摘要
目前,治疗真菌感染的药物数量有限且已产生脱靶效应,研发新型抗真菌药物迫在眉睫。真菌凋亡样细胞死亡(apoptosis-like cell death, ALCD)是生物体在正常发育阶段细胞发生的死亡现象。本文概述了真菌ALCD的特征、所涉及的信号通路及关键因子,介绍了可诱导真菌凋亡的天然药物和人工合成药物。其中,天然药物包括来自微生物源的脂肽、法尼醇、他汀类、生物碱,来自植物源的有机酸、精油,以及来自昆虫的蜂毒素,并绘制了药物诱导真菌ALCD的基础分子景观。本文为制定新的抗病原真菌策略和研发靶向抗真菌药物提供了理论依据。
真菌性动植物病原体和产毒素真菌不仅对全球生态系统的稳定和粮食安全构成重大威
在生物体的正常发育阶段,内/外源因素会触发细胞发生调节性细胞死亡(regulated cell death, RCD
1 真菌凋亡样细胞死亡的普遍性、典型特征和重要事件
在自然界中,真菌ALCD现象广泛存在。尽管不同诱因引发的ALCD通路不同,但凋亡特征和凋亡过程中的几个重要事件具有共性。
1.1 ALCD的普遍性
自首次在酵母中发现ALCD现象后,其他真菌中也陆续观察到类似现象,如念珠菌(Candida spp.
1.2 ALCD的典型特征
真菌ALCD的典型标志与后生动物的凋亡相似,尽管不同类型的RCD之间存在显著差异,但似乎质膜的不稳定是一个共同的机
1.3 ALCD的重要事件
尽管诱因不同,但在ALCD典型特征形成的过程中存在一些具有共性的事件,如ROS积累、C
1.3.1 ROS积累
在生物体中,ROS既可以触发内质网应激,也可以造成线粒体MMP的改变;因此,它既是凋亡的早期现象,也是各种类型细胞凋亡的早期诱因;外源性和内源性ROS过高都会激活与细胞凋亡相关的蛋白质激酶和核酸,从而介导凋亡现象的发
1.3.2 C
内质网是真菌重要的C
1.3.3 Cyt-c释放
Cyt-c由线粒体向细胞质转移是细胞凋亡的标志性事件,与Cyt-c氧化酶活性的降低直接相
1.3.4 细胞周期阻滞
有报道称,一些天然药物如喜树碱(camptothecin)、紫杉醇(paclitaxel)等诱导的ALCD总是伴随着细胞周期阻
1.3.5 细胞壁应激
外源刺激触发的ALCD往往与真菌的细胞壁完整性(cell wall integrity, CWI)通路相
2 ALCD途径分类
尽管动物细胞PCD的精确分子基础已经得到表征,但动物PCD的外源和内源性途径的核心调节元件在真菌基因组中都不存
3 ALCD关键因子
目前发现的真菌ALCD关键因子主要有凋亡诱导因子(apoptosis-inducing factor, AIF)、凋亡抑制蛋白(inhibitors of apoptosis proteins, IAPs)、IAP拮抗蛋白(IAP-antagonist proteins, IAP-APs)、谷胱甘肽(glutathione, GSH)、鞘脂
3.1 凋亡诱导因子AIF
AIF是真核生物中位于线粒体膜间隙的保守的黄素蛋白,通过上调ROS触发PCD,是不依赖于CAS/meCAS的凋亡效应因子,而细胞质中往往存在AIF同源线粒体相关死亡诱导因子AMI
在正常情况下,AIF和AMID参与呼吸复合物I的组装,在氧化磷酸化和氧化还原控制中发挥重要作用,帮助调节ROS水
3.2 半胱天冬酶(CAS)/元半胱天冬酶(meCAS)
CAS/meCAS被认为是真菌ALCD的关键因子,在真菌中ALCD既可以是CAS/meCAS依赖的,也可以是独立的,通常由线粒体所介

图1 真菌和动物C14家族蛋白酶和凋亡抑制蛋白的区
Figure 1 The differences between C14 family proteases and inhibitors of apoptosis proteins in fungi and animal
目前尚无用于测量和抑制meCAS活性的特异性分子探针,这导致对meCAS参与的细胞生物学过程的研究还面临一定的困境。然而,在急性内质网应激条件下,CAS修饰核孔复合体可能是一种抑制mRNA输出、减少蛋白质合成和折叠负荷的应激补偿机
3.3 凋亡抑制蛋白(IAPs)
IAPs是CAS活性的调节剂,在真核生物中广泛保守存在,但其运作背景在很大程度上仍然处于未知状态。在哺乳动物中,IAP可以通过抑制CAS依赖性和非依赖性细胞死亡来调节先天免疫应答,也调节自噬和细胞分
真菌的IAP-like蛋白质通常被称为Bir1,一般包含2个BIR结构域(
在酵母中,Bir1p与多种蛋白质形成着丝点乘客复合物(kinetochore passenger complex
3.4 IAP拮抗蛋白IAP-APs
在动物细胞中,IAP-APs能灭活IAP,解除CAS活性的IAP抑制。哺乳动物的IAP-APs有线粒体蛋白SMAC (在细胞凋亡诱导过程中从线粒体释放到细胞质中)、丝氨酸蛋白酶Omi/HtrA2、XIAP相关因子XAF1和ART
已分别在S. cerevisiae和B. cinerea中发现了Omi/HtrA2的同源物Nma111p和BcNm
3.5 谷胱甘肽
细胞凋亡与GSH耗竭有关。GSH与氧化型谷胱甘肽(oxidized glutathione disulfide, GSSG)是细胞内最主要的氧化还原缓冲对之一,负责清除ROS和相关信号传导,其比例的失调是诱导细胞凋亡的重要因素之
3.6 鞘脂
在生物体中,鞘脂既是结构成分也是信号枢纽。一般来说,鞘氨醇-1-磷酸(sphingosine-1-phosphate, S1P)促进细胞存活和分化,而神经酰胺(ceramide, Cer)则诱导细胞凋
Key elements | Inhibit/Activate apoptosis | Drug-target suitability | Comparison with animals or humans | References |
---|---|---|---|---|
AIF | Activate | Yes | Different |
[ |
meCAS | Activate | Yes | Fungi specific |
[ |
IAPs | Inhibit | Yes | Fungi specific |
[ |
IAP-APs | Activate | Yes | Fungi specific |
[ |
GSH | Inhibit | No | Lack of specificity |
[ |
Sphingolipids | Activate | Yes | Different |
[ |
4 真菌凋亡样细胞死亡的主要分子景观
由于已报道的真菌ALCD多属于现象观察,极少涉及深层次的分子机制。因此,真菌ALCD的机制并不清晰,尤其是丝状真菌的ALCD缺乏范式研究。

图2 真菌凋亡样细胞死亡的分子机制
Figure 2 The molecular mechanism of fungal apoptosis-like cell death.
5 诱导真菌凋亡的药物
由于真菌ALCD和动物细胞凋亡之间的关键因子和信号通路存在显著的差异,诱导真菌内源性ALCD可能是未来治疗真菌疾病的良好策略,具有靶标性强、安全性高、持效期长等优势,是当前和未来新药研发的重点靶标。然而那些触发真菌细胞ALCD的化合物比抑制真菌生长的化合物出现抗/耐药性病原菌的可能性更低,更具有治疗优势。筛选靶向ALCD途径的化合物或者筛选包括靶向ALCD的多靶点药物,能有效延缓耐药性菌株和脱靶效应的浮现,提高疗效。
5.1 化学药物和人工合成材料
目前的抗真菌药物主要分为抗生素和化学合成药物两大类(
Drug classification | Drug name | Target | Whether it triggers apoptosis | References |
---|---|---|---|---|
Polyenes | Nystatin | Mainly binds ergosterol | Indirect triggering |
[ |
Amphotericin | ||||
Echinocandins | Caspofungin | Inhibition of glucan synthesis | Indirect triggering |
[ |
Mycamine | ||||
Anidulafungin | ||||
Pyrimidines | 5-flucytosine | Interference with DNA synthesis | No report |
[ |
5-fluorouracil | ||||
Azole (imidazole) | Ketoconazole | Inhibition of ergosterol synthesis | Some indirectly trigger mitochondrial pathway apoptosis |
[ |
Clotrimazole | ||||
Azole (triazoles) | Itraconazole | |||
Voriconazole | ||||
Posaconazole | ||||
Allylamines | Naftifine | Inhibition of ergosterol synthesis | No report |
[ |
Terbinafine | ||||
Butenafine |
5.2 天然产物及其修饰物
来源于微生物、植物和动物的天然产物作为抗真菌药物的重要来源,为靶向药物的设计提供了许多新的思路。
5.2.1 微生物源天然产物
微生物源天然产物是开发靶向真菌ALCD药物的首选(
Natural drugs | Source | Target fungi | Reference |
---|---|---|---|
Microbial products | |||
C17 fengycin B | Bacillus subtilis | Fusarium oxysporum |
[ |
Farnesol | Various fungi | Candida albicans |
[ |
Lipopeptide AF (3) | Bacillus subtilis | Candida albicans |
[ |
Iturins | Bacillus amyloliquefaciens | Aspergillus niger |
[ |
Surfactin | Bacillus velezensis | Fusarium concentricum |
[ |
Lipid 7 peptide mixture | Neobacillus drentensis | Candida albicans |
[ |
2-chloro-1,3-dimethoxy-5-methylbenzene | Hericium erinaceus | Candida albicans |
[ |
Statins | Aspergillus terreus | Rhizopus oryzae |
[ |
Botanical products | |||
Monoterpene nerol | Flores aurantii | Ceratocystis fimbriata |
[ |
Anacardic acid | Cashew nut | Magnaporthe oryzae |
[ |
Silymarin | Silybum marianum | Candida albicans |
[ |
Coptisine | Coptis chinensis | Cryptococcus neoformans |
[ |
α-tomatine | Lycopersico esculentum | Fusarium oxysporum |
[ |
Chlorogenic acid | Various plants | Candida albicans |
[ |
Lauric acid | Galla chinensis | Rhizoctonia solani |
[ |
Cinnamaldehyde | Cinnamon | Candida albicans |
[ |
Thyme essential oil | Thymus mongolicus | Aspergillus flavus |
[ |
Eugenol | Clove | Candida albicans |
[ |
Artemisia argyi essential oil | Artemisia argyi | Candida albicans |
[ |
Antimycotic peptide | Satureja khuzistanica | Aspergillus fumigatus |
[ |
Purpurin | Madder root | Candida dubliniensis |
[ |
Andrographolide | Andrographis paniculata | Candida albicans |
[ |
Animal products | |||
Melittin | European bee venom | Aspergillus, Botrytis, Candida |
[ |
Scopoletin | Centipede | Fungi |
[ |
5.2.2 动植物源天然产物
植物源天然产物种类丰富,也是开发靶向药物的重要资源(

图3 肉桂醛(CA)和橙花酚单萜(NEL)诱导真菌ALCD的分子机制
Figure 3 Molecular mechanism of apoptosis induced by cinnamaldehyde and monoterpene nerolol in fungi.
此外,动物源物质也有开发靶向ALCD药物的潜力(
6 总结与展望
随着对PCD的深入研究,人们逐渐意识到PCD对真菌致病性和多细胞水平发育的重要性。病原真菌PCD中的ALCD对于宿主细胞的有性发育、细胞分化、同种异型识别等生态互作、入侵和定殖等不同过程至关重
更深入地了解病原真菌ALCD的分子机制能为控制真菌感染提供更有利的策略。未来关于真菌ALCD应该关注的问题主要集中在以下4个方面。(1) 深度解析真菌ALCD的分子机制,为建立一个或几个典型的ALCD模式奠定基础。加大对不同真菌的凋亡信号通路和元件的深入研究,阐明病原真菌如何通过操纵这些关键因子来平衡细胞和群体的未来走向,即继续生长发育还是走向凋亡?(2) 解析鞘脂类物质作为“变阻器”和信号分子在ALCD中的作用。尽管在动物细胞凋亡中已经提供了大量的证据支持鞘脂(尤其是Cer)在PCD中的重要作用,但在真菌的ALCD中,人们对鞘脂的功能及作用模式还缺乏足够的了解。(3) 继续挖掘宿主和真菌ALCD之间的相互作用。加深对宿主和病原真菌之间相互作用的了解,为靶向治疗提供精确的靶点,甚至可以为操纵宿主免疫系统的疗法提供理论基础。(4) 建立靶向ALCD的抗真菌天然药物资源库。为筛选特异性靶向真菌ALCD的特效药物,以及涉及ALCD的多靶向药物奠定基础,提高药物的选择性、减少对宿主细胞的毒性和延缓抗药性和脱靶效应的浮现。总之,广泛并且深入挖掘真菌ALCD的分子机理能为真菌性疾病的治疗带来深远的影响。
作者贡献声明
王柳茜:绘制图片以及文章的撰写和整理;李珑捷:绘制图片以及参与论文选题讨论;田庆庆:文献收集及整理;杜春梅:论文选题、撰写、修改和审阅。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
SCHUSTER M, KILARU S, STEINBERG G. Azoles activate type I and type Ⅱ programmed cell death pathways in crop pathogenic fungi[J]. Nature Communications, 2024, 15: 4357. [百度学术]
LEITER É, CSERNOCH L, PÓCSI I. Programmed cell death in human pathogenic fungi: possible therapeutic target[J]. Expert Opinion on Therapeutic Targets, 2018, 22(12): 1039-1048. [百度学术]
KULKARNI M, STOLP ZD, HARDWICK JM. Targeting intrinsic cell death pathways to control fungal pathogens[J]. Biochemical Pharmacology, 2019, 162: 71-78. [百度学术]
WANI MY, ALGHAMIDI MSS, SRIVASTAVA V, AHMAD A, AQLAN FM, AL-BOGAMI AS. Click synthesis of pyrrolidine-based 1,2,3-triazole derivatives as antifungal agents causing cell cycle arrest and apoptosis in Candida auris[J]. Bioorganic Chemistry, 2023, 136: 106562. [百度学术]
BUGEDA A, GARRIGUES S, GANDÍA M, MANZANARES P, MARCOS JF, COCA M. The antifungal protein AfpB induces regulated cell death in its parental fungus Penicillium digitatum[J]. Msphere, 2020, 5(4): e00595-20. [百度学术]
BOJSEN R, REGENBERG B, FOLKESSON A. Persistence and drug tolerance in pathogenic yeast[J]. Current Genetics, 2017, 63(1): 19-22. [百度学术]
BERMAN J, KRYSAN DJ. Drug resistance and tolerance in fungi[J]. Nature Reviews Microbiology, 2020, 18(6): 319-331. [百度学术]
BONGOMIN F, GAGO S, OLADELE RO, DENNING DW. Global and multi-national prevalence of fungal diseases-estimate precision[J]. Journal of Fungi, 2017, 3(4): 57. [百度学术]
RICO-RAMÍREZ AM, GONALVES AP, GLASS NL. Fungal cell death: the beginning of the end[J]. Fungal Genetics and Biology, 2022, 159: 103671. [百度学术]
SHLEZINGER N, GOLDFINGER N, SHARON A. Apoptotic-like programed cell death in fungi: the benefits in filamentous species[J]. Frontiers in Oncology, 2012, 2: 97. [百度学术]
HARDWICK JM. Do fungi undergo apoptosis-like programmed cell death[J]. mBio, 2018, 9(4): e00948-18. [百度学术]
LASTAUSKIENĖ E, NOVICKIJ V, ZINKEVIČIENĖ A, GIRKONTAITĖ I, PAŠKEVIČIUS A, ŠVEDIENĖ J, MARKOVSKAJA S, NOVICKIJ J. Application of pulsed electric fields for the elimination of highly drug-resistant Candida grown under modelled microgravity conditions[J]. International Journal of Astrobiology, 2019, 18(5): 405-411. [百度学术]
LI XZ, LIU M, HUANG TG, YANG KL, ZHOU SH, LI YX, TIAN J. Antifungal effect of nerol via transcriptome analysis and cell growth repression in sweet potato spoilage fungi Ceratocystis fimbriata[J]. Postharvest Biology and Technology, 2021, 171: 111343. [百度学术]
NÖSSING C, RYAN KM. 50 years on and still very much alive: ‘Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics’[J]. British Journal of Cancer, 2023, 128(3): 426-431. [百度学术]
TANG QY, BIE XM, LU ZX, LV FX, TAO Y, QU XX. Effects of fengycin from Bacillus subtilis fmbJ on apoptosis and necrosis in Rhizopus stolonifer[J]. Journal of Microbiology, 2014, 52(8): 675-680. [百度学术]
DENG YJ, CHEN Z, CHEN YP, WANG JP, XIAO RF, WANG X, LIU B, CHEN MC, HE J. Lipopeptide C fengycin B exhibits a novel antifungal mechanism by triggering metacaspase-dependent apoptosis in Fusarium oxysporum[J]. Journal of Agricultural and Food Chemistry, 2024, 72(14): 7943-7953. [百度学术]
ZHANG LL, SUN CM. Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation[J]. Applied Environmental Microbiology, 2018, 84(18): e00445-18. [百度学术]
QI GF, ZHU FY, DU P, YANG XF, QIU DW, YU ZN, CHEN JY, ZHAO XY. Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway[J]. Peptides, 2010, 31(11): 1978-1986. [百度学术]
MUZAFFAR S, BOSE C, BANERJI A, NAIR BG, CHATTOO BB. Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae[J]. Applied Microbiology and Biotechnology, 2016, 100(1): 323-335. [百度学术]
GONÇALVES AP, HELLER J, DASKALOV A, VIDEIRA A, GLASS NL. Regulated forms of cell death in fungi[J]. Frontiers in Microbiology, 2017, 8: 1837. [百度学术]
HÄCKER G. Apoptosis in infection[J]. Microbes Infection, 2018, 20(9-10): 552-559. [百度学术]
CARMONA-GUTIERREZ D, EISENBERG T, BÜTTNER S, MEISINGER C, KROEMER G, MADEO F. Apoptosis in yeast: triggers, pathways, subroutines[J]. Cell Death & Differentiation, 2010, 17(5): 763-773. [百度学术]
SCHECKHUBER CQ, HAMANN A, BRUST D, OSIEWACZ HD. Cellular homeostasis in fungi: impact on the aging process[J]. Subcellular Biochemistry, 2012, 57: 233-250. [百度学术]
GULER EM, BOZALI K. Synthesised thymoquinone-oxime induces cytotoxicity, genotoxicity and apoptosis in hepatocellular cancer cells: in vitro study[J]. Natural Product Research, 2024, 38(10): 1695-1703. [百度学术]
PERRONE GG, TAN SX, DAWES IW. Reactive oxygen species and yeast apoptosis[J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2008, 1783(7): 1354-1368. [百度学术]
COLL NS, VERCAMMEN D, SMIDLER A, CLOVER C, VAN BREUSEGEM F, DANGL JL, EPPLE P. Arabidopsis type I metacaspases control cell death[J]. Science, 2010, 330(6009): 1393-1397. [百度学术]
GUPTA SS, TON VK, BEAUDRY V, RULLI S, CUNNINGHAM K, RAO R. Antifungal activity of amiodarone is mediated by disruption of calcium homeostasis[J]. Journal of Biological Chemistry, 2003, 278(31): 28831-28839. [百度学术]
KALKAVAN H, GREEN DR. MOMP, cell suicide as a BCL-2 family business[J]. Cell Death & Differentiation, 2018, 25(1): 46-55. [百度学术]
MENDEZ DL, AKEY IV, AKEY CW, KRANZ RG. Oxidized or reduced cytochrome c and axial ligand variants all form the apoptosome in vitro[J]. Biochemistry, 2017, 56(22): 2766-2769. [百度学术]
BURGESS RC, BURMAN B, KRUHLAK MJ, MISTELI T. Activation of DNA damage response signaling by condensed chromatin[J]. Cell Reports, 2014, 9(5): 1703-1717. [百度学术]
DORTER I, MOMANY M. Fungal cell cycle: a unicellular versus multicellular comparison[J]. Microbiology Spectrum, 2016, 4(6): FUNK-0025-2016. [百度学术]
DICHTL K, EBEL F, DIRR F, ROUTIER FH, HEESEMANN J, WAGENER J. Farnesol misplaces tip-localized Rho proteins and inhibits cell wall integrity signalling in Aspergillus fumigatus[J]. Molecular microbiology, 2010, 76(5): 1191-1204. [百度学术]
蔡永超. 细胞壁完整性信号途径的磷酸化平衡调控稻瘟病菌生长发育和致病力的机制研究[D]. 南京: 南京农业大学博士学位论文, 2022. [百度学术]
CAI YC. Homeostasis of cell wall integrity pathway phosphorylation regulates the growth and pathogenicity of rice blast fungus Magnaporthe oryzae[D]. Nanjing: Doctoral Dissertation of Nanjing Agricultural University, 2022 (in Chinese). [百度学术]
张小华, 孙业盈, 卞伟华, 许聪, 武玉永, 刘向勇. 真菌细胞壁抑制剂刚果红诱导酵母细胞凋亡及其机制研究[J]. 河南农业科学, 2015, 44(12): 65-69. [百度学术]
ZHANG XH, SUN YY, BIAN WH, XU C, WU YY, LIU XY. Fungal cell wall-perturbing agent Congo Red-induced yeast apoptosis and its underlying mechanisms[J]. Journal of Henan Agricultural Sciences, 2015, 44(12): 65-69 (in Chinese). [百度学术]
SANZ AB, GARCÍA R, RODRÍGUEZ-PEÑA JM, ARROYO J. The CWI pathway: regulation of the transcriptional adaptive response to cell wall stress in yeast[J]. Journal of Fungi, 2017, 4(1): 1. [百度学术]
DENG HQ, CHEN WY, ZHANG BY, ZHANG YW, HAN LY, ZHANG QP, YAO S, WANG HW, SHEN XL. Excessive ER-phagy contributes to ochratoxin A-induced apoptosis[J]. Food and Chemical Toxicology, 2023, 176: 113793. [百度学术]
KHOI CS, LIN YW, CHEN JH, LIU BH, LIN TY, HUNG KY, CHIANG CK. Selective activation of endoplasmic reticulum stress by reactive-oxygen-species-mediated ochratoxin A-induced apoptosis in tubular epithelial cells[J]. International Journal of Molecular Sciences, 2021, 22(20): 10951. [百度学术]
D’ARCY MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biology International, 2019, 43(6): 582-592. [百度学术]
MUKHERJEE D, GUPTA S, SARAN N, DATTA R, GHOSH A. Induction of apoptosis-like cell death and clearance of stress-induced intracellular protein aggregates: dual roles for Ustilago maydis metacaspase Mca1[J]. Molecular Microbiology, 2017, 106(5): 815-831. [百度学术]
BRUST D, HAMANN A, OSIEWACZ HD. Deletion of PaAif2 and PaAmid2, two genes encoding mitochondrial AIF-like oxidoreductases of Podospora anserina, leads to increased stress tolerance and lifespan extension[J]. Current Genetics, 2010, 56(3): 225-235. [百度学术]
NOVO N, FERREIRA P, MEDINA M. The apoptosis-inducing factor family: moonlighting proteins in the crosstalk between mitochondria and nuclei[J]. IUBMB Life, 2021, 73(3): 568-581. [百度学术]
NAGAMINE T. Apoptotic arms races in insect-baculovirus coevolution[J]. Physiological Entomology, 2022, 47(1): 1-10. [百度学术]
SU CH, HO YC, LEE MW, TSENG CC, LEE SS, HSIEH MK, CHEN HH, LEE CY, WU SW, KUAN YH. 1-nitropyrene induced reactive oxygen species-mediated apoptosis in macrophages through AIF nuclear translocation and AMPK/Nrf-2/HO-1 pathway activation[J]. Oxidative Medicine and Cellular Longevity, 2021: 9314342. [百度学术]
HERRMANN JM, RIEMER J. Apoptosis inducing factor and mitochondrial NADH dehydrogenases: redox-controlled gear boxes to switch between mitochondrial biogenesis and cell death[J]. Biological Chemistry, 2021, 402(3): 289-297. [百度学术]
SEMIGHINI CP, AVERETTE AF, PERFECT JR, HEITMAN J. Deletion of Cryptococcus neoformans AIF ortholog promotes chromosome aneuploidy and fluconazole-resistance in a metacaspase-independent manner[J]. PLoS Pathogens, 2011, 7(11): e1002364. [百度学术]
MA FY, ZHANG YQ, WANG YZ, WAN YJ, MIAO YH, MA TY, YU QL, LI MC. Role of Aif1 in regulation of cell death under environmental stress in Candida albicans[J]. Yeast, 2016, 33(9): 493-506. [百度学术]
CARNEIRO P, DUARTE M, VIDEIRA A. Characterization of apoptosis-related oxidoreductases from Neurospora crassa[J]. PLoS One, 2012, 7(3): e34270. [百度学术]
ELGUINDY MM, NAKAMARU-OGISO E. Apoptosis-inducing factor (AIF) and its family member protein, AMID, are rotenone-sensitive NADH: ubiquinone oxidoreductases (NDH-2)[J]. Journal of Biological Chemistry, 2015, 290(34): 20815-20826. [百度学术]
DINAMARCO TM, PIMENTEL BDE C, SAVOLDI M, MALAVAZI I, SORIANI FM, UYEMURA SA, LUDOVICO P, GOLDMAN MHS, GOLDMAN GH. The roles played by Aspergillus nidulans apoptosis-inducing factor (AIF)-like mitochondrial oxidoreductase (AifA) and NADH-ubiquinone oxidoreductases (NdeA-B and NdiA) in farnesol resistance[J]. Fungal Genetics and Biology, 2010, 47(12): 1055-1069. [百度学术]
FAGNANI E, COCOMAZZI P, PELLEGRINO S, TEDESCHI G, SCALVINI FG, COSSU F, DA VELA S, ALIVERTI A, MASTRANGELO E, MILANI M. CHCHD4 binding affects the active site of apoptosis inducing factor (AIF): structural determinants for allosteric regulation[J]. Structure, 2024, 32(5): 594-602. [百度学术]
DELAVALLÉE L, CABON L, GALÁN-MALO P, LORENZO HK, SUSIN SA. AIF-mediated caspase-independent necroptosis: a new chance for targeted therapeutics[J]. IUBMB Life, 2011, 63(4): 221-232. [百度学术]
AZZOPARDI M, FARRUGIA G, BALZAN R. Cell-cycle involvement in autophagy and apoptosis in yeast[J]. Mechanisms of Ageing and Development, 2017, 161: 211-224. [百度学术]
FANG JN, ZHOU G, ZHAO HF, XIE DD, ZHANG JN, KÜES U, XIAO YZ, FANG ZM, LIU JJ. An apoptosis-inducing factor controls programmed cell death and laccase expression during fungal interactions[J]. Applied Microbiology and Biotechnology, 2024, 108(1): 135. [百度学术]
HANGEN E, BLOMGREN K, BENIT P, KROEMER G, MODJTAHEDI N. Life with or without AIF[J]. Trends in Biochemical Sciences, 2010, 35(5): 278-287. [百度学术]
JOZA N. Genetic elucidation of the roles of apoptosis-inducing factor (AIF) in mitochondrial respiration and programmed cell death[D]. Canada: Doctoral Dissertation of University of Toronto, 2005. [百度学术]
AMADOR-GARCÍA A, ZAPICO I, BORRAJO A, MALMSTRÖM J, MONTEOLIVA L, GIL C. Extending the proteomic characterization of Candida albicans exposed to stress and apoptotic inducers through data-independent acquisition mass spectrometry[J]. Msystems, 2021, 6(5): e0094621. [百度学术]
SHARON A, FINKELSTEIN A, SHLEZINGER N, HATAM I. Fungal apoptosis: function, genes and gene function[J]. FEMS Microbiology Reviews, 2009, 33(5): 833-854. [百度学术]
UREN AG, O’ROURKE K, ARAVIND LA, PISABARRO MT, SESHAGIRI S, KOONIN EV, DIXIT VM. Identification of paracaspases and metacaspases two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma[J]. Molecular Cell, 2000, 6(4): 961-967. [百度学术]
LI LJ, DU CM. Fungal apoptosis-related proteins[J]. Microorganisms, 2024, 12(11): 2289. [百度学术]
WATANABE N, LAM E. Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast[J]. The Journal of Biological Chemistry, 2005, 280(15): 14691-14699. [百度学术]
MCLUSKEY K, MOTTRAM JC. Comparative structural analysis of the caspase family with other clan CD cysteine peptidases[J]. Biochemical Journal, 2015, 466(2): 219-232. [百度学术]
TSIATSIANI L, van BREUSEGEM F, GALLOIS P, ZAVIALOV A, LAM E, BOZHKOV PV. Metacaspases[J]. Cell Death and Differentiation, 2011, 18(8): 1279-1288. [百度学术]
MADEO F, HERKER E, MALDENER C, WISSING S, LÄCHELT S, HERLAN M, FEHR M, LAUBER K, SIGRIST SJ, WESSELBORG S, FRÖHLICH KU. A caspase-related protease regulates apoptosis in yeast[J]. Molecular Cell, 2002, 9(4): 911-917. [百度学术]
QI FL, ZHANG C, JIANG SS, WANG Q, KUERBAN K, LUO M, DONG MX, ZHOU XG, WU LM, JIANG B, YE L. S-ethyl ethanethiosulfinate, a derivative of allicin, induces metacaspase-dependent apoptosis through ROS generation in Penicillium chrysogenum[J]. Bioscience Reports, 2019, 39(6): BSR20190167. [百度学术]
厉晓东, 卢建平, 刘小红, 林福呈. 稻瘟病菌(Magnaporthe oryzae)的凋亡诱导和检测[J]. 植物病理学报, 2011, 41(4): 361-370. [百度学术]
LI XD, LU JP, LIU XH, LIN FC. Induction and detection of apoptosis in rice blast fungus, Magnaporthe oryzae[J]. Acta Phytopathologica Sinica, 2011, 41(4): 361-370 (in Chinese). [百度学术]
HILL SM, HAO X, LIU B, NYSTRÖM T. Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae[J]. Science, 2014, 344(6190): 1389-1392. [百度学术]
SHLEZINGER N, IRMER H, DHINGRA S, BEATTIE SR, CRAMER RA, BRAUS GH, SHARON A, HOHL TM. Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death[J]. Science, 2017, 357(6355): 1037-1041. [百度学术]
GUIRAO-ABAD JP, WEICHERT M, ASKEW DS. Cell death induction in Aspergillus fumigatus: accentuating drug toxicity through inhibition of the unfolded protein response (UPR)[J]. Current Research in Microbial Sciences, 2022, 3: 100119. [百度学术]
AMARE MG, WESTRICK NM, KELLER NP, KABBAGE M. The conservation of IAP-like proteins in fungi, and their potential role in fungal programmed cell death[J]. Fungal Genetics and Biology, 2022, 162: 103730. [百度学术]
FERNANDEZ J, LOPEZ V, KINCH L, PFEIFER MA, GRAY H, GARCIA N, GRISHIN NV, KHANG CH, ORTH K. Role of two metacaspases in development and pathogenicity of the rice blast fungus Magnaporthe oryzae[J]. mBio, 2021, 12(1): e03471-20. [百度学术]
HAMANN A, BRUST D, OSIEWACZ HD. Deletion of putative apoptosis factors leads to lifespan extension in the fungal ageing model Podospora anserina[J]. Molecular Microbiology, 2007, 65(4): 948-958. [百度学术]
ABBAS R, LARISCH S. Killing by degradation: regulation of apoptosis by the ubiquitin-proteasome-system[J]. Cells, 2021, 10(12): 3465. [百度学术]
LALAOUI N, VAUX DL. Recent advances in understanding inhibitor of apoptosis proteins[J]. F1000Research, 2018, 7. [百度学术]
HRDINKA M, YABAL M. Inhibitor of apoptosis proteins in human health and disease[J]. Genes and Immunity, 2019, 20(8): 641-650. [百度学术]
GAO T, MAGNANO S, RYNNE A, O’KANE L, BARROETA PH, ZISTERER DM. Targeting inhibitor of apoptosis proteins (IAPs) enhances susceptibility of oral squamous carcinoma cells to cisplatin[J]. Experimental Cell Research, 2024, 437(1): 113995. [百度学术]
MANAVALAN JS, PAL I, PURSLEY A, WARD GA, SMYTH T, SIMS M, TAYLOR JA, FEITH DJ, LOUGHRAN TP, O’CONNOR OA, MARCHI E. Tolinapant, a non-peptidomimetic antagonist of inhibitors of apoptosis proteins, cIAP1/2 and XIAP, in combination with the hypomethylating agents, azacytidine and decitabine are highly synergistic in in vitro models of T cell lymphoma[J]. Blood, 2022, 140(Sup 1): 11552-11553. [百度学术]
KUMAR S, FAIRMICHAEL C, LONGLEY DB, TURKINGTON RC. The multiple roles of the IAP super-family in cancer[J]. Pharmacology & Therapeutics, 2020, 214: 107610. [百度学术]
ZHANG J, WEBSTER JD, DUGGER DL, GONCHAROV T, ROOSE-GIRMA M, HUNG J, KWON YC, VUCIC D, NEWTON K, DIXIT VM. Ubiquitin ligases cIAP1 and cIAP2 limit cell death to prevent inflammation[J]. Cell Reports, 2019, 27(9): 2679-2689. [百度学术]
DUMÉTIER B, ZADOROZNYJ A, DUBREZ L. IAP-mediated protein ubiquitination in regulating cell signaling[J]. Cells, 2020, 9(5): 1118. [百度学术]
AMARE MG. Negating death: the role of fungal inhibitors of apoptosis proteins in regulating programmed cell death and other fundamental processes in fungi[D]. Madison: The University of Wisconsin-Madison, 2023. [百度学术]
CHEN LL, MA YM, PENG MY, CHEN WB, XIA HQ, ZHAO JY, ZHANG YK, FAN Z, XING XP, LI HL. Analysis of apoptosis-related genes reveals that apoptosis functions in conidiation and pathogenesis of Fusarium pseudograminearum[J]. mSphere, 2021, 6(1):e01140-20 . [百度学术]
GAO K, XIONG Q, XU J, WANG KJ, WANG KR. CpBir1 is required for conidiation, virulence and anti-apoptotic effects and influences hypovirus transmission in Cryphonectria parasitica[J]. Fungal Genetics and Biology, 2013, 51: 60-71. [百度学术]
ZHANG LS, ZHONG KL, LV RL, ZHENG XB, ZHANG ZG, ZHANG HF. The inhibitor of apoptosis protein MoBir1 is involved in the suppression of hydrogen peroxide-induced fungal cell death, reactive oxygen species generation, and pathogenicity of rice blast fungus[J]. Applied Microbiology and Biotechnology, 2019, 103(16): 6617-6627. [百度学术]
SHLEZINGER N, MINZ A, GUR Y, HATAM I, DAGDAS YF, TALBOT NJ, SHARON A. Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection[J]. PLoS Pathogens, 2011, 7(8): e1002185. [百度学术]
DREMEL SE, DELUCA NA. Herpes simplex viral nucleoprotein creates a competitive transcriptional environment facilitating robust viral transcription and host shut off[J]. eLife, 2019, 8: e51109. [百度学术]
CONG H, XU LJ, WU YG, QU Z, BIAN TF, ZHANG WN, XING CG, ZHUANG CL. Inhibitor of apoptosis protein (IAP) antagonists in anticancer agent discovery: current status and perspectives[J]. Journal of Medicinal Chemistry, 2019, 62(12): 5750-5772. [百度学术]
VASUDEVAN D, RYOO HD. Regulation of cell death by IAPs and their antagonists[J]. Current Topics in Developmental Biology, 2015, 114: 185-208. [百度学术]
YANG C, DAVIS JL, ZENG R, VORA P, SU XM, COLLINS LI, VANGVERAVONG S, MACH RH, PIWNICA-WORMS D, WEILBAECHER KN, FACCIO R, NOVACK DV. Antagonism of inhibitor of apoptosis proteins increases bone metastasis via unexpected osteoclast activation[J]. Cancer Discovery, 2013, 3(2): 212-223. [百度学术]
WALTER D, WISSING S, MADEO F, FAHRENKROG B. The inhibitor-of-apoptosis protein Bir1p protects against apoptosis in S. cerevisiae and is a substrate for the yeast homologue of Omi/HtrA2[J]. Journal of Cell Science, 2006, 119(9): 1843-1851. [百度学术]
FINKELSHTEIN A, SHLEZINGER N, BUNIS O, SHARON A. Botrytis cinerea BcNma is involved in apoptotic cell death but not in stress adaptation[J]. Fungal Genetics and Biology, 2011, 48(6): 621-630. [百度学术]
ZHU J, KROM BP, SANGLARD D, INTAPA C, DAWSON CC, PETERS BM, SHIRTLIFF ME, JABRA-RIZK MA. Farnesol-induced apoptosis in Candida albicans is mediated by Cdr1-p extrusion and depletion of intracellular glutathione[J]. PLoS One, 2011, 6(12): e28830. [百度学术]
IESSI E, MARCONI M, MANGANELLI V, SORICE M, MALORNI W, GAROFALO T, MATARRESE P. On the role of sphingolipids in cell survival and death[J]. International Review of Cell and Molecular Biology, 2020, 351: 149-195. [百度学术]
PILÁTOVÁ MB, SOLÁROVÁ Z, MEZENCEV R, SOLÁR P. Ceramides and their roles in programmed cell death[J]. Advances in Medical Sciences, 2023, 68(2): 417-425. [百度学术]
卓少恩, 林瀛栩, 胡琪, 曾斌, 蒋春苗. 真菌鞘糖脂的生物学功能及应用研究进展[J]. 微生物学杂志, 2023, 43(4): 109-121. [百度学术]
ZHUO SE, LIN YX, HU Q, ZENG B, JIANG CM. Advances in biological functions and applications of fungal glycosphingolipids[J]. Journal of Microbiology, 2023, 43(4): 109-121 (in Chinese). [百度学术]
CASTRO A, LEMOS C, FALCÃO A, GLASS NL, VIDEIRA A. Increased resistance of complex I mutants to phytosphingosine-induced programmed cell death[J]. Journal of Biological Chemistry, 2008, 283(28): 19314-19321. [百度学术]
戴宝娣, 曹颖瑛, 徐勇刚, 高平挥, 王彦, 姜远英. 致病真菌凋亡机制的研究进展[J]. 第二军医大学学报, 2008, 11: 1390-1394. [百度学术]
DAI BD, CAO YY, XU YG, GAO PH, WANG Y, JIANG YY. Apoptotic mechanism of pathogenic fungi: recent progress[J]. Academic Journal of Naval Medical University, 2008, 11: 1390-1394 (in Chinese). [百度学术]
YUN DG, LEE DG. Silibinin triggers yeast apoptosis related to mitochondrial C
ABOU-GHALI M, STIBAN J. Regulation of ceramide channel formation and disassembly: Insights on the initiation of apoptosis[J]. Saudi Journal of Biological Sciences, 2015, 22(6): 760-772. [百度学术]
余小婷, 张展鹏, 张宏. 新型抗真菌药物靶点研究进展[J]. 中国真菌学杂志, 2024, 19(1): 100-103, 108. [百度学术]
YU XT, ZHANG ZP, ZHANG H. Research progress of new antifungal drug targets[J]. Chinese Journal of Mycology, 2024, 19(1): 100-103, 108 (in Chinese). [百度学术]
初芍洁, 郑岩, 苏霜霜, 吴雪松, 闫闳, 陈少欣, 王宏博. 天然来源抗真菌药物的研究进展[J]. 药学学报, 2025, 60(1): 48-57. [百度学术]
CHU SJ, ZHENG Y, SU SS, WU XS, YAN H, CHEN SX, WANG HB. Research progress of antifungal drugs from natural sources[J]. Acta Pharmaceutica Sinica, 2025, 60(1): 48-57 (in Chinese). [百度学术]
徐贝雪, 刘泉波. 抗真菌药物临床应用及研究进展[J]. 现代医药卫生, 2022, 38(14): 2435-2440. [百度学术]
XU BX, LIU QB. Clinical application and research progress of antifungal drugs[J]. Journal of Modern Medicine & Health, 2022, 38(14): 2435-2440 (in Chinese). [百度学术]
宋晓婷, 赵作涛, 王爱平. 新型系统性抗真菌药物研究进展[J]. 中国真菌学杂志, 2023, 18(4): 370-376. [百度学术]
SONG XT, ZHAO ZT, WANG AP. Research progress of novel systemic antifungal agents[J]. Chinese Journal of Mycology, 2023, 18(4): 370-376 (in Chinese). [百度学术]
车斌, 谢为民. 抗真菌药物的分类及研究进展概述[J]. 海峡药学, 2008, 20(12): 111-114. [百度学术]
CHE B, XIE WM. Classification and research progress of antifungal drugs[J]. Strait Pharmaceutical Journal, 2008, 20(12): 111-114 (in Chinese). [百度学术]
KAVAKÇıOĞLU B, TARHAN L. Yeast caspase-dependent apoptosis in Saccharomyces cerevisiae BY4742 induced by antifungal and potential antitumor agent clotrimazole[J]. Archives of Microbiology, 2018, 200: 97-106. [百度学术]
BEN YAAKOV D, SHADKCHAN Y, ALBERT N, KONTOYIANNIS DP, OSHEROV N. The quinoline bromoquinol exhibits broad-spectrum antifungal activity and induces oxidative stress and apoptosis in Aspergillus fumigatus[J]. Journal of Antimicrobial Chemotherapy, 2017, 72(8): 2263-2272. [百度学术]
IYER KR, WHITESELL L, PORCO JA, HENKEL T, BROWN LE, ROBBINS N, COWEN LE. Translation inhibition by rocaglates activates a species-specific cell death program in the emerging fungal pathogen Candida auris[J]. mBio, 2020, 11(2): e03329-19. [百度学术]
PARK SC, KIM JY, KIM EJ, CHEONG GW, LEE Y, CHOI W, LEE JR, JANG MK. Hydrophilic linear peptide with histidine and lysine residues as a key factor affecting antifungal activity[J]. International Journal of Molecular Sciences, 2018, 19(12): 3781. [百度学术]
VEERANA M, KIM HC, MITRA S, ADHIKARI BC, PARK G, HUH S, KIM SJ, KIM Y. Analysis of the effects of Cu-MOFs on fungal cell inactivation[J]. RSC Advances, 2021, 11(2): 1057-1065. [百度学术]
HAFEEZ R, GUO J, AHMED T, IBRAHIM E, ALI MA, RIZWAN M, IJAZ M, AN Q, WANG Y, WANG J, LI B. Integrative transcriptomic and metabolomic analyses reveals the toxicity and mechanistic insights of bioformulated chitosan nanoparticles against Magnaporthe oryzae[J]. Chemosphere, 2024, 356: 141904. [百度学术]
CHAVES-LOPEZ C, NGUYEN HN, OLIVEIRA RC, NADRES ET, PAPARELLA A, RODRIGUES DF. A morphological, enzymatic and metabolic approach to elucidate apoptotic-like cell death in fungi exposed to h- and α-molybdenum trioxide nanoparticles[J]. Nanoscale, 2018, 10(44): 20702-20716. [百度学术]
厉晓东, 卢建平, 李海娇, 林福呈. 丝状真菌的细胞凋亡[J]. 微生物学通报, 2011, 38(2): 242-249. [百度学术]
LI XD, LU JP, LI HJ, LIN FC. Apoptosis in filamentous fungi[J]. Microbiology China, 2011, 38(2): 242-249 (in Chinese). [百度学术]
RAMESH S, ROY U, ROY S, RUDRAMURTHY SM. A promising antifungal lipopeptide from Bacillus subtilis: its characterization and insight into the mode of action[J]. Applied Microbiology and Biotechnology, 2024, 108(1): 161. [百度学术]
WANG S, XU M, HAN Y, ZHOU Z. Exploring mechanisms of antifungal lipopeptide iturin A from Bacillus against Aspergillus niger[J]. Journal of Fungi, 2024, 10(3): 172. [百度学术]
CHEN MC, DENG YJ, ZHENG MX, XIAO RF, WANG X, LIU B, HE J, WANG JP. Lipopeptides from Bacillus velezensis induced apoptosis-like cell death in the pathogenic fungus Fusarium concentricum[J]. Journal of Applied Microbiology, 2024, 135(3): lxae048. [百度学术]
ROUTHU SR, RAGI NC, YEDLA P, SHAIK AB, VENKATARAMAN G, CHEEMALAMARRI C, CHITYALA GK, AMANCHY R, SRIPADI P, KAMAL A. Identification, characterization and evaluation of novel antifungal cyclic peptides from Neobacillus drentensis[J]. Bioorganic Chemistry, 2021, 115: 105180. [百度学术]
ZHANG Q, ZHANG MX, WANG YC, ZHEN TT, WANG RJ, WANG SH, DU Y, YU RR, YI P, SONG YF, ZHI YS, SONG X, GUO YP, HE ZD, CHEN T, LI CY. Natural compound 2-chloro-1,3-dimethoxy-5-methylbenzene, isolated from Hericium Erinaceus, inhibits fungal growth by disrupting membranes and triggering apoptosis[J]. Journal of Agricultural and Food Chemistry, 2022, 70(21): 6444-6454. [百度学术]
BELLANGER AP, TATARA AM, SHIRAZI F, GEBREMARIAM T, ALBERT ND, LEWIS RE, IBRAHIM AS, KONTOYIANNIS DP. Statin concentrations below the minimum inhibitory concentration attenuate the virulence of Rhizopus oryzae[J]. The Journal of Infectious Diseases, 2016, 214(1): 114-121. [百度学术]
WANG JW, PING Y, LIU W, HE X, DU CM. Improvement of lipopeptide production in Bacillus subtilis HNDF2-3 by overexpression of the sfp and ComA genes[J]. Preparative Biochemistry & Biotechnology, 2024, 54(2): 184-192. [百度学术]
王家雯. 链霉菌产生的脂肽对稻瘟病菌细胞自噬和凋亡的影响[D]. 哈尔滨: 黑龙江大学硕士学位论文, 2024. [百度学术]
WANG JW. Effects of lipopeptides produced by Streptomyces on autophagy and apoptosis in blast cells[D]. Harbin: Master’s Thesis of Heilongjiang University, 2024 (in Chinese). [百度学术]
NASSIMI Z, TAHERI P, TARIGHI S. Farnesol altered morphogenesis and induced oxidative burst-related responses in Rhizoctonia solani AG1-IA[J]. Mycologia, 2019, 111(3): 359-370. [百度学术]
GONCALVES AP, CORDEIRO JM, MONTEIRO J, MUNOZ A, CORREIA-DE-SÁ P, READ ND, VIDEIRA A. Activation of a TRP-like channel and intracellular C
GONÇALVES AP, CORDEIRO JM, MONTEIRO J, LUCCHI C, CORREIA-DE-SÁ P, VIDEIRA A. Involvement of mitochondrial proteins in calcium signaling and cell death induced by staurosporine in Neurospora crassa[J]. Biochimica et Biophysica Acta, 2015, 1847(10): 1064-1074. [百度学术]
SANTOS FC, LOBO GM, FERNANDES AS, VIDEIRA A, DE ALMEIDA RFMD. Changes in the biophysical properties of the cell membrane are involved in the response of Neurospora crassa to staurosporine[J]. Frontiers in Physiology, 2018, 9: 1375. [百度学术]
GONÇALVES AP, HALL C, KOWBEL DJ, GLASS NL, VIDEIRA A. CZT-1 is a novel transcription factor controlling cell death and natural drug resistance in Neurospora crassa[J]. G3, 2014, 4(6): 1091-1102. [百度学术]
ZHONG XJ, LIU SR, ZHANG CW, ZHAO YS, SAYED A, RAJOKA MS, HE ZD, SONG X. Natural alkaloid coptisine, isolated from Coptis chinensis, inhibits fungal growth by disrupting membranes and triggering apoptosis[J]. Pharmacological Research - Modern Chinese Medicine, 2024, 10: 100383. [百度学术]
ITO S, IHARA T, TAMURA H, TANAKA S, IKEDA T, KAJIHARA H, DISSANAYAKE C, ABDEL-MOTAAL FF, EL-SAYED MA. α-tomatine, the major saponin in tomato, induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum[J]. FEBS Letters, 2007, 581(17): 3217-3222. [百度学术]
施高翔, 严园园, 邵菁, 汪天明, 汪长中. 白念珠菌凋亡诱导研究进展[J]. 微生物学通报, 2014, 41(2): 376-383. [百度学术]
SHI GX, YAN YY, SHAO J, WANG TM, WANG CZ. Advances in apoptosis induction in Candida albicans[J]. Microbiology China, 2014, 41(2): 376-383 (in Chinese). [百度学术]
ROCHA DA SILVA C, SÁ LGDAV, DOS SANTOS EV, FERREIRA TL, COUTINHO TDNP, MOREIRA LEA, DE SOUSA CAMPOS R, DE ANDRADE CR, BARBOSA DA SILVA WM, DE SÁ CARNEIRO I, SILVA J, DOS SANTOS HS, MARINHO ES, CAVALCANTI BC, DE MORAES MO, JÚNIOR HVN, ANDRADE NETO JB. Evaluation of the antifungal effect of chlorogenic acid against strains of Candida spp. resistant to fluconazole: apoptosis induction and in silico analysis of the possible mechanisms of action[J]. Journal of Medical Microbiology, 2022, 71(5): 001526. [百度学术]
WANG J, YANG CL, HU XF, YAO XL, HAN L, WU XM, LI RY, WEN TC, MING L. Lauric acid induces apoptosis of rice sheath blight disease caused by Rhizoctonia solani by affecting fungal fatty acid metabolism and destroying the dynamic equilibrium of reactive oxygen species[J]. Journal of Fungi, 2022, 8(2): 153. [百度学术]
CHEN L, WANG Z, LIU L, QU S, MAO YY, PENG X, LI YX, TIAN J. Cinnamaldehyde inhibits Candida albicans growth by causing apoptosis and its treatment on vulvovaginal candidiasis and oropharyngeal candidiasis[J]. Applied Microbiology and Biotechnology, 2019, 103(3): 9037-9055. [百度学术]
OLIVEIRA RC, CARVAJAL-MORENO M, CORREA B, ROJO-CALLEJAS F. Cellular, physiological and molecular approaches to investigate the antifungal and anti-aflatoxigenic effects of thyme essential oil on Aspergillus flavus[J]. Food Chemistry, 2020, 315: 126096. [百度学术]
TIAN H, QU S, WANG YZ, LU ZQ, ZHANG M, GAN YY, ZHANG P, TIAN J. Calcium and oxidative stress mediate perillaldehyde-induced apoptosis in Candida albicans[J]. Applied Microbiology and Biotechnology, 2017, 101(8): 3335-3345. [百度学术]
QU S, CHEN L, TIAN H, WANG Z, WANG F, WANG LQ, LI JT, JI H, XI LR, FENG ZJ, TIAN J, FENG ZZ. Effect of perillaldehyde on prophylaxis and treatment of vaginal candidiasis in a murine model[J]. Frontiers in Microbiology, 2019, 10: 1466. [百度学术]
LONE SA, WANI MY, FRU P, AHMAD A. Cellular apoptosis and necrosis as therapeutic targets for novel eugenol tosylate congeners against Candida albicans[J]. Scientific Reports, 2020, 10: 1191. [百度学术]
杨懿, 宁玉梅. 白色念珠菌凋亡机制现代研究进展[J]. 西部中医药, 2012, 25(1): 106-109. [百度学术]
YANG Y, NING YM. Advances of modern study on apoptosis mechanism of Candida albicans[J]. Western Journal of Traditional Chinese Medicine, 2012, 25(1): 106-109 (in Chinese). [百度学术]
LI X, CAI M. Inactivation of the cyclin-dependent kinase Cdc28 abrogates cell cycle arrest induced by DNA damage and disassembly of mitotic spindles in Saccharomyces cerevisiae[J]. Molecular and cellular biology, 1997, 17(5): 2723-2734. [百度学术]
施高翔, 汪天明, 吴生兵, 汪云霞, 邵菁, 周美启, 汪长中. 艾叶挥发油诱导白念珠菌凋亡[J]. 中国中药杂志, 2017, 42(18): 3572-3577. [百度学术]
SHI GX, WANG TM, WU SB, WANG YX, SHAO J, ZHOU MQ, WANG CZ. Activity of essential oil extracted from Artemisia argyi in inducing apoptosis of Candida albicans[J]. China Journal of Chinese Materia Medica, 2017, 42(18): 3572-3577 (in Chinese). [百度学术]
KHANI S, SEYEDJAVADI SS, HOSSEINI HM, GOUDARZI M, VALADBEIGI S, KHATAMI S, AJDARY S, ESLAMIFAR A, AMANI J, IMANI FOOLADI AA, RAZZAGHI-ABYANEH M. Effects of the antifungal peptide Skh-AMP1 derived from Satureja khuzistanica on cell membrane permeability, ROS production, and cell morphology of conidia and hyphae of Aspergillus fumigatus[J]. Peptides, 2020, 123: 170195. [百度学术]
TSANG W, WONG P, YANG HP, LI NF. Purpurin triggers caspase-independent apoptosis in Candida dubliniensis biofilms[J]. PLoS One, 2013, 8(12): e86032. [百度学术]
汪长中, 韩宁, 徐振华, 程惠娟, 官妍, 云云, 王艳. 穿心莲内酯诱导白念珠菌生物膜分散细胞凋亡的研究[J]. 中国中药杂志, 2012, 37(3): 362-365. [百度学术]
WANG CZ, HAN N, XU ZH, CHENG HJ, GUAN Y, YUN Y, WANG Y. Study on andrographolide-induced apoptosis of Candida albicans biofilm dispersion cells[J]. China Journal of Chinese Materia Medica, 2012, 37(3): 362-365 (in Chinese). [百度学术]
MEMARIANI H, MEMARIANI M. Anti-fungal properties and mechanisms of melittin[J]. Applied Microbiology and Biotechnology, 2020, 104(15): 6513-6526. [百度学术]
CHOI H, HWANG JS, LEE DG. Identification of a novel antimicrobial peptide, scolopendin 1, derived from centipede Scolopendra subspinipes mutilans and its antifungal mechanism[J]. Insect Molecular Biology, 2014, 23(6): 788-799. [百度学术]