摘要
结核病是一种古老且严重危害全球人类和动物健康的人兽共患病,结核分枝杆菌(Mycobacterium tuberculosis, Mtb)是引起结核病的主要病原体。树突状细胞(dendritic cell, DC)作为连接机体固有免疫应答和适应性免疫应答的桥梁,凭借其强大的抗原提呈功能激活宿主适应性免疫反应,以抵御病原体的进一步感染,在控制Mtb感染中发挥重要作用。近年来,越来越多的研究表明Mtb可通过调控DC分化和成熟、干扰吞噬作用和自噬过程、抑制抗原提呈相关分子的表达等多种策略逃避宿主免疫杀伤,从而引起持续性感染。本文就目前Mtb调控DC抗原提呈分子机制的研究进展进行梳理,以期为进一步深入研究Mtb-DC互作机制及结核病防控策略提供参考。
结核分枝杆菌(Mycobacterium tuberculosis, Mtb)是一种胞内病原体,主要通过呼吸道感染,引起人和动物的结核病。世界卫生组织发布的《2024年全球结核病报告》显示,2023年全球约有1 080万新发结核病患者,因结核病死亡的人数为125万,结核病重返导致人类死亡的单一传染病之
树突状细胞(dendritic cell, DC)最初由加拿大学者Steinman等于1973年在小鼠脾脏中发现,因成熟时有许多树枝状或伪足样突起而得
综上所述,DC在宿主抵御病原体感染中扮演着重要的角色,同时,病原体也可通过多种途径调控DC的抗原提呈功能,从而逃避宿主免疫杀
1 树突状细胞
DC存在于所有哺乳动物组织中,在适应性免疫反应的启动和调节以及先天免疫中起关键作
1.1 DC亚群与功能
由于DC在生理和病理条件下对于控制免疫反应具有重要作用,因此其亚群和发育起源得到了广泛的研究,并被认为是潜在的治疗靶点。DC起源于造血干细胞,广泛分布于血液、组织和淋巴器官
Type | Distribution | Transcription factor | Phenotype | Function | References |
---|---|---|---|---|---|
cDC1 | Blood, lymph nodes, tonsils, spleen, bone marrow | Ret3, Csf2ra, Irf8, Batf3, Bcl6, Id2 | XCR1, DNGR-1, CD205, CD207 |
Cross-presentation of the antigen to CD |
[ |
cDC2 | Blood, lymp, organs, skin, Lungs | Sfpi1, Zbtb46, Irf4 | CD11b, CD11c, SIRPα | Presenting MHC class II antigens and promoting the differentiation of Th1, Th2, and Th17 |
[ |
pDC |
lymph nodes, tonsils, peripheral blood | Tcf4, Bcl11a, Runx2, SpiB | CD304, CD303, CD123, BDCA2 | The first line of defense against viral infection, initiating IFN-induced antiviral response, and recruiting cytotoxic NK cells |
[ |
在稳态条件下,cDC1在血液和组织中的出现频率约为cDC2的1/1
cDC2广泛存在于外周组织和淋巴器官中,尤其在T细胞与B细胞(T-B)的边界富
对于pDC的描述最早出现在20世纪50年代对人类淋巴结的研究
1.2 DC的抗原提呈机制
DC是机体调节免疫反应的关键细

图1 树突状细胞提呈抗原的经典途径
Figure 1 The classical pathways of antigen presentation by dendritic cells. Dendritic cells present antigens to T cells through the proteasome pathway, lysosomal pathway, and cross-presentation.
1.2.1 内源性抗原的提呈——蛋白酶体途径
对于内源性抗原,如胞内蛋白、核蛋白、病毒蛋白等,DC通过蛋白酶体将其降解为多肽,随后由抗原加工相关转运蛋白(transporter associated with antigen processing, TAP)将其转运至内质网,在内质网中与MHC-I分子结合,形成MHC-I-抗原肽复合物,提呈给细胞毒性T淋巴细胞(cytotoxic T-lymphocyte, CTL
1.2.2 外源性抗原的提呈——溶酶体途径
MHC-Ⅰ类分子几乎在所有细胞表面表达,而MHC-Ⅱ类分子主要在免疫细胞上表达。抗原首先通过吞噬作用或受体介导的内吞作用被细胞捕获。DC通过其丰富的C型凝集素受体和Fc受体(Fc receptor, FcR)摄取外周组织环境中的抗原并将其内化,内化后大多数抗原被消化成肽段,通过肽-MHC-II与TCR的相互作用及共刺激信号传导,引发CD
1.2.3 抗原交叉提呈
除了上述2种途径外,DC还可以通过交叉提呈的方式,利用MHC-I分子提呈细胞外环境中的抗原。外源抗原被吞噬入细胞后可从内体进入胞质,随后被蛋白酶体加工,并加载到内质网中的MHC-I类分子
2 结核分枝杆菌调控树突状细胞抗原提呈的机制
当Mtb通过呼吸道被摄入体内时,首先会面临DC等固有免疫细胞的防御,其表达的Toll样受体、Nod样受体和C型凝集素受体能够有效识别Mtb的多种成分,如脂蛋白LprG和磷脂酰肌醇甘露糖苷(phosphatidylinositol mannosides, PIMs)等,从而激活宿主细胞的自噬、炎性反应和凋亡等免疫防御信号通

图2 结核分枝杆菌感染的树突状细胞免疫反应
Figure 2 The dendritic cell immune response to Mycobacterium tuberculosis. Mycobacterium tuberculosis infected DC migrates to the local lung-draining lymph nodes post infection. DC migrates to the lymph nodes under the influence of IL-12(p40)2, IL-12p70, and the chemokines CCL19 and CCL21. This migration facilitates the differentiation of naive T cells into a Th1 phenotype. Subsequently, protective antigen-specific Th1 cells migrate back to the lungs in a chemokine-dependent manner following the initial infection/exposure, where they produce IFN-γ.
2.1 受体介导的识别与入侵
如前所述,DC表达一系列病原体识别受体(pattern recognition receptors, PRR),包括TLR和C型凝集素受体,它们可以识别病原体表达的分子模
2.2 Mtb对DC分化和成熟的调控
Balboa
Mtb的某些蛋白可促进DC的成熟。例如,早期分泌性抗原6 (early secreted antigenic target of 6 kDa, ESAT-6)和复苏促进因子E (resuscitation-promoting factor E, RpfE)可通过TLR2和TLR4依赖的方式诱导DC的成熟,并促进Th1和Th17型T细胞免
然而,更多Mtb抗原通过抑制DC分化和成熟来逃避免疫反应。Mtb在潜伏感染期间上调其α晶状体蛋白1 (alpha-crystallin 1, Acr1)的表达,从而抑制DC的成
2.3 Mtb抑制吞噬体的酸化、成熟及其与溶酶体的融合
DC通过吞噬作用将Mtb内化后,吞噬体逐步酸化、成熟,并与溶酶体融合,发育为吞噬溶酶体,从而降解病原体。随后,DC将抗原提呈给T细胞,启动适应性免疫反
2.4 Mtb抑制自噬
Feng
2.5 Mtb抑制抗原提呈相关分子的表达
Satchidanandam
2.6 Mtb调控抗原提呈的其他机制
Srivastava
综上所述,Mtb通过抑制自噬过程、吞噬作用、抑制DC的成熟以及抑制APC的分化等多种策略调控DC的抗原提呈过程(

图3 结核分枝杆菌调控树突状细胞抗原提呈的机制
Figure 3 The mechanism by which Mycobacterium tuberculosis regulates antigen presentation in dendritic cells.
3 基于促进抗原提呈的结核病新疫苗研制策略
目前唯一注册用于控制人类结核病的疫苗是BCG,其免疫保护力只能维持10-15
近年来,Mtb亚单位疫苗、重组BCG和减毒活疫苗的研究进展迅
4 总结与展望
尽管在过去几十年中人类对结核病的研究已经取得了巨大进展,但随着抗生素耐药性的增
作者贡献声明
马慧:论文撰写及修改;宋银娟:论文思路提出及修改;马玲:部分图表绘制;储岳峰:论文修改与审校。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
World Health Organization. Global tuberculosis report 2024[R]. [2024-10-31]. https://www.who.int/teams/global- tuberculosis-programme/tb-reports/global-tuberculosis-repo rt-2024. [百度学术]
FENG QS, ZHANG GL, CHEN L, WU HZ, YANG YZ, GAO Q, ASAKAWA T, ZHAO YL, LU SH, ZHOU L, LU HZ. Roadmap for ending TB in China by 2035: the challenges and strategies[J]. Bioscience Trends, 2024, 18(1): 11-20. [百度学术]
RAVESLOOT-CHÁVEZ MM, van DIS E, STANLEY SA. The innate immune response to Mycobacterium tuberculosis infection[J]. Annual Review of Immunology, 2021, 39: 611-637. [百度学术]
VU A, GLASSMAN I, CAMPBELL G, YEGANYAN S, NGUYEN J, SHIN A, VENKETARAMAN V. Host cell death and modulation of immune response against Mycobacterium tuberculosis infection[J]. International Journal of Molecular Sciences, 2024, 25(11): 6255. [百度学术]
STEINMAN RM, COHN ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution[J]. Journal of Experimental Medicine, 1973, 137(5): 1142-1162. [百度学术]
BALAN S, SAXENA M, BHARDWAJ N. Dendritic cell subsets and locations[J]. International Review of Cell and Molecular Biology, 2019, 348: 1-68. [百度学术]
RESCIGNO M. Dendritic cell functions: learning from microbial evasion strategies[J]. Seminars in Immunology, 2015, 27(2): 119-124. [百度学术]
CABEZA-CABRERIZO M, CARDOSO A, MINUTTI CM, PEREIRA Da COSTA M, REIS E SOUSA C. Dendritic cells revisited[J]. Annual Review of Immunology, 2021, 39: 131-166. [百度学术]
TIBERIO L, del PRETE A, SCHIOPPA T, SOZIO F, BOSISIO D, SOZZANI S. Chemokine and chemotactic signals in dendritic cell migration[J]. Cellular & Molecular Immunology, 2018, 15(4): 346-352. [百度学术]
MUSUMECI A, LUTZ K, WINHEIM E, KRUG AB. What makes a pDC: recent advances in understanding plasmacytoid DC development and heterogeneity[J]. Frontiers in Immunology, 2019, 10: 1222. [百度学术]
SICHIEN D, LAMBRECHT BN, GUILLIAMS M, SCOTT CL. Development of conventional dendritic cells: from common bone marrow progenitors to multiple subsets in peripheral tissues[J]. Mucosal Immunology, 2017, 10(4): 831-844. [百度学术]
SEGURA E, AMIGORENA S. Cross-presentation by human dendritic cell subsets[J]. Immunology Letters, 2014, 158(1/2): 73-78. [百度学术]
NIZZOLI G, KRIETSCH J, WEICK A, STEINFELDER S, FACCIOTTI F, GRUARIN P, BIANCO A, STECKEL B, MORO M, CROSTI M, ROMAGNANI C, STÖLZEL K, TORRETTA S, PIGNATARO L, SCHEIBENBOGEN C, NEDDERMANN P, de FRANCESCO R, ABRIGNANI S, GEGINAT J. Human CD1
SHORTMAN K. Dendritic cell development: a personal historical perspective[J]. Molecular Immunology, 2020, 119: 64-68. [百度学术]
MERAD M, SATHE P, HELFT J, MILLER J, MORTHA A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting[J]. Annual Review of Immunology, 2013, 31: 563-604. [百度学术]
MURPHY TL, GRAJALES-REYES GE, WU XD, TUSSIWAND R, BRISEÑO CG, IWATA A, KRETZER NM, DURAI V, MURPHY KM. Transcriptional control of dendritic cell development[J]. Annual Review of Immunology, 2016, 34: 93-119. [百度学术]
PATEL VI, LELAND BOOTH J, DUGGAN ES, CATE S, WHITE VL, HUTCHINGS D, KOVATS S, BURIAN DM, DOZMOROV M, METCALF JP. Transcriptional classification and functional characterization of human airway macrophage and dendritic cell subsets[J]. Journal of Immunology, 2017, 198(3): 1183-1201. [百度学术]
DUDZIAK D, KAMPHORST AO, HEIDKAMP GF, BUCHHOLZ VR, TRUMPFHELLER C, YAMAZAKI S, CHEONG C, LIU K, LEE HW, PARK CG, STEINMAN RM, NUSSENZWEIG MC. Differential antigen processing by dendritic cell subsets in vivo[J]. Science, 2007, 315(5808): 107-111. [百度学术]
VREMEC D, POOLEY J, HOCHREIN H, WU L, SHORTMAN K. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen[J]. Journal of Immunology, 2000, 164(6): 2978-2986. [百度学术]
SWIECKI M, GILFILLAN S, VERMI W, WANG YM, COLONNA M. Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD
WU J, LI S, LI TT, LV XP, ZHANG MY, ZANG GX, QI C, LIU YJ, XU L, CHEN JT. pDC activation by TLR7/8 ligand CL097 compared to TLR7 ligand IMQ or TLR9 ligand CpG[J]. Journal of Immunology Research, 2019, 2019: 1749803. [百度学术]
GRANOT T, SENDA T, CARPENTER DJ, MATSUOKA N, WEINER J, GORDON CL, MIRON M, KUMAR BV, GRIESEMER A, HO SH, LERNER H, THOME JJC, CONNORS T, REIZIS B, FARBER DL. Dendritic cells display subset and tissue-specific maturation dynamics over human life[J]. Immunity, 2017, 46(3): 504-515. [百度学术]
SEGURA E, VALLADEAU-GUILEMOND J, DONNADIEU MH, SASTRE-GARAU X, SOUMELIS V, AMIGORENA S. Characterization of resident and migratory dendritic cells in human lymph nodes[J]. Journal of Experimental Medicine, 2012, 209(4): 653-660. [百度学术]
SEGURA E, DURAND M, AMIGORENA S. Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells[J]. Journal of Experimental Medicine, 2013, 210(5): 1035-1047. [百度学术]
CHIANG MC, TULLETT KM, LEE YS, IDRIS A, DING YT, McDONALD KJ, KASSIANOS A, LEAL ROJAS IM, JEET V, LAHOUD MH, RADFORD KJ. Differential uptake and cross-presentation of soluble and necrotic cell antigen by human DC subsets[J]. European Journal of Immunology, 2016, 46(2): 329-339. [百度学术]
MITTAG D, PROIETTO AI, LOUDOVARIS T, MANNERING SI, VREMEC D, SHORTMAN K, WU L, HARRISON LC. Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status[J]. Journal of Immunology, 2011, 186(11): 6207-6217. [百度学术]
LENNERT K, REMMELE W. Karyometric research on lymph node cells in man. I. Germinoblasts, lymphoblasts & lymphocytes[J]. Acta Haematologica, 1958, 19(2): 99-113. [百度学术]
CELLA M, JARROSSAY D, FACCHETTI F, ALEBARDI O, NAKAJIMA H, LANZAVECCHIA A, COLONNA M. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon[J]. Nature Medicine, 1999, 5(8): 919-923. [百度学术]
SIEGAL FP, KADOWAKI N, SHODELL M, FITZGERALD-BOCARSLY PA, SHAH K, HO S, ANTONENKO S, LIU YJ. The nature of the principal type 1 interferon-producing cells in human blood[J]. Science, 1999, 284(5421): 1835-1837. [百度学术]
SHORTMAN K, SATHE P, VREMEC D, NAIK S, O’KEEFFE M. Plasmacytoid dendritic cell development[J]. Advances in Immunology, 2013, 120: 105-126. [百度学术]
SWIECKI M, COLONNA M. The multifaceted biology of plasmacytoid dendritic cells[J]. Nature Reviews Immunology, 2015, 15(8): 471-485. [百度学术]
WU LL, YAN ZQ, JIANG YY, CHEN YY, DU J, GUO LJ, XU JJ, LUO ZH, LIU Y. Metabolic regulation of dendritic cell activation and immune function during inflammation[J]. Frontiers in Immunology, 2023, 14: 1140749. [百度学术]
LEBLANC-HOTTE A, AUDIGER C, CHABOT-ROY G, LOMBARD-VADNAIS F, DELISLE JS, PETER YA, LESAGE S. Immature and mature bone marrow-derived dendritic cells exhibit distinct intracellular mechanical properties[J]. Scientific Reports, 2023, 13(1): 1967. [百度学术]
VILLADANGOS JA, SCHNORRER P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo[J]. Nature Reviews Immunology, 2007, 7(7): 543-555. [百度学术]
LEE SP, BROOKS JM, AL-JARRAH H, THOMAS WA, HAIGH TA, TAYLOR GS, HUMME S, SCHEPERS A, HAMMERSCHMIDT W, YATES JL, RICKINSON AB, BLAKE NW. CD8 T cell recognition of endogenously expressed Epstein-Barr virus nuclear antigen 1[J]. Journal of Experimental Medicine, 2004, 199(10): 1409-1420. [百度学术]
ITANO AA, JENKINS MK. Antigen presentation to naive CD4 T cells in the lymph node[J]. Nature Immunology, 2003, 4(8): 733-739. [百度学术]
VILLADANGOS JA, SCHNORRER P, WILSON NS. Control of MHC class II antigen presentation in dendritic cells: a balance between creative and destructive forces[J]. Immunological Reviews, 2005, 207: 191-205. [百度学术]
CRUZ FM, COLBERT JD, MERINO E, KRIEGSMAN BA, ROCK KL. The biology and underlying mechanisms of cross-presentation of exogenous antigens on MHC-I molecules[J]. Annual Review of Immunology, 2017, 35: 149-176. [百度学术]
JOFFRE OP, SEGURA E, SAVINA A, AMIGORENA S. Cross-presentation by dendritic cells[J]. Nature Reviews Immunology, 2012, 12(8): 557-569. [百度学术]
LIU CH, LIU HY, GE BX. Innate immunity in tuberculosis: host defense vs pathogen evasion[J]. Cellular & Molecular Immunology, 2017, 14(12): 963-975. [百度学术]
RAMON-LUING LA, PALACIOS Y, RUIZ A, TÉLLEZ-NAVARRETE NA, CHAVEZ-GALAN L. Virulence factors of Mycobacterium tuberculosis as modulators of cell death mechanisms[J]. Pathogens, 2023, 12(6): 839. [百度学术]
HOPE JC, THOM ML, McCORMICK PA, HOWARD CJ. Interaction of antigen presenting cells with mycobacteria[J]. Veterinary Immunology and Immunopathology, 2004, 100(3/4): 187-195. [百度学术]
ZHAI WJ, WU FJ, ZHANG YY, FU YR, LIU ZJ. The immune escape mechanisms of Mycobacterium tuberculosis[J]. International Journal of Molecular Sciences, 2019, 20(2): 340. [百度学术]
KOUL A, HERGET T, KLEBL B, ULLRICH A. Interplay between mycobacteria and host signalling pathways[J]. Nature Reviews Microbiology, 2004, 2(3): 189-202. [百度学术]
WORBS T, HAMMERSCHMIDT SI, FÖRSTER R. Dendritic cell migration in health and disease[J]. Nature Reviews Immunology, 2017, 17(1): 30-48. [百度学术]
VÁZQUEZ-FLORES L, CASTAÑEDA-CASIMIRO J, VALLEJO-CASTILLO L, ÁLVAREZ-JIMÉNEZ VD, PEREGRINO ES, GARCÍA-MARTÍNEZ M, BARREDA D, ROSALES-GARCÍA VH, SEGOVIA-GARCÍA CD, SANTOS-MENDOZA T, WONG-BAEZA C, SERAFÍN-LÓPEZ J, CHACÓN-SALINAS R, ESTRADA-PARRA S, ESTRADA-GARCÍA I, WONG-BAEZA I. Extracellular vesicles from Mycobacterium tuberculosis-infected neutrophils induce maturation of monocyte-derived dendritic cells and activation of antigen-specific Th1 cells[J]. Journal of Leukocyte Biology, 2023, 113(6): 588-603. [百度学术]
CHAI QY, WANG L, LIU CH, GE BX. New insights into the evasion of host innate immunity by Mycobacterium tuberculosis[J]. Cellular & Molecular Immunology, 2020, 17(9): 901-913. [百度学术]
Van KOOYK Y, GEIJTENBEEK TBH. DC-SIGN: escape mechanism for pathogens[J]. Nature Reviews Immunology, 2003, 3(9): 697-709. [百度学术]
ADEREM A, ULEVITCH RJ. Toll-like receptors in the induction of the innate immune response[J]. Nature, 2000, 406(6797): 782-787. [百度学术]
UNDERHILL DM, OZINSKY A, SMITH KD, ADEREM A. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(25): 14459-14463. [百度学术]
SU HB, ZHU SL, ZHU L, HUANG W, WANG HH, ZHANG Z, XU Y. Recombinant lipoprotein Rv1016c derived from Mycobacterium tuberculosis is a TLR-2 ligand that induces macrophages apoptosis and inhibits MHC II antigen processing[J]. Frontiers in Cellular and Infection Microbiology, 2016, 6: 147. [百度学术]
BALBOA L, ROMERO MM, YOKOBORI N, SCHIERLOH P, GEFFNER L, BASILE JI, MUSELLA RM, ABBATE E, deLa BARRERA S, SASIAIN MC, ALEMÁN M. Mycobacterium tuberculosis impairs dendritic cell response by altering CD1b, DC-SIGN and MR profile[J]. Immunology and Cell Biology, 2010, 88(7): 716-726. [百度学术]
REMOLI ME, GIACOMINI E, PETRUCCIOLI E, GAFA V, SEVERA M, GAGLIARDI MC, IONA E, PINE R, NISINI R, COCCIA EM. Bystander inhibition of dendritic cell differentiation by Mycobacterium tuberculosis-induced IL-10[J]. Immunology and Cell Biology, 2011, 89(3): 437-446. [百度学术]
FÖRTSCH D, RÖLLINGHOFF M, STENGER S. IL-10 converts human dendritic cells into macrophage-like cells with increased antibacterial activity against virulent Mycobacterium tuberculosis[J]. Journal of Immunology, 2000, 165(2): 978-987. [百度学术]
CHOI HG, KIM WS, BACK YW, KIM H, KWON KW, KIM JS, SHIN SJ, KIM HJ. Mycobacterium tuberculosis RpfE promotes simultaneous Th1- and Th17-type T-cell immunity via TLR4-dependent maturation of dendritic cells[J]. European Journal of Immunology, 2015, 45(7): 1957-1971. [百度学术]
WANG XS, BARNES PF, HUANG FF, ALVAREZ IB, NEUENSCHWANDER PF, SHERMAN DR, SAMTEN B. Early secreted antigenic target of 6-kDa protein of Mycobacterium tuberculosis primes dendritic cells to stimulate Th17 and inhibit Th1 immune responses[J]. Journal of Immunology, 2012, 189(6): 3092-3103. [百度学术]
ROMERO MM, BASILE JI, CORRA FEO L, LÓPEZ B, RITACCO V, ALEMÁN M. Reactive oxygen species production by human dendritic cells involves TLR2 and dectin-1 and is essential for efficient immune response against Mycobacteria[J]. Cellular Microbiology, 2016, 18(6): 875-886. [百度学术]
SU HB, ZHANG Z, LIU ZJ, PENG BZ, KONG C, WANG HH, ZHANG Z, XU Y. Mycobacterium tuberculosis PPE60 antigen drives Th1/Th17 responses via Toll-like receptor 2-dependent maturation of dendritic cells[J]. The Journal of Biological Chemistry, 2018, 293(26): 10287-10302. [百度学术]
P M, AHMAD J, SAMAL J, SHEIKH JA, ARORA SK, KHUBAIB M, AGGARWAL H, KUMARI I, LUTHRA K, RAHMAN SA, HASNAIN SE, EHTESHAM NZ. Mycobacterium tuberculosis specific protein Rv1509 evokes efficient innate and adaptive immune response indicative of protective Th1 immune signature[J]. Frontiers in Immunology, 2021, 12: 706081. [百度学术]
LEHNER T, WANG Y, WHITTALL T, McGOWAN E, KELLY CG, SINGH M. Functional domains of HSP70 stimulate generation of cytokines and chemokines, maturation of dendritic cells and adjuvanticity[J]. Biochemical Society Transactions, 2004, 32(Pt 4): 629-632. [百度学术]
HEO DR, SHIN SJ, KIM WS, NOH KT, PARK JW, SON KH, PARK WS, LEE MG, KIM D, SHIN YK, JUNG ID, PARK YM. Mycobacterium tuberculosis lpdC, Rv0462, induces dendritic cell maturation and Th1 polarization[J]. Biochemical and Biophysical Research Communications, 2011, 411(3): 642-647. [百度学术]
PALMA C, SCHIAVONI G, ABALSAMO L, MATTEI F, PICCARO G, SANCHEZ M, FERNANDEZ C, SINGH M, GABRIELE L. Mycobacterium tuberculosis PstS1 amplifies IFN-γ and induces IL-17/IL-22 responses by unrelated memory CD
VANI J, SHAILA MS, TRINATH J, BALAJI KN, KAVERI SV, BAYRY J. Mycobacterium tuberculosis cell wall-associated Rv3812 protein induces strong dendritic cell-mediated interferon γ responses and exhibits vaccine potential[J]. The Journal of Infectious Diseases, 2013, 208(6): 1034-1036. [百度学术]
AMIR M, AQDAS M, NADEEM S, SIDDIQUI KF, KHAN N, SHEIKH JA, AGREWALA JN. Diametric role of the latency-associated protein Acr1 of Mycobacterium tuberculosis in modulating the functionality of pre- and post-maturational stages of dendritic cells[J]. Frontiers in Immunology, 2017, 8: 624. [百度学术]
CHEN W, BAO YG, CHEN XR, BURTON J, GONG XL, GU DQ, MI YJ, BAO L. Mycobacterium tuberculosis PE25/PPE41 protein complex induces activation and maturation of dendritic cells and drives Th2-biased immune responses[J]. Medical Microbiology and Immunology, 2016, 205(2): 119-131. [百度学术]
GRINGHUIS SI, den DUNNEN J, LITJENS M, van HET HOF B, van KOOYK Y, GEIJTENBEEK TBH. C-type lectin DC-SIGN modulates Toll-like receptor signaling via raf-1 kinase-dependent acetylation of transcription factor NF-κB[J]. Immunity, 2007, 26(5): 605-616. [百度学术]
NAFFIN-OLIVOS JL, GEORGIEVA M, GOLDFARB N, MADAN-LALA R, DONG L, BIZZELL E, VALINETZ E, BRANDT GS, YU S, SHABASHVILI DE, RINGE D, DUNN BM, PETSKO GA, RENGARAJAN J. Mycobacterium tuberculosis Hip1modulates macrophage responses through proteolysis of GroEL2[J]. PLoS Pathogens, 2014, 10(5): e1004132. [百度学术]
SU HB, PENG BZ, ZHANG Z, LIU ZJ, ZHANG Z. The Mycobacterium tuberculosis glycoprotein Rv1016c protein inhibits dendritic cell maturation, and impairs Th1/Th17 responses during mycobacteria infection[J]. Molecular Immunology, 2019, 109: 58-70. [百度学术]
SINGH S, MAURYA SK, AQDAS M, BASHIR H, ARORA A, BHALLA V, AGREWALA JN. Mycobacterium tuberculosis exploits MPT64 to generate myeloid-derived suppressor cells to evade the immune system[J]. Cellular and Molecular Life Sciences, 2022, 79(11): 567. [百度学术]
LEE HJ, WOO Y, HAHN TW, JUNG YM, JUNG YJ. Formation and maturation of the phagosome: a key mechanism in innate immunity against intracellular bacterial infection[J]. Microorganisms, 2020, 8(9): 1298. [百度学术]
van der WEL N, HAVA D, HOUBEN DE, FLUITSMA D, van ZON M, PIERSON J, BRENNER M, PETERS PJ. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells[J]. Cell, 2007, 129(7): 1287-1298. [百度学术]
SAJID A, ARORA G, SINGHAL A, KALIA VC, SINGH Y. Protein phosphatases of pathogenic bacteria: role in physiology and virulence[J]. Annual Review of Microbiology, 2015, 69: 527-547. [百度学术]
WONG D, BACH H, SUN J, HMAMA Z, AV-GAY Y. Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-
PORTAL-CELHAY C, TUFARIELLO JM, SRIVASTAVA S, ZAHRA A, KLEVORN T, GRACE PS, MEHRA A, PARK HS, ERNST JD, JrJACOBS WR, PHILIPS JA. Mycobacterium tuberculosis EsxH inhibits ESCRT-dependent CD
AUGENSTREICH J, ARBUES A, SIMEONE R, HAANAPPEL E, WEGENER A, SAYES F, le CHEVALIER F, CHALUT C, MALAGA W, GUILHOT C, BROSCH R, ASTARIE-DEQUEKER C. ESX-1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis[J]. Cellular Microbiology, 2017, 19(7): e12726. [百度学术]
LERNER TR, QUEVAL CJ, FEARNS A, REPNIK U, GRIFFITHS G, GUTIERREZ MG. Phthiocerol dimycocerosates promote access to the cytosol and intracellular burden of Mycobacterium tuberculosis in lymphatic endothelial cells[J]. BMC Biology, 2018, 16(1): 1. [百度学术]
FENG SW, McNEHLAN ME, KINSELLA RL, SUR CHOWDHURY C, CHAVEZ SM, NAIK SK, McKEE SR, van WINKLE JA, DUBEY N, SAMUELS A, SWAIN A, CUI XY, HENDRIX SV, WOODSON R, KREAMALMEYER D, SMIRNOV A, ARTYOMOV MN, VIRGIN HW, WANG YT, STALLINGS CL. Autophagy promotes efficient T cell responses to restrict high-dose Mycobacterium tuberculosis infection in mice[J]. Nature Microbiology, 2024, 9(3): 684-697. [百度学术]
MITTAL E, KRISHNA PRASAD GR, UPADHYAY S, SADADIWALA J, OLIVE AJ, YANG GZ, SASSETTI CM, PHILIPS JA. Mycobacterium tuberculosis virulence lipid PDIM inhibits autophagy in mice[J]. Nature Microbiology, 2024, 9(11): 2970-2984. [百度学术]
HU D, WU J, WANG W, MU M, ZHAO RP, XU XW, CHEN ZQ, XIAO J, HU FY, YANG YB, ZHANG RB. Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7[J]. Biochemical and Biophysical Research Communications, 2015, 461(2): 401-407. [百度学术]
SAINI NK, BAENA A, NG TW, VENKATASWAMY MM, KENNEDY SC, KUNNATH-VELAYUDHAN S, CARREÑO LJ, XU JY, CHAN J, LARSEN MH, JrJACOBS WR, PORCELLI SA. Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE_PGRS47[J]. Nature Microbiology, 2016, 1(9): 16133. [百度学术]
ETNA MP, SINIGAGLIA A, GRASSI A, GIACOMINI E, ROMAGNOLI A, PARDINI M, SEVERA M, CRUCIANI M, RIZZO F, ANASTASIADOU E, Di CAMILLO B, BARZON L, FIMIA GM, MANGANELLI R, COCCIA EM. Mycobacterium tuberculosis-induced miR-155 subverts autophagy by targeting ATG3 in human dendritic cells[J]. PLoS Pathogens, 2018, 14(1): e1006790. [百度学术]
SINGHAL J, AGRAWAL N, VASHISHTA M, GAYATRI PRIYA N, TIWARI BK, SINGH Y, RAMAN R, NATARAJAN K. Suppression of dendritic cell-mediated responses by genes in calcium and cysteine protease pathways during Mycobacterium tuberculosis infection[J]. The Journal of Biological Chemistry, 2012, 287(14): 11108-11121. [百度学术]
ANANG V, SINGH A, KUMAR RANA A, SARASWATI SSK, BANDYOPADHYAY U, VERMA C, CHADHA A, NATARAJAN K. Mycobacteria modulate SUMOylation to suppresses protective responses in dendritic cells[J]. PLoS One, 2023, 18(9): e0283448. [百度学术]
SONG YJ, GE X, CHEN YL, HUSSAIN T, LIANG ZM, DONG YH, WANG YZ, TANG CY, ZHOU XM. Mycobacterium bovis induces mitophagy to suppress host xenophagy for its intracellular survival[J]. Autophagy, 2022, 18(6): 1401-1415. [百度学术]
SATCHIDANANDAM V, KUMAR N, JUMANI RS, CHALLU V, ELANGOVAN S, KHAN NA. The glycosylated Rv1860 protein of Mycobacterium tuberculosis inhibits dendritic cell mediated TH1 and TH17 polarization of T cells and abrogates protective immunity conferred by BCG[J]. PLoS Pathogens, 2014, 10(6): e1004176. [百度学术]
DOLASIA K, NAZAR F, MUKHOPADHYAY S. Mycobacterium tuberculosis PPE18 protein inhibits MHC class II antigen presentation and B cell response in mice[J]. European Journal of Immunology, 2021, 51(3): 603-619. [百度学术]
SRIVASTAVA S, GRACE PS, ERNST JD. Antigen export reduces antigen presentation and limits T cell control of M. tuberculosis[J]. Cell Host & Microbe, 2016, 19(1): 44-54. [百度学术]
MANCUSO JD, MODY RM, OLSEN CH, HARRISON LH, SANTOSHAM M, ARONSON NE. The long-term effect of bacille calmette-guérin vaccination on tuberculin skin testing A 55-year follow-up study[J]. Chest, 2017, 152(2): 282-294. [百度学术]
DIELI F, IVANYI J. Role of antibodies in vaccine-mediated protection against tuberculosis[J]. Cellular & Molecular Immunology, 2022, 19(7): 758-760. [百度学术]
AN Y, NI R, ZHUANG L, YANG L, YE Z, LI L, PARKKILA S, ASPATWAR A, GONG W. Tuberculosis vaccines and therapeutic drug: challenges and future directions[J]. Molecular Biomedicine, 2025, 6(1): 4. [百度学术]
PASSOS BBS, ARAÚJO-PEREIRA M, VINHAES CL, AMARAL EP, ANDRADE BB. The role of ESAT-6 in tuberculosis immunopathology[J]. Frontiers in Immunology, 2024, 15: 1383098. [百度学术]
NETEA MG, DOMÍNGUEZ-ANDRÉS J, BARREIRO LB, CHAVAKIS T, DIVANGAHI M, FUCHS E, JOOSTEN LAB, van der MEER JWM, MHLANGA MM, MULDER WJM, RIKSEN NP, SCHLITZER A, SCHULTZE JL, STABELL BENN C, SUN JC, XAVIER RJ, LATZ E. Defining trained immunity and its role in health and disease[J]. Nature Reviews Immunology, 2020, 20(6): 375-388. [百度学术]
KIRK NM, HUANG QF, VRBA S, RAHMAN M, BLOCK AM, MURPHY H, WHITE DW, NAMUGENYI SB, LY H, TISCHLER AD, LIANG YY. Recombinant Pichinde viral vector expressing tuberculosis antigens elicits strong T cell responses and protection in mice[J]. Frontiers in Immunology, 2023, 14: 1127515. [百度学术]
GRODE L, GANOZA CA, BROHM C, WEINER J, EISELE B, KAUFMANN SHE. Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial[J]. Vaccine, 2013, 31(9): 1340-1348. [百度学术]
FRIGUI W, BOTTAI D, MAJLESSI L, MONOT M, JOSSELIN E, BRODIN P, GARNIER T, GICQUEL B, MARTIN C, LECLERC C, COLE ST, BROSCH R. Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP[J]. PLoS Pathogens, 2008, 4(2): e33. [百度学术]
DIJKMAN K, AGUILO N, BOOT C, HOFMAN SO, SOMBROEK CC, VERVENNE RAW, KOCKEN CHM, MARINOVA D, THOLE J, RODRÍGUEZ E, VIERBOOM MPM, HAANSTRA KG, PUENTES E, MARTIN C, VERRECK FAW. Pulmonary MTBVAC vaccination induces immune signatures previously correlated with prevention of tuberculosis infection[J]. Cell Reports Medicine, 2021, 2(1): 100187. [百度学术]
RAHMAN F. Characterizing the immune response to Mycobacterium tuberculosis: a comprehensive narrative review and implications in disease relapse[J]. Frontiers in Immunology, 2024, 15: 1437901. [百度学术]