摘要
青海茫崖翡翠湖的高盐浓度,使其成为发掘嗜(耐)盐微生物的理想环境。
目的
挖掘茫崖翡翠湖的嗜(耐)盐微生物资源,比较分析NaCl浓度下嗜(耐)盐菌的形态特征,并探究其对NaCl胁迫的响应机制。
方法
采集茫崖翡翠湖的近岸湖水、湖盐及湖岸盐土3种样品,利用8种培养基和3个盐浓度梯度(10%、15%、20%)进行嗜(耐)盐菌的分离培养。通过光学显微镜、扫描电镜及透射电子显微镜观察3株嗜(耐)盐菌在不同NaCl浓度下的菌落形态、细胞形态及细胞内部结构。
结果
共分离获得58株嗜(耐)盐细菌,其中包括31株耐盐菌和27株嗜盐菌,分属于16个属,其中喜盐芽孢杆菌属(Halobacillus)和芽孢杆菌属(Bacillus) 为优势属。嗜盐菌主要由Halobacillus组成(占40.7%),耐盐菌主要由Bacillus组成(占19.3%);对N
结论
茫崖翡翠湖蕴藏着相对丰富的嗜(耐)盐菌资源。NaCl浓度对嗜(耐)盐菌的生长繁殖、菌落形态、细胞形态及细胞内部结构均产生影响。本研究不仅加深了对茫崖翡翠湖微生物资源的认识,还为嗜(耐)盐微生物的进一步开发利用提供了丰富的菌株资源。
青藏高原自然条件极为恶劣,年平均温度低,降水稀少,却拥有全球海拔最高、规模最大、组分独特的盐湖区,备受世人瞩
Sample | CO (g/kg) | HCO (g/kg) | C (g/kg) | C (g/kg) | M (g/kg) | SO (g/kg) | (g/kg) | N (g/kg) | Total (g/kg) | pH |
---|---|---|---|---|---|---|---|---|---|---|
YK | ND | 0.610 | 0.060 | 1.995 | 7.300 | 2.160 | 1.353 | 356.950 | 955.000 | 7.4 |
YT | 0.060 | ND | 0.005 | 6.985 | 11.320 | 22.265 | 0.930 | 15.325 | 125.000 | 6.9 |
YH | 0.240 | ND | 211.610 | 3.990 | 52.335 | 71.825 | 9.420 | 63.530 | 530.000 | 6.6 |
ND: Not detected, detection limit: 0.005 g/kg.
依据微生物的最适生长盐浓度,可将其划分为非盐微生物(<0.2 mol/L NaCl)、耐盐微生物(0.2-5.2 mol/L NaCl)以及嗜盐微生物,其中嗜盐微生物可进一步细分为轻度嗜盐(0.2-0.5 mol/L NaCl)、中度嗜盐(0.5-2.5 mol/L NaCl)和极端嗜盐(2.5-5.2 mol/L NaCl)微生
嗜(耐)盐菌在形态学上的不同表现是其应对盐胁迫的一种重要响应机
盐浓度不仅影响嗜(耐)盐菌的形态,还是其改变渗透压调节策略的主要驱动力。Saum
本研究以茫崖翡翠湖的高盐环境为研究对象,采用8种培养基进行嗜(耐)盐菌的分离培养。根据菌株的盐耐受试验结果,选取具有代表性的菌株,作为探究嗜(耐)盐菌对NaCl胁迫响应的研究对象。利用扫描电镜、透射电子显微镜观察这些菌株在不同浓度NaCl中的菌落形态、细胞形态和细胞内部结构,并比较分析了不同菌株对NaCl胁迫的响应机制。
1 材料与方法
1.1 样品采集与主要盐成分检测
2023年7月,从青海省茫崖市翡翠湖(38°9′5.02″N,91°54′56.34″E)采集了近岸湖盐、盐土、湖水3种样品,分别命名为YK、YT、YH。
样品的pH值参照文献[
1.2 培养基
嗜(耐)盐细菌分离培养基:CM培养
1.3 主要试剂和仪器
2×SanTaq Fast PCR Master Mix (with Blue Dye)、50%戊二醛、细菌通用引物27F和1492R,生工生物工程(上海)股份有限公司;DL2000 DNA marker、GoldView II型核酸染色剂(5 000×),北京索莱宝科技有限公司。
PCR仪,伯乐生命医学产品(上海)有限公司;可拍照三目生物显微镜,麦克奥迪实业集团有限公司;紫外可见分光光度计,上海元析仪器有限公司;可变真空超高分辨场发射扫描电子显微镜,赛默飞世尔科技公司;透射电子显微镜,JEOL公司。
1.4 嗜(耐)盐菌的分离培养及纯化
称取3种样品各1 g,分别放入装有9 mL无菌蒸馏水的无菌离心管中,稀释成浓度为0.1 g/mL的样品液。预实验发现,采用NaCl调节8种培养基的盐浓度,分离培养嗜(耐)盐微生物的效果不佳;而采用湖盐调节培养基的盐浓度,分离效果良好。为获取更多嗜(耐)盐微生物,选用湖盐调节培养基的盐质量分数并设置3个浓度(10%、15%、20%),调节pH为7.0。吸取100 μL浓度为0.1 g/mL的样品液,涂布于固体培养基上,置于37 ℃生化培养箱中倒置培养,记录菌落生长情况,挑取单菌落并采用三区划线法纯化培养。
1.5 微生物种类的鉴定
采用SDS热裂解法提取细菌DN
1.6 盐耐受试验
经预实验检验,绝大多数嗜(耐)盐菌能够在Gibbons固体培养基上良好生长且传代稳定,因此选用Gibbons培养基作为盐耐受试验的基础培养基,并以金属离子为单一变量,设置7个质量分数,即0、5%、10%、15%、20%、25%、30%,分别探究不同菌株对NaCl、KCl、MgCl2、CaCl2的耐受能力。将嗜(耐)盐菌分别接种于上述培养基上,置于37 ℃恒温倒置培养14 d,记录菌株生长情况及菌落外貌形态。重复上述操作2次。
1.7 三株嗜(耐)盐菌对盐胁迫的响应
按照郑绵平
根据盐耐受试验结果,选取在Gibbons固体培养基上生长旺盛且对NaCl、KCl、MgCl2、CaCl2耐受性较好的菌株作为后续试验的研究对象,以确保试验所用菌株具有稳定性和代表性。
1.7.1 NaCl对3株嗜(耐)盐菌菌落特征的影响
NaCl设置7个质量分数,即0、5%、10%、15%、20%、25%、30%,实验组与空白对照组均设置3个重复。将满足条件的菌株分别接种于含不同浓度NaCl的Gibbons固体培养基中,37 ℃恒温培养7-14 d,拍照记录。
1.7.2 NaCl对3株嗜(耐)盐菌生长情况的影响
将满足条件的菌株接种于含不同浓度NaCl的Gibbons液体培养基中;实验组与空白对照组均设置3个重复,于37 ℃、120 r/min摇床中培养,用分光光度计测定菌液OD600值,以光密度值达到0.6-0.8的菌液作为种子液,停止培养后于4 ℃保存备用。
根据OD600值确定接种量,确保接种后菌株终浓度一致。将种子液接种到梯度NaCl浓度的Gibbons液体培养基中,实验组与空白对照组均设置3个重复,37 ℃、120 r/min摇床培养;生长周期进入稳定期的菌液停止培养,用波长为600 nm的分光光度计测定其光密度值。
1.7.3 光学显微镜观察
取出适量发酵液制片并镜检,观察并记录不同浓度NaCl条件下菌体的形态和生长状况。
1.7.4 扫描电镜观察
取出适量发酵液,在4 ℃、4 000 r/min条件下离心15 min收集菌
1.7.5 透射电子显微镜观察
取出发酵液,4 ℃、4 000 r/min离心15 min收集菌体,委托武汉迈斯普生物科技有限公司切片并拍摄透射电子显微镜图片。
2 结果与分析
2.1 茫崖翡翠湖嗜(耐)盐菌的种类及分布
2.1.1 茫崖翡翠湖嗜(耐)盐菌的种类
从茫崖翡翠湖3种样品中共分离获得58株嗜(耐)盐菌,经鉴定这些菌株分属于2门16属40种,结果见
Serial number | Medium | Salt concentration of medium (%) | Similar strain | Maximumsimilarity(%) | GenBank accession number | Salt concentrations (%) | Classification | |||
---|---|---|---|---|---|---|---|---|---|---|
NaCl | MgCl2 | KCl | CaCl2 | |||||||
TRM83601 | RM | 10 |
Exiguobacterium qingdaonense S82 | 99.9 | PP658248 | 0-10 | 0-25 | 0-15 | 0-10 | Halotolerant bacteria |
TRM83602 | RM | 10 |
Virgibacillus litoralis JSM 089168 | 99.9 | PP658249 | 5-15 | 5-25 | 10-15 | 5-15 | Halophilic bacteria |
TRM83603 | RM | 10 |
Jeotgalibacillus terrae JSM 081008 | 99.1 | PP658250 | 0-15 | 0-25 | 0-25 | 0-10 | Halotolerant bacteria |
TRM83604 | RM | 15 |
Halobacillus litoralis SL-4 | 99.7 | PP658251 | 5-20 | 5-25 | 5-15 | 5-15 | Halophilic bacteria |
TRM83605 | ISP2 | 10 |
Bacillus tequilensis KCTC 13622 | 99.9 | PP658252 | 5-25 | 5-25 | 5-25 | 5-20 | Halophilic bacteria |
TRM83606 | ISP2 | 10 |
Bacillus siamensis KCTC 13613 | 99.9 | PP658253 | 0-10 | 0-15 | 0-15 | 0-10 | Halotolerant bacteria |
TRM83607 | CM | 10 |
Gracilibacillus dipsosauri DD1 | 99.2 | PP658254 | 5-15 | 5-25 | 5-25 | 5-10 | Halophilic bacteria |
TRM83608 | CM | 10 |
Brevibacterium epidermidis NBRC 14811 | 99.9 | PP658255 | 0-15 | 0-25 | 0-25 | 0-10 | Halotolerant bacteria |
TRM83609 | CM | 10 |
Gracilibacillus dipsosauri DD1 | 99.3 | PP658298 | 5-15 | 10-25 | 10-25 | 5-20 | Halophilic bacteria |
TRM83610 | CM | 10 |
Brevibacterium epidermidis NBRC 14811 | 99.5 | PP658256 | 0-15 | 0-25 | 0-30 | 0-15 | Halotolerant bacteria |
TRM83611 | CM | 10 |
Oceanobacillus picturae LMG 19492 | 99.4 | PP658257 | 0-15 | 0-25 | 0-25 | 0-5 | Halotolerant bacteria |
TRM83612 | CMKA | 15 |
Lentibacillus halodurans 8-1 | 99.9 | PP658258 | Not grown | Not grown | Not grown | Not grown |
Halophilic bacteri |
TRM83613 | CM | 10 |
Staphylococcus xylosus CCM 2738 | 100 | PP658259 | 0-5 | 0-15 | 0-10 | 0-5 | Halotolerant bacteria |
TRM83614 | CM | 10 |
Halobacillus litoralis SL-4 | 99.7 | PP658260 | 5-20 | 5-25 | 5-15 | 5-15 | Halophilic bacteria |
TRM83615 | CM | 10 |
Oceanobacillus kimchii X50 | 100 | PP658261 | 0-15 | 0-25 | 0-25 | 0-10 | Halotolerant bacteria |
TRM83616 | CM | 10 |
Terribacillus aidingensis CGMCC 1.8913 | 100 | PP658262 | 5-20 | 5-15 | Not grown | Not grown | Halophilic bacteria |
TRM83617 | CM | 10 |
Halobacillus andaensis NEAU-ST10-40 | 98.8 | PP658263 | 5-15 | 5-15 | 5-20 | 5-10 | Halophilic bacteria |
TRM83618 | CM | 10 |
Priestia flexa NBRC 15715 | 99.6 | PP658264 | 0-20 | 0-25 | 0-15 | 0-10 | Halotolerant bacteria |
TRM83619 | CM | 10 |
Rossellomorea arthrocnemi EAR8 | 99.3 | PP658265 | 0-5 | 0-5 | 0-10 | Not grown | Halotolerant bacteria |
TRM83620 | CM | 15 |
Virgibacillus halodenitrificans DSM 10037 | 100 | PP658266 | 0-15 | 0-30 | 0-30 | 0-20 | Halotolerant bacteria |
TRM83621 | CM | 15 |
Thalassobacillus hwangdonensis AD-1 | 99.7 | PP658267 | 0-10 | 0-15 | 0-20 | Not grown | Halotolerant bacteria |
TRM83622 | CM | 15 |
Piscibacillus salipiscarius JCM 13188 | 99.4 | PP658268 | 5-20 | 5-30 | 5-25 | 5-15 | Halophilic bacteria |
TRM83623 | ISP5 | 10 |
Halobacillus trueperi DSM 10404 | 99.7 | PP658269 | 5-20 | 5-25 | 5-25 | 5-20 | Halophilic bacteria |
TRM83624 | ISP5 | 10 |
Bacillus salacetis SKP7-4 | 99.3 | PP658270 | Not grown | Not grown | Not grown | Not grown |
Halotolerant bacteri |
TRM83625 | ISP5 | 10 |
Rossellomorea arthrocnemi EAR8 | 99.1 | PP658271 | 0-20 | 0-25 | Not grown | 0-10 | Halotolerant bacteria |
TRM83626 | ISP5 | 15 |
Halobacillus litoralis SL-4 | 99.9 | PP658272 | 5-20 | 5-25 | 5-15 | 5-15 | Halophilic bacteria |
TRM83627 | ISP5 | 20 |
Halobacillus sediminis NGS-2 | 99.7 | PP658273 | 5-20 | 5-20 | 5-15 | 5-10 | Halophilic bacteria |
TRM83628 | ISP5 | 10 |
Bacillus pumilus ATCC 7061 | 99.9 | PP658274 | 0-15 | 0-15 | 0-10 | 0-10 | Halotolerant bacteria |
TRM83629 | ISP5 | 10 |
Bacillus zhangzhouensis DW5-4 | 99.9 | PP658275 | 0-10 | 0-20 | 0-10 | 0-5 | Halotolerant bacteria |
TRM83630 | ISP5 | 10 |
Rossellomorea marisflavi JCM 11544 | 100 | PP658276 | 0-5 | 0-10 | 0-10 | 0-5 | Halotolerant bacteria |
TRM83631 | ISP5 | 10 |
Priestia endophytica 2DT | 100 | PP658277 | 0-10 | 0-20 | 0-10 | 0-10 | Halotolerant bacteria |
TRM83632 | ISP5 | 10 |
Bacillus altitudinis 41KF2b | 100 | PP658278 | 5-10 | 5-15 | 5-15 | 5-10 | Halophilic bacteria |
TRM83633 | ISP5 | 15 |
Piscibacillus halophilus HS224 | 99.3 | PP658279 | 5-20 | 5-25 | 5-25 | 5-20 | Halophilic bacteria |
TRM83634 | ISP5 | 15 |
Halobacillus profundi IS-Hb4 | 98.9 | PP658280 | 5-15 | 5-20 | 5-15 | 5-10 | Halophilic bacteria |
TRM83635 | NHM | 15 |
Halobacillus trueperi DSM 10404 | 99.7 | PP658300 | 5-25 | 5-25 | 5-20 | 5-10 | Halophilic bacteria |
TRM83636 | ISP5 | 20 |
Halobacillus dabanensis D-8 | 99.7 | PP658281 | 5-10 | 5-10 | 5-10 | Not grown | Halophilic bacteria |
TRM83637 | ISP5 | 20 |
Piscibacillus salipiscarius JCM 13188 | 99.4 | PP658282 | 5-25 | Not grown | 5-20 | Not grown | Halophilic bacteria |
TRM83638 | H | 10 |
Bacillus paralicheniformis KJ-16 | 99.5 | PP658283 | 0-10 | 0-25 | 0-20 | 0-20 | Halotolerant bacteria |
TRM83641 | H | 10 |
Terribacillus halophilus DSM 21620 | 100 | PP658286 | Not grown | Not grown | Not grown | Not grown |
Halotolerant bacteri |
TRM83642 | H | 10 |
Priestia endophytica 2DT | 99.8 | PP658287 | 0-10 | 0-20 | 0-10 | 0-10 | Halotolerant bacteria |
TRM83643 | CM | 10 |
Terribacillus saccharophilus 002-048 | 100 | PP658288 | 0-15 | 0-20 | 0-15 | 0-10 | Halotolerant bacteria |
TRM83644 | CM | 10 |
Bacillus aequororis M-8 | 100 | PP658289 | 5-15 | 5-20 | 5-10 | 5-10 | Halophilic bacteria |
TRM83645 | H | 10 |
Priestia endophytica 2DT | 99.8 | PP658294 | 0-10 | 0-20 | 0-10 | 0-10 | Halotolerant bacteria |
TRM83646 | ISP5 | 10 |
Bacillus cabrialesii TE3 | 100 | PP658290 | 0-5 | 0-20 | 0-15 | 0-5 | Halotolerant bacteria |
TRM83647 | ISP5 | 20 |
Pseudalkalibacillushwajinpoensis SW-72 | 99.6 | PP658292 | 0-15 | 0-30 | 0-20 | 0-10 | Halotolerant bacteria |
TRM83648 | CM | 10 |
Piscibacillus halophilus HS224 | 99.1 | PP658295 | 5-20 | 5-25 | 5-25 | 5-15 | Halophilic bacteria |
TRM83649 | CM | 15 |
Thalassobacillus cyri CCM7597 | 99.9 | PP658296 | 5-15 | 5-25 | 5-25 | 5-10 | Halophilic bacteria |
TRM83650 | F6 | 15 |
Gracilibacillus saliphilus YIM 91119 | 99.4 | PP658297 | 5-20 | 5-20 | 5-25 | 5-10 | Halophilic bacteria |
TRM83651 | RM | 10 |
Staphylococcus epidermidis NCTC 11047 | 99.9 | PP658299 | 5-10 | 5-15 | 5-10 | 5 | Halophilic bacteria |
TRM83652 | NHM | 15 |
Halobacillus trueperi DSM 10404 | 99.6 | PP658301 | 5-25 | 5-25 | 5-25 | 5-10 | Halophilic bacteria |
TRM83653 | F6 | 10 |
Jeotgalibacillus terrae JSM 081008 | 98.7 | PP658302 | 0-20 | 0-25 | 0-25 | Not grown | Halotolerant bacteria |
TRM83654 | F6 | 10 |
Oceanobacillus kimchii X50 | 99.9 | PP658303 | 0-20 | 0-25 | 0-30 | 0-5 | Halotolerant bacteria |
TRM83655 | F6 | 10 |
Pseudalkalibacillushwajinpoensis SW-72 | 99.7 | PP658304 | 0-15 | 0-30 | 0-20 | 0-10 | Halotolerant bacteria |
TRM83656 | F6 | 10 |
Jeotgalibacillus terrae JSM 081008 | 98.6 | PP658305 | 0-15 | 0-25 | 0-20 | 0-10 | Halotolerant bacteria |
TRM83657 | F6 | 10 |
Bacillus aequororis M-8 | 99.9 | PP658306 | 5-15 | 5-20 | 5-10 | 10-15 | Halophilic bacteria |
TRM83658 | F6 | 10 |
Jeotgalibacillus alimentarius YKJ-13 | 99.2 | PP658307 | 0-15 | 0-25 | 0-20 | 0-10 | Halotolerant bacteria |
TRM83659 | CM | 10 |
Brevibacterium epidermidis NBRC 14811 | 98.8 | PP658291 | 0-15 | 0-25 | 0-20 | 0-15 | Halotolerant bacteria |
TRM83660 | ISP5 | 20% |
Halobacillus andaensis NEAU-ST10-40 | 99.1 | PP658293 | 5-15 | 5-10 | 5-10 | 5-10 | Halophilic bacteria |
(待续)
;(待续)
2.1.2 茫崖翡翠湖嗜(耐)盐细菌在不同盐浓度中的分布
本研究设置3个盐浓度,即10%、15%和20%。如

图1 嗜(耐)盐细菌在不同盐浓度中的分布。图例所示百分数代表盐的质量分数。
Figure 1 The distribution of halophilic (halotolerant) bacteria in different salt concentrations. The percentages shown in the legend represent the mass percentage concentration of salt.
2.1.3 培养基类型对茫崖翡翠湖嗜(耐)盐细菌分离培养的影响
如

图2 不同种类培养基对嗜(耐)盐菌分离培养的影响
Figure 2 Effect of different types of media on the isolation and cultivation of halophilic (halotolerant) bacteria.
2.1.4 茫崖翡翠湖不同类型样品嗜(耐)盐细菌的群落组成差异
由

图3 不同样品分离获得的嗜(耐)盐细菌数量
Figure 3 The number of halophilic (halotolerant) bacteria isolated from different samples.
2.2 茫崖翡翠湖嗜(耐)盐细菌的盐耐受能力
对58株嗜(耐)盐细菌进行了盐耐受能力测试,试验结果见

图4 不同菌属中嗜盐菌与耐盐菌的分布情况
Figure 4 The distribution of halophilic (halotolerant) bacteria among different bacterial genera.
海岸枝芽孢杆菌(Virgibacillus litoralis) TRM 83602是一种中度嗜盐菌,能够耐受5%-15% NaCl、5%-25% MgCl2、10%-15% KCl、5%-15% CaCl2;表皮短杆菌(Brevibacterium epidermidis) TRM 83610是一种耐盐菌,能够耐受0-15% NaCl、0-25% MgCl2、0-30% KCl、0-15% CaCl2;咸鱼鱼芽孢杆菌(Piscibacillus salipiscarius) TRM 83622同样是一种中度嗜盐菌,能够耐受5%-20% NaCl、5%-30% MgCl2、5%-25% KCl、5%-15% CaCl2(
2.3 三株嗜(耐)盐菌对NaCl胁迫的响应
2.3.1 NaCl对3株嗜(耐)盐菌生长及其菌落特征的影响
微生物的菌落特征(

图5 三株嗜(耐)盐菌在不同浓度NaCl中的菌落特征。A1-A6:分别表示添加了质量分数为0、5%、10%、15%、20%、25%的NaCl的TRM 83602;B1-B6:分别表示添加了质量分数为0、5%、10%、15%、20%、25%的NaCl的TRM 83610;C1-C6:分别表示添加了质量分数为0、5%、10%、15%、20%、25%的NaCl的TRM 83622。
Figure 5 The colony characteristics of three halophilic (halotolerant) bacteria in different concentrations of NaCl. A1-A6: Represent TRM 83602 with added NaCl at mass percentage concentration of 0, 5%, 10%, 15%, 20%, and 25%, respectively; B1-B6: Represent TRM 83610 with added NaCl at mass percentage concentration of 0, 5%, 10%, 15%, 20%, and 25%, respectively; C1-C6: Represent TRM 83622 with added NaCl at mass percentage concentration of 0, 5%, 10%, 15%, 20%, and 25%, respectively.

图6 三株嗜(耐)盐菌在不同浓度NaCl中的生长曲线图。A:TRM 83602的生长曲线:B:TRM 83610的生长曲线;C:TRM 83622的生长曲线。
Figure 6 The growth curves of three halophilic (halotolerant) bacteria in different concentrations of NaCl. A: The growth curves of TRM 83602; B: The growth curves of TRM 83610; C: The growth curves of TRM 83622.
对于B. epidermidis TRM 83610,在无NaCl添加(0)的情况下,其菌落呈乳白色,大而扁平,表面光滑且饱满湿润,最大光密度值为2.5;当NaCl浓度为5%时,菌液的最大光密度值略降至2.3,但菌落形态无明显变化;NaCl浓度增至10%时,菌液的最大光密度值为2.3,但菌落大小减小,颜色变浅,中部微微隆起,表面光滑;在15% NaCl条件下,菌液的最大光密度值为2.1,菌落大小达到最小、表面光滑,中部隆起,颜色变浅;当NaCl浓度为20%-25%时,该菌株无法生长;0-15%的NaCl浓度范围内,随着NaCl浓度的增加,TRM 83610的光密度值逐渐减小,说明较高浓度的NaCl对该菌株的生长具有抑制作用。
NaCl浓度为5%时,P. salipiscarius TRM 83622的菌落颜色为暗黄色,表面光滑湿润且扁平,菌液的最大光密度值为1.9;NaCl浓度为10%时,菌落发黄变大、表面光滑扁平,菌液的最大光密度值为2.0;NaCl浓度为15%时,菌落颜色为浅白色,菌落大小增大、表面光滑湿润且扁平,菌液的最大光密度值为2.3;当NaCl浓度达到20%时,菌落颜色呈白色,菌落大、表面光滑湿润、扁平,菌液的最大光密度值为1.7。在NaCl浓度为0和25%的条件下,该菌株无法生长;在5%-20%的NaCl浓度范围内,随着NaCl浓度的增加,该菌株的光密度值也是先增后减,说明较低和较高的NaCl浓度同样会抑制其生长。
2.3.2 光学显微镜结合扫描电镜观察不同浓度NaCl中的3株嗜(耐)盐菌
结合光学显微镜(

图7 三株嗜(耐)盐菌在不同浓度NaCl中的显微镜照片(放大倍数均为1 000×)。A1-A3:分别表示添加了质量分数为5%、10%、15%的NaCl的TRM 83602;B1-B4:分别表示添加了质量分数为0、5%、10%、15%的NaCl的TRM 83610;C1-C4:分别表示添加了质量分数为5%、10%、15%、20%的NaCl的TRM 83622。
Figure 7 Microscopic images of three halophilic (halotolerant) bacteria in different concentrations of NaCl (the magnification is 1 000×). A1-A3: Represent TRM 83602 with added NaCl at mass percentage of 5%, 10%, and 15%, respectively; B1-B4: Represent TRM 83610 with added NaCl at mass percentage of 0, 5%, 10%, and 15%, respectively; C1-C4: Represent TRM 83622 with added NaCl at mass percentage of 5%, 10%, 15%, and 20%, respectively.

图8 三株嗜(耐)盐菌在不同浓度NaCl中的扫描电镜照片。A1-A3:分别表示添加了质量分数为5%、10%、15%的NaCl的TRM 83602;B1-B4:分别表示添加了质量分数为0%、5%、10%、15%的NaCl的TRM 83610;C1-C4:分别表示添加了质量分数为5%、10%、15%、20%的NaCl的TRM 83622。
Figure 8 Scanning electron microscope images of three halophilic (halotolerant) bacteria in different concentrations of NaCl. A1-A3: Represent TRM 83602 with added NaCl at mass percentage of 5%, 10%, and 15%, respectively; B1-B4: Represent TRM 83610 with added NaCl at mass percentage of 0%, 5%, 10%, and 15%, respectively; C1-C4: Represent TRM 83622 with added NaCl at mass percentage of 5%, 10%, 15%, and 20%, respectively.
B. epidermidis TRM 83610的细胞为短杆状,细胞长1.05-2.20 μm,NaCl浓度的变化对该菌株的细胞长度无显著影响(P>0.05)。
P. salipiscarius TRM 83622的细胞为长杆状,细胞长1.41-8.45 μm;NaCl浓度的变化对该菌株的细胞长度具有显著影响(P<0.05),当NaCl浓度为15%时,细胞的平均长度达到最大值,为4.31 μm。
2.3.3 透射电子显微镜观察不同浓度NaCl中的3株嗜(耐)盐菌
通过透射电子显微镜观察不同浓度NaCl对3株细菌细胞内部结构的影响。如

图9 三株嗜(耐)盐菌在不同浓度NaCl中的透射电子显微镜照片。A1-A3:分别表示添加了质量分数为5%、10%、15% NaCl的TRM 83602细胞内部结构;B1-B4:分别表示添加了质量分数为0、5%、10%、15% NaCl的TRM 83610细胞内部结构;C1-C4:分别表示添加了质量分数为5%、10%、15%、20% NaCl的TRM 83622细胞内部结构。
Figure 9 Transmission electron microscope images of three halophilic (halotolerant) bacteria in different concentrations of NaCl. A1-A3: Represent TRM 83602 with added NaCl at mass percentage of 5%, 10%, and 15%, respectively; B1-B4: Represent TRM 83610 with added NaCl at mass percentage of 0, 5%, 10%, and 15%, respectively; C1-C4: Represent TRM 83622 with added NaCl at mass percentage of 5%, 10%, 15%, and 20%, respectively.
3 讨论与结论
在中国西北众多盐湖中,研究人员对新疆和青藏高原的盐湖嗜(耐)盐微生物进行了较多研究,这些研究共同揭示了不同盐湖中细菌群落结构的差异性。沈
盐耐受试验结果表明,分离获得的嗜(耐)盐细菌中有84.5%的菌株对N
V. litoralis TRM 83602与P. salipiscarius TRM 83622均为嗜盐菌,它们在N
P. salipiscarius TRM 83622能够耐受20% NaCl,但其胞内并未观察到颗粒状物质,这可能是因为相容性物质在调节渗透压方面的作用有限,主要在中低盐环境中发挥重要作用;而在高盐环境中,菌株可能转而依赖其他机制来适应环境,例如内盐策
本研究采用8种培养基、3个盐浓度,分离培养茫崖翡翠湖的嗜(耐)盐细菌,并探究了其中生长旺盛、耐受NaCl能力强的3株代表菌对NaCl胁迫的响应。结果表明,茫崖翡翠湖拥有丰富的嗜(耐)盐菌资源;NaCl浓度能够影响嗜(耐)盐菌的生长繁殖、菌落形态、细胞形态以及细胞内部结构。本研究不仅丰富了对茫崖翡翠湖所蕴藏的微生物资源的认知,还为嗜(耐)盐微生物的进一步开发利用提供了丰富的菌株资源。
作者贡献声明
罗堂亮:菌株分离纯化,微生物种类鉴定,盐耐受试验,菌株耐受盐胁迫响应试验,撰写初稿;赵亚芳:方法验证,菌株分离纯化与保藏,数据收集与整理;刘慧美:技术支持,菌株耐受盐胁迫响应试验;马会彦:技术指导,论文修改;夏占峰:实验设计,项目管理;艾芮西:样品采集与前处理。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
郑度, 赵东升. 青藏高原的自然环境特征[J]. 科技导报, 2017, 35(6): 13-22. [百度学术]
ZHENG D, ZHAO DS. Characteristics of natural environment of the Qinghai-Xizang Plateau[J]. Science and Technology Review, 2017, 35(6): 13-22 (in Chinese). [百度学术]
朱德锐, 韩睿, 石晴, 沈国平, 龙启福, 双杰. 青藏高原盐湖细菌群落与超盐环境因素的相关性[J]. 中国环境科学, 2017, 37(12): 4657-4666. [百度学术]
ZHU DR, HAN R, SHI Q, SHEN GP, LONG QF, SHUANG J. Correlation analysis of bacterial community and hypersaline environmental factors in extreme salt lakes on the Qinghai-Xizang Plateau[J]. China Environmental Science, 2017, 37(12): 4657-4666 (in Chinese). [百度学术]
任永丽, 吕启勋. 柴达木盆地盐湖水化学特征的对应分析[J]. 安徽农业科学, 2009, 37(21): 10061-10062, 10072. [百度学术]
REN YL, LÜ QX. Correspondence analysis of hydrochemistry characteristics of salt lakes in qardam basin[J]. Journal of Anhui Agricultural Sciences, 2009, 37(21): 10061-10062, 10072 (in Chinese). [百度学术]
郑绵平, 刘喜方. 青藏高原盐湖水化学及其矿物组合特征[J]. 地质学报, 2010, 84(11): 1585-1600. [百度学术]
ZHENG MP, LIU XF. Hydrochemistry and minerals assemblages of salt lakes in the Qinghai-Xizang Plateau, China[J]. Acta Geologica Sinica, 2010, 84(11): 1585-1600 (in Chinese). [百度学术]
孙大鹏, 唐渊, 许志强, 韩智明. 青海湖湖水化学演化的初步研究[J]. 科学通报, 1991(15): 1172-1174. [百度学术]
SUN DP, TANG Y, XU ZQ, HAN ZM. Preliminary study on the chemical evolution of Qinghai Lake water[J]. Science Bulletin, 1991(15): 1172-1174 (in Chinese). [百度学术]
马欣, 马想蓉, 朱德锐, 李轩领, 沈国平, 邢江娃. 青藏高原尕斯库勒盐湖可培养嗜盐耐盐微生物的群落结构与分离方法对比研究[J]. 海洋与湖沼, 2024, 55(4): 916-930. [百度学术]
MA X, MA XR, ZHU DR, LI XL, SHEN GP, XING JW. Community structure of culturable halophilic and halotolerant microorganisms in gasikule salt lake on the Qinghai-Xizang Plateau and comparison of different isolation methods[J]. Oceanologia et Limnologia Sinica, 2024, 55(4): 916-930 (in Chinese). [百度学术]
沈硕. 青藏高原察尔汗盐湖地区可培养中度嗜盐菌的群落结构与多样性[J]. 微生物学报, 2017, 57(4): 490-499. [百度学术]
SHEN S. Community structure and diversity of culturable moderate halophilic bacteria isolated from Qrhan Salt Lake on Qinghai-Xizang Plateau[J]. Acta Microbiologica Sinica, 2017, 57(4): 490-499 (in Chinese). [百度学术]
陈星宇, 马信, 孙长龙, 赵思宇, 王欣钰, 张阳. 嗜盐微生物的研究进展[J]. 盐科学与化工, 2019, 48(2): 1-4. [百度学术]
CHEN XY, MA X, SUN CL, ZHAO SY, WANG XY, ZHANG Y. The research progress of halophilic microorganisms[J]. Journal of Salt Science and Chemical Industry, 2019, 48(2): 1-4 (in Chinese). [百度学术]
刘礼崔. 嗜盐四联球菌CICC 10469盐胁迫应答机制的比较转录组学研究[D]. 广州: 华南理工大学硕士学位论文, 2015. [百度学术]
LIU LC. Comparative transcriptomics study on salt stress response mechanism of Tetracoccus halophilus CICC 10469[D]. Guangzhou: Master’s Thesis of South China University of Technology, 2015 (in Chinese). [百度学术]
OLLIVIER B, CAUMETTE P, GARCIA JL, MAH RA. Anaerobic bacteria from hypersaline environments[J]. Microbiological Reviews, 1994, 58(1): 27-38. [百度学术]
LI PS, KONG WL, WU XQ. Salt tolerance mechanism of the rhizosphere bacterium JZ-GX1 and its effects on tomato seed germination and seedling growth[J]. Frontiers in Microbiology, 2021, 12: 657238. [百度学术]
郝闯, 唐兵, 唐晓峰. 嗜盐微生物的工业应用研究及进展[J]. 生物资源, 2019, 41(4): 281-288. [百度学术]
HAO C, TANG B, TANG XF. Recent progress in industrial application of halophiles[J]. Biotic Resources, 2019, 41(4): 281-288 (in Chinese). [百度学术]
YAO HL, LIU SP, LIU TT, REN DL, ZHOU ZL, YANG QL, MAO J. Microbial-derived salt-tolerant proteases and their applications in high-salt traditional soybean fermented foods: a review[J]. Bioresources and Bioprocessing, 2023, 10(1): 82. [百度学术]
卢雨欣. 嗜盐真菌Aspergillus montevidensis ZYD4耐盐机理初步研究[D]. 汉中: 陕西理工大学硕士学位论文, 2020. [百度学术]
LU YX. Preliminary study on salt tolerance mechanism of the halophilic fungus Aspergillus montevidensis ZYD4[D]. Hanzhong: Master’s Thesis of Shaanxi University of Technology, 2020 (in Chinese). [百度学术]
李文静. 耐盐多环芳烃降解菌的分离鉴定及其对盐胁迫的响应机制研究[D]. 济南: 齐鲁工业大学硕士学位论文, 2023. [百度学术]
LI WJ. Isolation and identification of salt-tolerant PAHs degrading bacteria and the response mechanism to salt stress[D]. Jinan: Master’s Thesis of Qilu University of Technology, 2023 (in Chinese). [百度学术]
卢雨欣, 杨学英, 米洋, 刘开辉, 邓百万, 赵航轲. 嗜盐真菌Aspergillus montevidensis生物特性研究[J]. 西南农业学报, 2020, 33(7): 1441-1448. [百度学术]
LU YX, YANG XY, MI Y, LIU KH, DENG BW, ZHAO HK. Biological characteristic research of halophilic fungus Aspergillus montevidensis[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(7): 1441-1448 (in Chinese). [百度学术]
VAUCLARE P, NATALI F, KLEMAN JP, ZACCAI G, FRANZETTI B. Surviving salt fluctuations: stress and recovery in Halobacterium salinarum, an extreme halophilic Archaeon[J]. Scientific Reports, 2020, 10(1): 3298. [百度学术]
SAUM SH, PFEIFFER F, PALM P, RAMPP M, SCHUSTER SC, MÜLLER V, OESTERHELT D. Chloride and organic osmolytes: a hybrid strategy to cope with elevated salinities by the moderately halophilic, chloride-dependent bacterium Halobacillus halophilus[J]. Environmental Microbiology, 2013, 15(5): 1619-1633. [百度学术]
ABOSAMAHA A, WILLIAMSON MP, GILMOUR DJ. Utilization and accumulation of compatible solutes in Halomonas pacifica: a species of moderately halophilic bacteria isolated from a saline lake in South Libya[J]. Access Microbiology, 2022, 4(5): acmi000359. [百度学术]
王海飙. 一株合成PHB的嗜盐菌筛选及其产物特性研究[D]. 哈尔滨: 东北林业大学硕士学位论文, 2016. [百度学术]
WANG HB. Isolated a Halophilic strain with PHB-accumulating ability and researched its product characteristics[D]. Harbin: Master’s Thesis of Northeast Forestry University, 2016 (in Chinese). [百度学术]
赵有玺. 极端嗜盐古菌Halogranum amylolyticum TNN58合成PHBV的研究[D]. 无锡: 江南大学博士学位论文, 2015. [百度学术]
ZHAO YX. Study on the synthesis of PHBV by Halogranum amylolyticum TNN58, an extremely halophilic Archaea[D]. Wuxi: Doctoral Dissertation of Jiangnan University, 2015 (in Chinese). [百度学术]
李丽霞, 文凤, 罗丹, 刘琴, 夏占峰. 吐鲁番戈壁滩耐热微生物及产酶能力[J]. 微生物学通报, 2024, 51(9): 3438-3453. [百度学术]
LI LX, WEN F, LUO D, LIU Q, XIA ZF. Thermotolerant microorganisms and their enzyme production capacity in the gobi desert of Turpan[J]. Microbiology China, 2024, 51(9): 3438-3453 (in Chinese). [百度学术]
罗明, 韩剑, 蒋平安, 武红旗. 新疆罗布泊地区可培养嗜盐细菌多样性[J]. 生物多样性, 2009, 17(3): 288-295. [百度学术]
LUO M, HAN J, JIANG PA, WU HQ. Diversity of culturable halophilic bacteria isolated from Lop Nur region in Xinjiang[J]. Biodiversity Science, 2009, 17(3): 288-295 (in Chinese). [百度学术]
迪力热巴·阿不都肉苏力. 新疆四地盐碱土壤细菌及古菌多样性研究[D]. 乌鲁木齐: 新疆师范大学硕士学位论文, 2022. [百度学术]
Dlireba Abdrsl. Diversity of bacteria and Archaea in saline-alkaline soils in four areas of Xinjiang[D]. Urumqi: Master’s Thesis of Xinjiang Normal University, 2022 (in Chinese). [百度学术]
关统伟, 赵珂, 夏占峰, 吕玲玲, 张小平, 张利莉. 新疆高盐环境土壤放线菌分离培养基比较[J]. 应用与环境生物学报, 2010, 16(3): 429-431. [百度学术]
GUAN TW, ZHAO K, XIA ZF, LÜ LL, ZHANG XP, ZHANG LL. Comparison of isolation media for actinobacteria from different saline environments in Xinjiang, China[J]. Chinese Journal of Applied and Environmental Biology, 2010, 16(3): 429-431 (in Chinese). [百度学术]
李泉泉, 王芸, 王科珂, 倪萍, 孙鹏, 苏为涌, 张碧柳. 新疆两盐湖可培养极端嗜盐菌组成及功能多样性研究[J]. 微生物学报, 2022, 62(6): 2074-2089. [百度学术]
LI QQ, WANG Y, WANG KK, NI P, SUN P, SU WY, ZHANG BL. Composition and functional diversity of extreme halophiles isolated from two salt lakes in Xinjiang[J]. Acta Microbiologica Sinica, 2022, 62(6): 2074-2089 (in Chinese). [百度学术]
丁腊梅. 游动放线菌的靶向分离及其次生代谢产物挖掘[D]. 阿拉尔: 塔里木大学硕士学位论文, 2022. [百度学术]
DING LM. Targeted isolation of Actinoplanes and the mining of their secondary metabolites[D]. Alar: Master’s Thesis of Tarim University, 2022 (in Chinese). [百度学术]
刘琴, 任敏, 张利莉. 放射污染区古菌分离及多样性分析[J]. 微生物学通报, 2014, 41(7): 1308-1317. [百度学术]
LIU Q, REN M, ZHANG LL. Separation and identification of archaea from radioactive pollution[J]. Microbiology China, 2014, 41(7): 1308-1317 (in Chinese). [百度学术]
韩剑, 罗明, 蒋平安, 武红旗. 新疆罗布泊地区嗜盐细菌的分离及其嗜盐特性[J]. 干旱区地理, 2008, 31(6): 878-884. [百度学术]
HAN J, LUO M, JIANG PA, WU HQ. Isolation halophilic bacteria from Lop Nur region and their growth of selectivity to positive ions[J]. Arid Land Geography, 2008, 31(6): 878-884 (in Chinese). [百度学术]
王蕊. 西藏耐盐新菌株的鉴定及其次级代谢产物的分析[D]. 天津: 天津商业大学硕士学位论文, 2023. [百度学术]
WANG R. Identification of a new halotolerant strain in Xizang and analysis of its secondary metabolites[D]. Tianjin: Master’s Thesis of Tianjin University of Commerce, 2023 (in Chinese). [百度学术]
傅双庆. 芽孢杆菌聚羟基脂肪酸酯的生物合成及其合成关键酶的功能化应用研究[D]. 保定: 河北大学硕士学位论文, 2022. [百度学术]
FU SQ. Biosynthesis of polyhydroxy fatty acid esters from Bacillus sp. and functional application of its key enzymes[D]. Baoding: Master’s Thesis of Hebei University, 2022 (in Chinese). [百度学术]
YUAN SQ, REN PG, LIU J, XUE YF, MA YH, ZHOU PJ. Lentibacillus halodurans sp. nov., a moderately halophilic bacterium isolated from a salt lake in Xinjiang, China[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(Pt 3): 485-488. [百度学术]
DAROONPUNT R, YIAMSOMBUT S, SITDHIPOL J, TANASUPAWAT S. Bacillus salacetis sp. nov., a slightly halophilic bacterium from Thai shrimp paste (Ka-pi)[J]. International Journal of Systematic and Evolutionary Microbiology, 2019, 69(4): 1162-1168. [百度学术]
AN SY, ASAHARA M, GOTO K, KASAI H, YOKOTA A. Terribacillus saccharophilus gen. nov., sp. nov. and Terribacillus halophilus sp. nov., spore-forming bacteria isolated from field soil in Japan[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(Pt 1): 51-55. [百度学术]
赵婉雨, 杨渐, 董海良, 吴耿, 王尚, 孙永娟, 赖忠平, 蒋宏忱. 柴达木盆地达布逊盐湖微生物多样性研究[J]. 地球与环境, 2013, 41(4): 398-405. [百度学术]
ZHAO WY, YANG J, DONG HL, WU G, WANG S, SUN YJ, LAI ZP, JIANG HC. Microbial diversity in the hypersaline dabuxun lake in Qaidam Basin, China[J]. Earth and Environment, 2013, 41(4): 398-405 (in Chinese). [百度学术]
张欣, 刘静, 沈国平, 龙启福, 韩睿, 朱德锐. 基于高通量测序研究青藏高原茶卡盐湖微生物多样性[J]. 微生物学通报, 2017, 44(8): 1834-1846. [百度学术]
ZHANG X, LIU J, SHEN GP, LONG QF, HAN R, ZHU DR. Illumina-based sequencing analysis of microbial community composition in Chaka Salt Lake in Qinghai-Xizang Plateau[J]. Microbiology China, 2017, 44(8): 1834-1846 (in Chinese). [百度学术]
刘静, 张欣, 沈国平, 封希媛, 龙启福, 朱德锐. 青藏高原小柴旦盐湖微生物群落结构及多样性[J]. 水生态学杂志, 2017, 38(5): 55-64. [百度学术]
LIU J, ZHANG X, SHEN GP, FENG XY, LONG QF, ZHU DR. Microbial community structure and diversity of Xiaochaidan salt lake on the Tibetan Plateau[J]. Journal of Hydroecology, 2017, 38(5): 55-64 (in Chinese). [百度学术]
赵媛, 何彩霞, 杨国柱, 徐汝燕, 宋宏伟. 青海湖耐盐微生物分离及对盐碱降解率的研究[J]. 黑龙江畜牧兽医, 2018, 1(13): 16-19, 240. [百度学术]
ZHAO Y, HE CX, YANG GZ, XU RY, SONG HW. Isolation of salt-tolerant microorganisms from Qinghai lake and the effect of degradation rate on salt-alkali[J]. Heilongjiang Animal Science and Veterinary Medicine, 2018, 1(13): 16-19, 240 (in Chinese). [百度学术]
董秀黄. 结合BIOLOG碳源筛选研究新疆两盐湖可培养嗜盐菌多样性[D]. 乌鲁木齐: 新疆大学硕士学位论文, 2013. [百度学术]
DONG XH. Study on the diversity of culturable halophilic bacteria in two salt lakes of Xinjiang by BIOLOG carbon source screening[D]. Urumqi: Master’s Thesis of Xinjiang University, 2013 (in Chinese). [百度学术]
杨珊珊, 张晓波, 陈锋, 刘素辉, 孙玉萍. 新疆极端盐碱环境巴里坤湖沉积土壤中细菌的分离培养和鉴定[J]. 疾病预防控制通报, 2019, 34(5): 1-4, 16. [百度学术]
YANG SS, ZHANG XB, CHEN F, LIU SH, SUN YP. Culture, isolation and identification of bacteria from sedimentary soil in environment of extreme saline alkali in Balikun lake of Xinjiang[J]. Bulletin of Disease Control & Prevention (China), 2019, 34(5): 1-4, 16 (in Chinese). [百度学术]
吴海平, 王真辉, 杨礼富. 新疆达坂盐湖沉积土壤嗜盐细菌的定向富集与多样性分析[J]. 微生物学通报, 2010, 37(7): 956-961. [百度学术]
WU HP, WANG ZH, YANG LF. The selective enrichment and diversity analysis of halophilic bacteria in sedimental sample from daban salt lake in Xinjiang[J]. Microbiology China, 2010, 37(7): 956-961 (in Chinese). [百度学术]
地丽胡玛·阿吉, 常娜娜, 杜菲, 马正海. 艾比湖微生物多样性及其功能分析[J]. 新疆大学学报(自然科学版) (中英文), 2022, 39(6): 720-726. [百度学术]
Dilihuma Aji, CHANG NN, DU F, MA ZH. Microbial diversity and function analysis in ebinur lake[J]. Journal of Xinjiang University (Natural Science Edition in Chinese and English), 2022, 39(6): 720-726 (in Chinese). [百度学术]
陈超. 新疆七角井盐湖可培养细菌多样性及其功能酶筛选[D]. 阿拉尔: 塔里木大学硕士学位论文, 2011. [百度学术]
CHEN C. Diversity of culturable bacteria and screening of functional enzymes in Qijiaojing Salt Lake of Xinjiang[D]. Alar: Master’s Thesis of Tarim University, 2011 (in Chinese). [百度学术]
张明刚. 新疆盐湖卤水水化学特征研究[J]. 盐湖研究, 1993, 1(1): 17-32. [百度学术]
ZHANG MG. Research on the hydrochemical feature of the brine of salt lakes in Xinjiang[J]. Journal of Salt Lake Research, 1993, 1(1): 17-32 (in Chinese). [百度学术]
庄滢潭, 刘芮存, 陈雨露, 杨岑玥, 余岩, 王涛, 王友亮, 宋亚军, 滕越. 极端微生物及其应用研究进展[J]. 中国科学: 生命科学, 2022, 52(2): 204-222. [百度学术]
ZHUANG YT, LIU RC, CHEN YL, YANG CY, YU Y, WANG T, WANG YL, SONG YJ, TENG Y. Extremophiles and their applications[J]. Scientia Sinica (Vitae), 2022, 52(2): 204-222 (in Chinese). [百度学术]
SECK EH, DIOP A, ARMSTRONG N, DELERCE J, FOURNIER PE, RAOULT D, KHELAIFIA S. Microbial culturomics to isolate halophilic bacteria from table salt: genome sequence and description of the moderately halophilic bacterium Bacillus salis sp. nov.[J]. New Microbes and New Infections, 2018, 23: 28-38. [百度学术]
KONG Y, KOH HG, CHA HG, LEE BW, YU K, PARK SH, PARK K. Isolation and characterization of two halophilic bacteria producing polyhydroxybutyrate from high-salt environment[J/OL]. Biotechnology and Bioprocess Engineering, 2024. https://doi.org/10.1007/s12257-024-00140-3. [百度学术]
WILLIAMS CH. Malignant hyperthermia: a runaway thermogenic futile cycle at the sodium channel level[J]. Advances in Bioscience and Biotechnology, 2014, 5(3): 197-200. [百度学术]
PEI SX, NIU SW, XIE FQ, WANG WJ, ZHANG S, ZHANG GY. Brevibacterium limosum sp. nov., Brevibacterium pigmenatum sp. nov., and Brevibacterium atlanticum sp. nov., three novel dye decolorizing actinobacteria isolated from ocean sediments[J]. Journal of Microbiology, 2021, 59(10): 898-910. [百度学术]