摘要
石油烃废水的来源主要包括石油开采和石油产品加工使用过程中产生的废水。具体可分为石油开采过程中由于泄漏产生的污染、机械加工过程产生的废水、皮革印染过程中由于助剂使用产生的废水。石油烃废水具有有机物含量高、毒性大、可生化性差等特点。生物降解法因其无二次污染,已经成为石油烃废水处理的主要研究热点之一。本文结合最新文献分析及个人研究成果,详细介绍了石油烃废水的组成、生物降解菌群种类、生物降解机理、生物炭固定修复技术、降解基因和降解酶等方面内容,为后续进行微生物菌群降解石油烃废水的深入研究提供了参考。
石油和石油产品的勘探、生产、精炼、运输和储存过程会不可避免地产生环境污
石油烃废水的处理方法包括物理
1 石油烃废水
1.1 石油烃废水特点
石油烃废水的来源主要包括石油开采和石油产品加工使用过程中产生的废水。具体可分为石油开采过程中由于泄漏产生的污染、机械加工过程产生的废水(例如研磨、切削、淬火、清洗过程产生的含油废水)、皮革印染过程中由于助剂使用产生的废水。石油烃废水的特点主要有4个方面。(1) 有机物含量高:烃类废水中含有大量的烃类化合物,化学需氧量(chemical oxygen demand, COD)和生化需氧量(biochemical oxygen demand, BOD)通常较高。例如,一些石油化工废水的COD可能高达每升数千甚至上万毫
1.2 石油烃废水组成
石油烃废水中的石油烃可分为饱和烃类、芳香烃类、沥青质类(酚类、脂肪酸类、酮类、酯类和卟啉类)和树脂类(吡啶类、喹啉类、咔唑类、亚砜类和酰胺类) 4
Type | Classification | Name |
---|---|---|
Hydrocarbon | Straight chain hydrocarbon | Tetratriacontane |
Branched hydrocarbon | 11-methyltricosane | |
Cyclic hydrocarbon | 15-isobutyl-(13.alpha.H)-isocopalane | |
Aromatic hydrocarbon | 4-(2-fluorobenzoylamino)piperidine-1-carboxylic acid | |
Alcohols | Decanol | 1-decanol, 2-octyl |
Heptanol | 2-isopropyl-5-methyl-1-heptanol | |
Ethers/Esters | Esters | l-norvaline, N-(2-methoxyethoxycarbonyl)-, hexadecyl ester |
Ethers | Heptaethylene glycol monododecyl ether |
1.3 生物法降解石油烃废水
Teli
目前,生物降解方法主要可分为两类:(1) 生物增强,将外源性活微生物添加到受污染的场地,将有害的石油污染物分解成二氧化碳和水等无毒成
2 石油烃降解菌
2.1 石油烃降解菌种类
α变形菌(Alphaprote obacteria)、嗜盐菌(Halophiles)、β变形菌(Betaproteobacteria)、γ变形菌(Gammaproteobacteria)、放线菌(Actinomycetes)和厚壁菌(Bacillota)被认为是降解碳氢化合物的关键菌
Category | Source | Name | Degradation object | Maximum degradation rate (%) | References |
---|---|---|---|---|---|
Bacteria | Surface sediments of oil-contaminated coastlines | Pseudomonas aeruginosa | Crude oil | 55 |
[ |
Oil contaminated rhizosphere soil of plants |
Rhodococcus hoagii | Petroleum hydrocarbon | 87 |
[ | |
Car workshop |
Staphylococcus hominis, Bacillus pumilus | Petroleum | 50 |
[ | |
Oil refinery sludge | Ochrobactrum cicerir | Total petroleum hydrocarbon | 91 |
[ | |
Oil contaminated site | Alcaligenes faecalis, Pseudomonas guariconensis, Pseudomonas monteilii | polycyclic aromatic hydrocarbons | 85 |
[ | |
Water samples from streams contaminated with oil | Corynebacterium sp. | Crude oil | 60 |
[ | |
Fungi | Oilfield contaminated soil | Candida tropicalis | Grease | 61 |
[ |
2.2 石油烃降解菌的降解机理
微生物可以通过溶解、乳化或直接从油水界面黏附和吸收油来提高脂肪烃的生物利用度,从而促进脂肪烃的生物降解。微生物产生的细胞外生物表面活性剂或生物乳化剂,在通过假溶作用增强细胞摄取和通过降低表面张力来增加传质的界面面积方面发挥着重要作
根据石油烃类污染物的链长和类型,需要不同的酶将氧或其他电子受体引入底物以开始生物降解(

图1 石油烃生化阶段降解路径。A:正烷
Figure 1 Degradation pathway of petroleum hydrocarbon during biochemical stage. A: n-alkane
目前,大多数研究者仅关注了一种或多种石油烃降解菌在特定反应步骤中的降解途径。然而,在多种石油烃降解菌共同存在的情况下,对石油烃污染场地的修复,以及对石油烃降解菌降解途径的完整分析,包括所有反应步骤的报道尚未见文
3 石油烃降解菌研究方向
3.1 复合功能菌群构建
构建复合功能菌群是指通过组合不同优势菌株,以增强其生态功能和应用效果。单一菌株的能力有限,而通过将不同菌株组合起来,可以发挥它们各自的优势,产生协同作用,从而提高整体功能。在降解石油烃的过程中,微生物菌群之间可能产生协同效应,也可能存在竞争抑制作用,随着环境变化不同微生物种群优势菌的数量不
获得高效功能菌株是构建复合菌群的前提。传统的筛菌方法需经过采样、预处理、增殖培养、选择培养、菌株分离纯化、菌落选取、初筛、纯化、复筛等过程,筛菌过程繁琐。由于培养基的成分与菌株原生环境及待处理污染物的环境差异较大,部分目标菌株可能无法存
3.2 生物炭固定化菌群技术
实验室筛选获得的石油烃降解菌群,由于无法适应高含油浓度、性质多变、毒性强的石油烃废水,需要利用固定化生物技术将石油烃降解菌固定化制备成一种适用性更强、活性更高、耐受性更高的固定化复合材料。目前,关于固定化微生物技术的研究多聚焦于受污染土壤,对含石油烃废水的研究较
Preparation material | Biochar preparation method | Application | References |
---|---|---|---|
Camellia oleifera shell powder | The camellia oleifera shell powder was pretreated with 0.5 mol/L FeCl₃ and pyrolyzed at 300 ℃ | Soil conditioner |
[ |
Rice straw | The dried rice straw was crushed and sieved. The powder was put into a ceramic crucible and pyrolyzed at 500 ℃ | Remediation of heavy metal pollution |
[ |
Sewage sludge and coconut shell | Sewage sludge and coconut shell were heated at 500 ℃. And then activating via potassium hydroxide solution. Subsequently, the solid pyrolyzed at 800 ℃, and then washed with HCl solution | Remediation of polyacrylamide contamination |
[ |
Masson pine wood | The granulated waste wood sawdust was sieved to a size between 0.063-2.000 mm. The pyrolysis was performed at 500 ℃ and 700 ℃ | Cement additive |
[ |
Hickory wood | The hickory powder was pyrolyzed at 600 ℃. After washing and drying, soaked in NaOH solution for 4 h | Adsorption of heavy metals |
[ |
Rice straw | The straw was dried at 80 ℃, ground and sieved to produce <2.0 mm particles. Pyrolysis was performed at 700 ℃ | Adsorption of Cd |
[ |
Peanut shell | The peanut shell was pyrolyzed at 500 ℃, and processed by 60-mesh sieve | Remove electroplating mixed-wastewater |
[ |
Pomelo peel | Pomelo peel was pyrolyzed at 500 ℃, then activating with KOH at a mass ratio of 1:4. Biochar obtained was washed with 35% HNO3 and water until the pH reaches 7.0±0.2. Finally, the produced biochar was oven-dried at 80 ℃ for 24 h |
Remove tetracycline antibiotics |
[ |
生物炭固定技术中,生物炭的使用可以为生物降解提供更多的固定支撑和间隙,从而引发生物降
3.3 降解基因及降解酶的研究
Izmalkova

图2 2级厌氧+2级好氧法处理机械加工废水过程中主要作用酶
Figure 2 The main enzymes in the treatment of mechanical processing wastewater by 2-level anaerobic+2-level aerobic.
探究降解菌的基因及酶对石油烃污染物降解的变化规律,可利用多组学分析技
4 总结与展望
石油烃废水的产生会对人类和环境造成严重危害,生物降解法因其无二次污染,已经成为石油烃降解的主要研究热点之一。然而,目前关于石油烃废水的研究在以下方面报道较少:针对高浓度石油烃废水的特种生物菌群组成及生物炭复合菌剂特性优化;多种石油烃降解菌共同存在的情况下对石油烃污染场地的修复;对石油烃降解菌降解途径的完整分析以及所有反应步骤。未来可在以下方面对石油烃废水的生物降解法进行进一步研究。
(1) 简化功能菌株筛选步骤,建立可针对高浓度含油废水的特种菌株库。构建复合功能菌群,研究复合菌群之间菌落种群间的拮抗关系及代谢关系。
(2) 优化生物炭固定降解菌剂技术:以农林固废为原料制备生物炭材料载体,通过表面改性、磁性改性等方式对生物炭材料进行改性,增加生物炭的比表面积和吸附位点数。未来可深入研究生物炭固定的力学性能、生物炭特性优化、微生物群落动力学、标准化和可扩展性、现场规模应用和监测、环境影响和风险评估。
(3) 通过多组学结合的方式,研究石油烃类污染物的微生物降解途径、降解过程中的关键酶及其基因。确定降解酶活性测定的方法,评估石油烃污染场地的生物降解能力。
作者贡献声明
李宝花:文献检索以及全文撰写与修改;黄将华:全文指导与修改;马千:全文编写框架指导。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
DAS N, CHANDRAN P. Microbial degradation of petroleum hydrocarbon contaminants: an overview[J]. Biotechnology Research International, 2011, 2011: 941810. [百度学术]
GUO SS, LIU XM, TANG JC. Enhanced degradation of petroleum hydrocarbons by immobilizing multiple bacteria on wheat bran biochar and its effect on greenhouse gas emission in saline-alkali soil[J]. Chemosphere, 2022, 286: 131663. [百度学术]
SUN S, WANG Y, XU C, QIAO C, CHEN S, ZHAO C, LIU Q, ZHANG X. Reconstruction of microbiome and functionality accelerated crude oil biodegradation of 2,4-DCP-oil-contaminated soil systems using composite microbial agent B-Cl[J]. Journal of Hazardous Materials, 2023, 447: 130808. [百度学术]
HILAL N, BUSCA G, HANKINS N, MOHAMMAD AW. The use of ultrafiltration and nanofiltration membranes in the treatment of metal-working fluids[J]. Desalination, 2004, 167: 227-238. [百度学术]
KRIŽAN MILIĆ J, MURIĆ A, PETRINIĆ I, SIMONIČ M. Recent developments in membrane treatment of spent cutting-oils: a review[J]. Industrial & Engineering Chemistry Research, 2013, 52(23): 7603-7616. [百度学术]
CAÑIZARES P, GARCÍA-GÓMEZ J, MARTÍNEZ F, RODRIGO MA. Evaluation of a simple batch distillation process for treating wastes from metalworking industries[J]. Journal of Chemical Technology & Biotechnology, 2004, 79(5): 533-539. [百度学术]
RAHIMOV M, AKGÜN M. Treatment of metal cutting fluid wastewater over Pt/Al2O3 and Ru/Al2O3 in supercritical water medium[J]. Journal of Water Process Engineering, 2022, 46: 102571. [百度学术]
KOBYA M, CIFTCI C, BAYRAMOGLU M, SENSOY MT. Study on the treatment of waste metal cutting fluids using electrocoagulation[J]. Separation and Purification Technology, 2008, 60(3): 285-291. [百度学术]
CHENG C, PHIPPS D, ALKHADDAR RM. Thermophilic aerobic wastewater treatment of waste metalworking fluids[J]. Water & Environment Journal, 2006, 20(4): 227-232. [百度学术]
李宝花, 黄将华, 李小磊, 符家殷. 优势菌挂膜法处理切削液废液的研究[J]. 环境科学导刊, 2024, 43(4): 65-71. [百度学术]
LI BH, HUANG JH, LI XL, FU JY. Research on the treatment of cutting fluid wastewater using dominant bacteria biofilm method[J]. Environmental Science Survey, 2024, 43(4): 65-71 (in Chinese). [百度学术]
RAVI A, RAVURI M, KRISHNAN R, NARENKUMAR J, ANU K, ALSALHI MS, DEVANESAN S, KAMALA-KANNAN S, RAJASEKAR A. Characterization of petroleum degrading bacteria and its optimization conditions on effective utilization of petroleum hydrocarbons[J]. Microbiological Research, 2022, 265: 127184. [百度学术]
COLWELL RR. Ecological aspects of microbial degradation of petroleum in the marine environment[J]. CRC Critical Reviews in Microbiology, 1977, 5(4): 423-445. [百度学术]
LI XC, HE W, DU MJ, ZHENG J, DU XY, LI Y. Design of a microbial remediation inoculation program for petroleum hydrocarbon contaminated sites based on degradation pathways[J]. International journal of Environmental Research and Public Health, 2021, 18(16): 8794. [百度学术]
ZHANG SH, ZHANG MR, HAN F, LIU Z, ZHAO CF, LEI JH, ZHOU WZ. Enhanced degradation of petroleum in saline soil by nitrogen stimulation and halophilic emulsifying bacteria Bacillus sp. Z-13[J]. Journal of Hazardous Materials, 2023, 459: 132102. [百度学术]
LI BH, HUANG JH, LI XL, MA Q, ZHAO PF, HUANG W. The microbial degradation of AAOO based cutting fluid wastewater[J]. Journal of Water Process Engineering, 2023, 55: 104167. [百度学术]
TELI A, VYRIDES I, STUCKEY DC. Treatment of metalworking fluids using a submerged anaerobic membrane bioreactor (SAMBR)[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(3): 507-513. [百度学术]
ZHANG Q, YU CJ, FANG J, XU HY, JIANG QL, YANG SK, WANG WK. Using the combined Fenton-MBR process to treat cutting fluid wastewater[J]. Polish Journal of Environmental Studies, 2017, 26(3): 1375-1383. [百度学术]
KODAMA Y, WATANABE K. Isolation and characterization of a sulfur-oxidizing chemolithotroph growing on crude oil under anaerobic conditions[J]. Applied and Environmental Microbiology, 2003, 69(1): 107-112. [百度学术]
QU S, LIU L, ZHANG LH, ZHENG M, FENG JL, LIU CS, MIAO Y, JING GL. Biodegradation of crude oil by a moderately haloalkaliphilic Acinetobacter strain[J]. Petroleum Science and Technology, 2023, 41(1): 30-44. [百度学术]
CHOI YJ, LEE SY. Microbial production of short-chain alkanes[J]. Nature, 2013, 502: 571-574. [百度学术]
MISHRA S, SINGH SN. Microbial degradation of n-hexadecane in mineral salt medium as mediated by degradative enzymes[J]. Bioresource Technology, 2012, 111: 148-154. [百度学术]
ZHANG ZZ, HOU ZW, YANG CY, MA CQ, TAO F, XU P. Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8[J]. Bioresource Technology, 2011, 102(5): 4111-4116. [百度学术]
YU Y, ZHANG W, CHEN GH, GAO YC, WANG JN. Preparation of petroleum-degrading bacterial agent and its application in remediation of contaminated soil in Shengli Oil Field, China[J]. Environmental Science and Pollution Research, 2014, 21: 7929-7937. [百度学术]
TZIRITA M. A characterisation of bioaugmentation products for the treatment of waste fats, oils and grease (FOG)[D]. Ireland: Doctoral Dissertation of Dublin City University, 2012. [百度学术]
CHIBUIKE GU, OBIORA SC. Heavy metal polluted soils: effect on plants and bioremediation methods[J]. Applied and Environmental Soil Science, 2014: 752708. [百度学术]
WU ML, DICK WA, LI W, WANG XC, YANG Q, WANG TT, XU LM, ZHANG MH, CHEN LM. Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil[J]. International Biodeterioration & Biodegradation, 2016, 107: 158-164. [百度学术]
GHOSAL D, GHOSH S, DUTTA TK, AHN Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review[J]. Frontiers in Microbiology, 2016, 7: 1369. [百度学术]
GOVARTHANAN M, KHALIFA AY, KAMALA-KANNAN S, SRINIVASAN P, SELVANKUMAR T, SELVAM K, KIM W. Significance of allochthonous brackish water Halomonas sp. on biodegradation of low and high molecular weight polycyclic aromatic hydrocarbons[J]. Chemosphere, 2020, 243: 125389. [百度学术]
PARTHIPAN P, ELUMALAI P, TING YP, RAHMAN PKSM, RAJASEKAR A. Characterization of hydrocarbon degrading bacteria isolated from Indian crude oil reservoir and their influence on biocorrosion of carbon steel API 5LX[J]. International Biodeterioration & Biodegradation, 2018, 129: 67-80. [百度学术]
SUBATHRA MK, IMMANUEL G, SURESH AH. Isolation and Identification of hydrocarbon degrading bacteria from Ennore Creek[J]. Bioinformation, 2013, 9(3): 150-157. [百度学术]
VIESSER JA, SUGAI-GUERIOS MH, MALUCELLI LC, PINCERATI MR, KARP SG, MARANHO LT. Petroleum-tolerant rhizospheric bacteria: isolation, characterization and bioremediation potential[J]. Scientific Reports, 2020, 10(1): 2060. [百度学术]
TAHIR U, ZAMEER M, FRRUKH SY, GHAURI BA, JAVED MA, ALI Q, ALI F, ALI D. Isolation, and characterization of petroleum oil-degrading bacteria from petroleum contaminated soil[J]. Geomicrobiology Journal, 2024, 41(6): 691-698. [百度学术]
PATEL PD, PATEL RB, MUNSHI NS. Exploring the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production potential of total petroleum hydrocarbon degrading bacteria using oily sludge waste as feedstock[J]. ACS ES&T Engineering, 2024, 4(7): 1622-1634. [百度学术]
BHUYAN R, NAMDEO A, VERMA JS, GEED SR. Isolation of indole biodegrading bacterial species from petroleum contaminated site of northeast India: growth kinetics and crude oil biodegradation assessment[J]. Journal of Water Process Engineering, 2023, 52: 103544. [百度学术]
ADEBUSOYE SA, ILORI MO, AMUND OO, TENIOLA OD, OLATOPE SO. Microbial degradation of petroleum hydrocarbons in a polluted tropical stream[J]. World Journal of Microbiology and Biotechnology, 2007, 23(8): 1149-1159. [百度学术]
AL-DHABAAN FA. Isolation and identification of crude oil-degrading yeast strains from Khafji Oil Field, Saud Arabia[J]. Saudi Journal of Biological Sciences, 2021, 28(10): 5786-5792. [百度学术]
CHAILLAN F, le FLÈCHE A, BURY E, PHANTAVONG YH, GRIMONT P, SALIOT A, OUDOT J. Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms[J]. Research in Microbiology, 2004, 155(7): 587-595. [百度学术]
SUMATHI K, MANIAN R. Petroleum-contaminated soil isolates: a comparative study of naphthalene biodegradation kinetics and metabolic pathways[J]. International Journal of Environmental Research, 2025, 19: 40. [百度学术]
KUMARI B, SINGH SN, SINGH DP. Induced degradation of crude oil mediated by microbial augmentation and bulking agents[J]. International Journal of Environmental Science and Technology, 2016, 13(4): 1029-1042. [百度学术]
BHATTACHARYA D, SARMA PM, KRISHNAN S, MISHRA S, LAL B. Evaluation of genetic diversity among Pseudomonas citronellolis strains isolated from oily sludge-contaminated sites[J]. Applied and Environmental Microbiology, 2003, 69(3): 1435-1441. [百度学术]
USMAN S, YAKASAI HM, GIMBA MY, SHEHU D, JAGABA AH. Anthracene degradation by Achromobacter xylosoxidans strain BUK_BTEG6 isolated from petrochemical contaminated soil[J]. Case Studies in Chemical and Environmental Engineering, 2023, 8: 100418. [百度学术]
PATEL S, SHAH G. Biodegradation of mixed hydrocarbon and eicosane by novel Enterococcus mundtii SS1 isolated from automobile service station soil[J]. Sustainable Energy Technologies and Assessments, 2023, 55: 102993. [百度学术]
HASINGER M, SCHERR KE, LUNDAA T, BRÄUER L, ZACH C, LOIBNER AP. Changes in iso- and n-alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions[J]. Journal of Biotechnology, 2012, 157(4): 490-498. [百度学术]
NAAZ T, KUMARI S, SHARMA K, SINGH V, KHAN AA, PANDIT S, PRIYA K, JADHAV DA. Bioremediation of hydrocarbon by co-culturing of biosurfactant-producing bacteria in microbial fuel cell with Fe2O3-modified anode[J]. Journal of Environmental Management, 2024, 351: 119768. [百度学术]
FUENTES S, MÉNDEZ V, AGUILA P, SEEGER M. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications[J]. Applied Microbiology and Biotechnology, 2014, 98(11): 4781-4794. [百度学术]
VAN BJB, LI Z, DUETZ WA, SMITS THM, WITHOLT B. Diversity of alkane hydroxylase systems in the environment[J]. Oil & Gas Science and Technology, 58: 427-440. [百度学术]
BEAL R, BETTS WB. Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa[J]. Journal of Applied Microbiology, 2000, 89: 158-168. [百度学术]
MOHAPATRA B, PHALE PS. Microbial degradation of naphthalene and substituted naphthalenes: metabolic diversity and genomic insight for bioremediation[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 602445. [百度学术]
PHALE PS, SHAH BA, MALHOTRA H. Variability in assembly of degradation operons for naphthalene and its derivative, carbaryl, suggests mobilization through horizontal gene transfer[J]. Genes, 2019, 10(8): 569. [百度学术]
SEO JS, KEUM YS, HU YT, LEE SE, LI QX. Phenanthrene degradation in Arthrobacter sp. P1-1: initial 1,2-, 3,4- and 9,10-dioxygenation, and meta- and ortho-cleavages of naphthalene-1,2-diol after its formation from naphthalene-1,2-dicarboxylic acid and hydroxyl naphthoic acids[J]. Chemosphere, 2006, 65(11): 2388-2394. [百度学术]
BAGI A, KNAPIK K, BAUSSANT T. Abundance and diversity of n-alkane and PAH-degrading bacteria and their functional genes-potential for use in detection of marine oil pollution[J]. Science of the Total Environment, 2022, 810: 152238. [百度学术]
VASTRA M, SALVIN P, ROOS C. MIC of carbon steel in Amazonian environment: electrochemical, biological and surface analyses[J]. International Biodeterioration & Biodegradation, 2016, 112: 98-107. [百度学术]
ROY A, SAR P, SARKAR J, DUTTA A, SARKAR P, GUPTA A, MOHAPATRA B, PAL S, KAZY SK. Petroleum hydrocarbon rich oil refinery sludge of North-East India harbours anaerobic, fermentative, sulfate-reducing, syntrophic and methanogenic microbial populations[J]. BMC Microbiology, 2018, 18(1): 151. [百度学术]
荣楠, 李备, 唐昊冶, 林先贵, 冯有智. 微生物菌种筛选技术方法研究进展[J]. 土壤, 2021, 53(2): 236-242. [百度学术]
RONG N, LI B, TANG HY, LIN XG, FENG YZ. Advances in strain isolating technique and method for microorganisms[J]. Soils, 2021, 53(2): 236-242 (in Chinese). [百度学术]
ZHANG K, LUO H, ZHU XY, LIU WQ, YU XR, TAO W, LIN HL, HOU ML, WU J. Construction of Bacillus subtilis chassis strain with enhanced α-amylase expression capability based on CRISPRi screening[J]. International Journal of Biological Macromolecules, 2024, 283: 137497. [百度学术]
LUO J, MCINTYRE EA, BEDORE SR, SANTALA V, NEIDLE EL, SANTALA S. Characterization of highly ferulate-tolerant Acinetobacter baylyi ADP1 isolates by a rapid reverse engineering method[J]. Applied and Environmental Microbiology, 2022, 88(2): e0178021. [百度学术]
LUU XC, SHIDA Y, SUZUKI Y, KUWAHARA D, FUJIMOTO T, TAKAHASHI Y, SATO N, NAKAMURA A, OGASAWARA W. Ultrahigh-throughput screening of Trichoderma reesei strains capable of carbon catabolite repression release and cellulase hyperproduction using a microfluidic droplet platform[J]. Bioscience, Biotechnology, and Biochemistry, 2023, 87(11): 1393-1406. [百度学术]
BACHMANN H, FISCHLECHNER M, RABBERS I, BARFA N, BRANCO DSF, MOLENAAR D, TEUSINK B. Availability of public goods shapes the evolution of competing metabolic strategies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(35): 14302-14307. [百度学术]
刘欢, 崔球. 原位电离质谱技术在微生物菌株筛选中的应用进展[J]. 合成生物学, 2023, 4(5): 980-999. [百度学术]
LIU H, CUI Q. Advances and applications of ambient ionization mass spectrometry in screening of microbial strains[J]. Synthetic Biology Journal, 2023, 4(5): 980-999 (in Chinese). [百度学术]
WANG CH, GU LF, GE SM, LIU XY, ZHANG XY, CHEN X. Remediation potential of immobilized bacterial consortium with biochar as carrier in pyrene-Cr(VI) co-contaminated soil[J]. Environmental Technology, 2019, 40(18): 2345-2353. [百度学术]
CHANG YX, LIN LH, SHEN JL, LIN Z, DENG XY, SUN WM, WU XY, WANG YF, LI YQ, XU ZM. Enhanced nitrogen fixation and Cd passivation in rhizosphere soil by biochar-loaded nitrogen-fixing bacteria: chemisorption and microbial mechanism[J]. Journal of Hazardous Materials, 2025, 481: 136588. [百度学术]
WANG D, CHEN HS, XIN CY, YUAN Y, SUN Q, CAO CR, CHAO HR, WU T, ZHENG SC. Insight into adsorption of Pb(II) with wild resistant bacteria TJ6 immobilized on biochar composite: roles of bacterial cell and biochar[J]. Separation and Purification Technology, 2024, 331: 125660. [百度学术]
MA LL, HU T, LIU YC, LIU J, WANG YY, WANG PZ, ZHOU JY, CHEN MY, YANG B, LI LL. Combination of biochar and immobilized bacteria accelerates polyacrylamide biodegradation in soil by both bio-augmentation and bio-stimulation strategies[J]. Journal of Hazardous Materials, 2021, 405: 124086. [百度学术]
WANG L, CHEN L, TSANG DCW, GUO BL, YANG J, SHEN ZT, HOU DY, OK YS, POON CS. Biochar as green additives in cement-based composites with carbon dioxide curing[J]. Journal of Cleaner Production, 2020, 258: 120678. [百度学术]
DING ZH, HU X, WAN YS, WANG SS, GAO B. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests[J]. Journal of Industrial and Engineering Chemistry, 2016, 33: 239-245. [百度学术]
MEI C, WANG H, CAI KZ, XIAO RB, XU ML, LI ZS, ZHANG ZY, CUI JY, HUANG F. Characterization of soil microbial community activity and structure for reducing available Cd by rice straw biochar and Bacillus cereus RC-1[J]. Science of the Total Environment, 2022, 839: 156202. [百度学术]
AN Q, RAN BB, DENG SM, JIN NJ, ZHAO B, SONG JL, FU SY. Peanut shell biochar immobilized Pseudomonas hibiscicola strain L1 to remove electroplating mixed-wastewater[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109411. [百度学术]
CHENG DL, NGO HH, GUO WS, CHANG SW, NGUYEN DD, ZHANG XB, VARJANI S, LIU Y. Feasibility study on a new pomelo peel derived biochar for tetracycline antibiotics removal in swine wastewater[J]. Science of the Total Environment, 2020, 720: 137662. [百度学术]
KUMAGAI S, NOGUCHI Y, KURIMOTO Y, TAKEDA K. Oil adsorbent produced by the carbonization of rice husks[J]. Waste Management, 2007, 27(4): 554-561. [百度学术]
NGUYEN HN, PIGNATELLO JJ. Laboratory tests of biochars as absorbents for use in recovery or containment of marine crude oil spills[J]. Environmental Engineering Science, 2013, 30(7): 374-380. [百度学术]
QI X, GOU JL, CHEN XM, XIAO SQ, ALI I, SHANG R, WANG D, WU YW, HAN MW, LUO XG. Application of mixed bacteria-loaded biochar to enhance uranium and cadmium immobilization in a co-contaminated soil[J]. Journal of Hazardous Materials, 2021, 401: 123823. [百度学术]
BOLAN S, HOU DY, WANG LW, HALE L, EGAMBERDIEVA D, TAMMEORG P, LI R, WANG B, XU JP, WANG T, SUN HW, PADHYE LP, WANG HL, SIDDIQUE KHM, RINKLEBE J, KIRKHAM MB, BOLAN N. The potential of biochar as a microbial carrier for agricultural and environmental applications[J]. Science of the Total Environment, 2023, 886: 163968. [百度学术]
YIN C, YAN H, CAO YC, GAO HF. Enhanced bioremediation performance of diesel-contaminated soil by immobilized composite fungi on rice husk biochar[J]. Environmental Research, 2023, 226: 115663. [百度学术]
HAN HW, SONG PZ, JIANG YC, FAN JW, KHAN A, LIU P, MAŠEK O, LI XK. Biochar immobilized hydrolase degrades PET microplastics and alleviates the disturbance of soil microbial function via modulating nitrogen and phosphorus cycles[J]. Journal of Hazardous Materials, 2024, 474: 134838. [百度学术]
WANG B, XU XY, YAO XW, TANG H, JI FY. Degradation of phenanthrene and fluoranthene in a slurry bioreactor using free and Ca-alginate-immobilized Sphingomonas pseudosanguinis and Pseudomonas stutzeri bacteria[J]. Journal of Environmental Management, 2019, 249: 109388. [百度学术]
LIU QY, WANG YR, SUN S, TANG F, CHEN HX, CHEN SQ, ZHAO CC, LI L. A novel chitosan-biochar immobilized microorganism strategy to enhance bioremediation of crude oil in soil[J]. Chemosphere, 2023, 313: 137367. [百度学术]
SARAVANAN A, SWAMINAATHAN P, SENTHIL KUMAR P, YAASHIKAA PR, KAMALESH R, RANGASAMY G. A comprehensive review on immobilized microbes—biochar and their environmental remediation: mechanism, challenges and future perspectives[J]. Environmental Research, 2023, 236(Pt 1): 116723. [百度学术]
IZMALKOVA TY, SAZONOVA OI, NAGORNIH MO, SOKOLOV SL, KOSHELEVA IA, BORONIN AM. The organization of naphthalene degradation genes in Pseudomonas putida strain AK5[J]. Research in Microbiology, 2013, 164(3): 244-253. [百度学术]
ZHENG ZQ, LIU WT, ZHOU QX, LI JT, ZEB A, WANG Q, LIAN YH, SHI RY, WANG JL. Effects of co-modified biochar immobilized laccase on remediation and bacterial community of PAHs-contaminated soil[J]. Journal of Hazardous Materials, 2023, 443: 130372. [百度学术]
ELUMALAI P, PARTHIPAN P, AlSALHI MS, HUANG MZ, DEVANESAN S, KARTHIKEYAN OP, KIM W, RAJASEKAR A. Characterization of crude oil degrading bacterial communities and their impact on biofilm formation[J]. Environmental Pollution, 2021, 286: 117556. [百度学术]
LI XN, QU CS, BIAN YR, GU CG, JIANG X, SONG Y. New insights into the responses of soil microorganisms to polycyclic aromatic hydrocarbon stress by combining enzyme activity and sequencing analysis with metabolomics[J]. Environmental Pollution, 2019, 255(Pt 2): 113312. [百度学术]
WANG C, CHEN YW, ZHOU HZ, LI XD, TAN ZL. Adaptation mechanisms of Rhodococcus sp. CNS16 under different temperature gradients: physiological and transcriptome[J]. Chemosphere, 2020, 238: 124571. [百度学术]
WU P, RANE NR, XING C, PATIL SM, ROH HS, JEON BH, LI XF. Integrative chemical and omics analyses reveal copper biosorption and tolerance mechanisms of Bacillus cereus strain T6[J]. Journal of Hazardous Materials, 2022, 435: 129002. [百度学术]
MUANGCHINDA C, RUNGSIHIRANRUT A, PROMBUTARA P, SOONGLERDSONGPHA S, PINYAKONG O. 16S metagenomic analysis reveals adaptability of a mixed-PAH-degrading consortium isolated from crude oil-contaminated seawater to changing environmental conditions[J]. Journal of Hazardous Materials, 2018, 357: 119-127. [百度学术]
LIU JY, LIU Y, DONG WH, LI J, YU SH, WANG JS, ZUO R. Shifts in microbial community structure and function in polycyclic aromatic hydrocarbon contaminated soils at petrochemical landfill sites revealed by metagenomics[J]. Chemosphere, 2022, 293: 133509. [百度学术]
HUANG M, KELLER AA, WANG XM, TIAN LY, WU B, JI R, ZHAO LJ. Low concentrations of silver nanoparticles and silver ions perturb the antioxidant defense system and nitrogen metabolism in N2-fixing cyanobacteria[J]. Environmental Science & Technology, 2020, 54(24): 15996-16005. [百度学术]