CHEN L, TIAN H, WANG Z, WANG F, WANG LQ, LI JT, JI H, XI LR, FENG ZJ, TIAN J, FENG ZZ. Effect of perillaldehyde on prophylaxis and treatment of vaginal candidiasis in a murine model[J]. Frontiers in Microbiology, 2019, 10: 1466. [百度学术] 

134

LONE SA, WANI MY, FRU P, AHMAD A. Cellular apoptosis and necrosis as therapeutic targets for novel eugenol tosylate congeners against Candida albicans[J]. Scientific Reports, 2020, 10: 1191. [百度学术] 

135

杨懿, 宁玉梅. 白色念珠菌凋亡机制现代研究进展[J]. 西部中医药, 2012, 25(1): 106-109. [百度学术] 

YANG Y, NING YM. Advances of modern study on apoptosis mechanism of Candida albicans[J]. Western Journal of Traditional Chinese Medicine, 2012, 25(1): 106-109 (in Chinese). [百度学术] 

136

LI X, CAI M. Inactivation of the cyclin-dependent kinase Cdc28 abrogates cell cycle arrest induced by DNA damage and disassembly of mitotic spindles in Saccharomyces cerevisiae[J]. Molecular and cellular biology, 1997, 17(5): 2723-2734. [百度学术] 

137

施高翔, 汪天明, 吴生兵, 汪云霞, 邵菁, 周美启, 汪长中. 艾叶挥发油诱导白念珠菌凋亡[J]. 中国中药杂志, 2017, 42(18): 3572-3577. [百度学术] 

SHI GX, WANG TM, WU SB, WANG YX, SHAO J, ZHOU MQ, WANG CZ. Activity of essential oil extracted from Artemisia argyi in inducing apoptosis of Candida albicans[J]. China Journal of Chinese Materia Medica, 2017, 42(18): 3572-3577 (in Chinese). [百度学术] 

138

KHANI S, SEYEDJAVADI SS, HOSSEINI HM, GOUDARZI M, VALADBEIGI S, KHATAMI S, AJDARY S, ESLAMIFAR A, AMANI J, IMANI FOOLADI AA, RAZZAGHI-ABYANEH M. Effects of the antifungal peptide Skh-AMP1 derived from Satureja khuzistanica on cell membrane permeability, ROS production, and cell morphology of conidia and hyphae of Aspergillus fumigatus[J]. Peptides, 2020, 123: 170195. [百度学术] 

139

TSANG W, WONG P, YANG HP, LI NF. Purpurin triggers caspase-independent apoptosis in Candida dubliniensis biofilms[J]. PLoS One, 2013, 8(12): e86032. [百度学术] 

140

汪长中, 韩宁, 徐振华, 程惠娟, 官妍, 云云, 王艳. 穿心莲内酯诱导白念珠菌生物膜分散细胞凋亡的研究[J]. 中国中药杂志, 2012, 37(3): 362-365. [百度学术] 

WANG CZ, HAN N, XU ZH, CHENG HJ, GUAN Y, YUN Y, WANG Y. Study on andrographolide-induced apoptosis of Candida albicans biofilm dispersion cells[J]. China Journal of Chinese Materia Medica, 2012, 37(3): 362-365 (in Chinese). [百度学术] 

141

MEMARIANI H, MEMARIANI M. Anti-fungal properties and mechanisms of melittin[J]. Applied Microbiology and Biotechnology, 2020, 104(15): 6513-6526. [百度学术] 

142

CHOI H, HWANG JS, LEE DG. Identification of a novel antimicrobial peptide, scolopendin 1, derived from centipede Scolopendra subspinipes mutilans and its antifungal mechanism[J]. Insect Molecular Biology, 2014, 23(6): 788-799. [百度学术] 

143

崔杨. 壳寡糖诱导交链孢菌细胞凋亡及毒素抑制的研究[D]. 天津: 天津科技大学硕士学位论文, 2015. [百度学术] 

CUI Y. The research that oligosaccharide induce the Alternaria and inhibit the toxins[D]. Tianjin: Master’s Thesis of Tianjin University of Science and Technology, 2015 (in Chinese). [百度学术]