摘要
生物可降解地膜(biodegradable mulch films, BDMs)以其广阔的应用前景和生态友好特性正逐步取代传统地膜,被视为解决“白色污染”问题最具潜力的途径。近年来,我国在生物可降解地膜的生产技术领域取得了显著成就,为其规模化生产和广泛应用奠定了坚实基础。尽管前景广阔,生物可降解地膜在降解过程中的复杂性、可控性以及其对生态环境的潜在影响仍是必须高度关注的重点。基于此,本文综合分析了5种极具应用前景的聚酯类和聚碳酸酯类生物可降解地膜,深入探讨了这些地膜的主要降解微生物及其降解机制,并对其土壤生态影响的研究现状进行了总结。本文为挖掘高效降解微生物资源、明确降解过程中的关键限速步骤、加强长周期生态效应研究提供了理论参考,为生物可降解地膜的大规模安全应用提供了新的解决思路和解决方案。
地膜(mulch films)作为一种在农业生产中广泛应用的地面覆盖材料,自20世纪70年代末引入我国以来,凭借其增温、保墒、保肥、抑制杂草生长及改善土壤理化性质等多重功能,极大地推动了农业生产的发
生物可降解地膜(biodegradable mulch films, BDMs)凭借其环境友好性、可自然降解性,被视为解决地膜污染问题最有效的途径之
基于此,本文综述了农业领域中广泛应用或具有广阔应用前景的5种聚酯类和聚碳酸酯类生物可降解地膜,探讨了这些地膜在农业环境中的主要降解微生物、降解酶、降解机制以及对土壤生态的影响。从环境中筛选出具有更强生物降解能力的微生物资源,深入挖掘潜在的生物降解机制,可为生物可降解地膜在农业生产中的安全应用与推广提供坚实的理论支撑,为解决地膜污染问题、实现可生物降解地膜的可控性提供新的思路和解决方案。
1 生物可降解地膜的种类
生物可降解地膜是指一类在自然环境条件(包括但不限于土壤的湿度、温度、微生物群落等复杂生态条件)以及特定人工模拟环境条件(例如堆肥过程中适宜的高温、高湿和丰富微生物种群的环境,或是厌氧消化所营造的无氧且富含特定厌氧微生物的环境)下,发生自然水解反应致使覆盖膜聚合物化学键断裂分解,通过真菌或细菌分泌的特异性酶引起降解,直至最终完全降解为二氧化碳(CO2)和水(H2O
材料 Material | 单体 Monomer | 结构式 Structural formulas | 常见聚合方式 Common polymerization methods | 物理性能 Physical performance | 参考文献References |
---|---|---|---|---|---|
Polycaprolactone (PCL) |
己内酯 ε-caprolactone |
![]() | Open-loop polymerization method | Exhibits depressed thermal transitions with a melting point (Tm=60 ℃) and glass transition temperature (Tg=-60 ℃), demonstrating exceptional processability |
[ |
Polylactic acid (PLA) |
乳酸(或丙交酯) Lactic acid |
![]() | Polymerization, open-loop polymerization method, enzymatic polymerization | Distinctive thermal stability manifested through elevated Tm (170 ℃) and Tg (60 ℃) exceeding conventional aliphatic polyester systems |
[ |
Polyhydroxyalkanoates(PHA) |
多种羟基脂肪酸 Hydroxyalkanoic acid |
![]() | - | Presents a Tm of 145 ℃ with adjustable physicochemical properties through monomer compositional engineering and stoichiometric optimization |
[ |
Poly(β- hydroxybutyrate) (PHB) |
3-羟基丁酸 3-hydroxybutyric acid |
![]() | Displays substantially elevated Tm (180 ℃) concomitant with superior mechanical rigidity and pronounced brittle fracture behavior |
[ | |
Poly(3-hydroxybutyrate-3-hydroxyvalerate (PHBV) |
3-羟基丁酸 3-hydroxybutyric acid 3-羟基戊酸 3-hydroxyvaleric acid |
![]() | Enables precise property tailoring via controlled 3-hydroxyvalerate content modulation in copolymer architecture |
[ | |
Poly(butylene adipate-co-terephthalate (PBAT) |
己二酸 Adipic acid 对苯二甲酸Terephthalic acid 1,4-丁二醇 1,4-butanediol |
![]() | Melt polycondensation |
Thermal profile comprises: Tm= 110-130 ℃, Tg=-30 ℃, crystallization temperature (Tc) 110 ℃, and crystallinity degree (Xc) 30% |
[ |
Poly propylene carbonate (PPC) |
二氧化碳Carbon dioxide 环氧丙烷Propylene oxide |
![]() | Coordination copolymerization | Features markedly elevated phase-transition temperatures with Tm=160-170 ℃ and Tg=30-41 ℃ |
[ |
2 作用于BDMs的微生物及酶
目前广泛应用的生物可降解地膜均具有潜在的可水解键,易被微生物分泌的脂肪酶、酯酶、角质酶等解聚酶水解,并转变为低聚物、二聚体或单体,再进一步经同化与矿化作用转化为CO2和H2
2.1 作用于PCL地膜的降解微生物及酶
PCL是通过ε-己内酯单体的开环聚合反应合成的,其分子链中的酯键能在多种微生物的作用下发生水解,从而实现生物降
(1) 在环境响应特异性机制研究方面,Al Hosni
(2) 对极端环境中微生物资源的深入开发,为PCL的降解研究开拓了全新的视角。Soulenthone
(3) 研究表明大多聚酯类材料的降解是由微生物胞外酯酶介导
然而,当前的研究大多集中在单一菌株或酶的降解性能上,而自然环境中微生物群落的代谢网络协同机制尚不明确。Tseng
2.2 作用于PLA地膜的降解微生物及酶
在降解PLA地膜的研究中,已发现了一系列关键的微生物及其分解酶。降解微生物主要包括5个细菌属:糖丝菌属、假诺卡氏菌属、链霉菌属、芽孢杆菌属和假单胞菌属,其中放线菌占据主导地位。此外,还包括真菌(如根霉、梗霉)和酵母菌(如隐球酵母)。对PLA地膜有突出降解能力的微生物主要集中于放线菌门的拟无枝酸菌属。Ikura
Williams
此外,Watanabe
2.3 作用于PHA地膜的降解微生物及酶
PHA是一类由微生物发酵合成的具有不同结构的脂肪族共聚酯,PHB、3-羟基丁酸酯和3-羟基戊酸酯的共聚物[poly(3-hydroxybutyrate-3-hydroxyvalerate), PHBV]等均属于PHA家族成员。因其良好的生物相容性和降解性,PHA可被多种微生物及其分泌酶高效降
Abe
PHA材料的生物降解性能与其结构特征密切相关,同时,微生物合成PHA的过程以及PHA在环境中的降解过程都与环境微生物群落组成呈现显著关联
2.4 作用于PBAT地膜的降解微生物及酶
PBAT是一种由己二酸、1,4-丁二醇和对苯二甲酸缩聚合成的脂肪族-芳香族共聚酯。研究表明,PBAT地膜能被多种微生物类群降解,如芽孢杆菌属、假单胞菌属、布鲁氏菌属、肠杆菌属和微杆菌属
PBAT在土壤中的降解还受多种环境因素制约,包括土壤条件、类型和气候条件等。Zhang
目前已从细菌、真菌等多种微生物中获得PBAT降解酶。Dresler
2.5 作用于PPC地膜的降解微生物及酶
PPC是由CO2和环氧丙烷在催化剂作用下,通过共聚反应制备而成的高分子聚合物。PPC因其强疏水性阻碍了微生物的附着与富集,进而限制其自身的降解速率。陶剑
Liang
综上所述,不同类型的生物降解地膜均有其特定的有效降解微生物类群。值得关注的是,在PPC、PBAT、聚丁二酸-己二酸丁二酯(adipic acid-1,4-butanediol-succinic acid copolymer, PBSA)地膜覆盖的土壤中均富集到了含有根瘤菌属的潜在降解菌
材料 Material | 生物可降解地膜类型 Types of biodegradable mulch film | 菌株 Strain | 菌株来源 Source | 降解周期 Degradation period (d) | 降解率 Degradation rate | 参考文献References |
---|---|---|---|---|---|---|
PCL | PCL mulch film | Pseudomonas sp. DS0901 | Activated sludge | 3 | 100% |
[ |
PLA | PLA mulch film | Pseudomonas geniculata WS3 | Soil and wastewater sludge | 20 | Around 45% |
[ |
PLA mulch film | Stenotrophomonas pavanii CH1 | / | 20 | 10% |
[ | |
PLA mulch film | Bacillus pumilus B12 | Soil | 2 | / |
[ | |
PLA powder/tray | Actinomadura keratinilytica T16-1 | / | 3 | 99%/32% |
[ | |
PLA mulch film | Nocardiopsis prasina | Ocean | 60 | (1.27±0.19)% |
[ | |
PLA mulch film | Priestia flexa PMPHB7 | Soil | 21 | 73% |
[ | |
PLA mulch film | Bacillus safensis PLA1006 | Soil | 30 | 8% |
[ | |
PLA mulch film | Tritirachium album | / | 4 | 78% |
[ | |
PHA | PHA mulch film | / | Soil | 80 | 75% |
[ |
PHB | PHB mulch film | Acinetobacter junii BP25 | Wastewater | 77 | 83% |
[ |
PHBV | PHBV |
Alcaligenes spp. Pseudomonas spp. | Soil | 365 | 13% |
[ |
PBAT | PBAT mulch film | Enterobacter hormaechei WX-2 | Soil | 60 | (20.8±2.2)% |
[ |
PBAT mulch film (PF, AF, PPSF) | Thermobifida fusca FXJ-1 | Compost samples | 9 | (82.87±1.01)%, (87.83±2.00)%, (52.53±0.54)% |
[ | |
PPC | PPC mulch film | Bacillus subtilis J16 | Soil | 30 | 9.95% |
[ |
图表中单独的“/”意为所引用文献中未提及。
The separate “/” in the chart means that it is not mentioned in the cited literature.
3 微生物降解BDMs的主要机制
BDMs的降解是一个复杂而有序的生物化学过程,主要涉及微生物及其分泌酶的作用。无论真菌或细菌,降解BDMs的本质是微生物分泌的解聚合酶使其化学键断

图1 微生物降解BDMs的主要步骤
Figure 1 Major steps in microbial degradation of BDMs.
(1) 吸附附着阶段,微生物通过自身结构,如鞭毛、菌毛及细胞壁表面电荷等,与待降解底物发生接触并附
值得注意的是,BDMs的降解过程还受到多种环境因素的影响。其中,温度是一个关键因
4 BDMs对土壤生态的影响
BDMs覆盖土壤过程中,其物理属性与普通PE地膜颇为相似,二者均能通过调节土壤微气候间接影响土壤生态系统和微生物群落功

图2 地膜对土壤生态影响示意图
Figure 2 Effects of mulch film on soil ecology.
尽管BDMs与普通PE地膜在作为物理屏障方面具有相似性,但它们在土壤中的最终归宿却是截然不同的。生长季结束后,普通PE地膜会从土壤表面去除或以残膜形式存在,而BDMs则是在土壤中自然降解。因此,BDMs对土壤生态的影响应该与普通PE地膜存在差异。王卫星
BDMs是逐级分解的,在此过程中可能会形成各种降解产物。Palsikowski
尽管目前已从BDMs对土壤理化性质、微生物群落、作物产量、生态毒性等方面开展了相关研究,但大多局限于短期范畴,难以全面揭示BDMs的长期潜在影响。后续研究应在此基础上进行多维度、长时间的动态监测与深度分析,精准解析其在土壤生态系统中的作用机制,以突破短期研究的局限并填补该领域在长期研究方面的空白,为BDMs的环境生态风险评估和安全应用推广提供更为科学和全面的依据。
5 总结与展望
生物可降解地膜作为传统地膜最具潜力的替代品,正展现出巨大的市场潜力和环保价值。为促进具有我国自主知识产权的生物可降解地膜得以广泛应用,深入探究具有共性结构的聚酯和聚碳酸酯类生物可降解地膜的降解机制及生态环境效应至关重要。本文聚焦于5种极具应用潜力的生物可降解地膜,系统概述了它们的基本特性,并深入分析了其降解微生物类群及关键降解酶在降解过程中的作用机制。然而,当前研究更关注于生物可降解地膜对农作物产量的提升,对其降解机制及生态环境效应的探讨尚显不足。鉴于生物可降解地膜推广规模的不断扩大,未来研究需着重于以下关键内容。
(1) 高效地膜降解微生物的挖掘与关键酶的解析。通过先进技术手段,精准解析酶与底物的相互作用模式,优化现有降解酶的设计,实现定向改造,从而明确生物可降解地膜降解的限速步骤,提升降解的可控性。
(2) 明确生物可降解地膜逐级降解过程的中间产物及其生态影响。深入分析逐级降解中间产物的积累特征,阐明逐级分解途径,评估其对生态环境的短期与长期潜在影响。
(3) 关注生物可降解地膜微塑料形成及其环境效应。明确生物可降解地膜微塑料形成的可能性,评估人工制备的各类生物可降解地膜微塑料的潜在生态影响。
这些研究将为生物可降解地膜的大规模安全应用、降解的可调控性的实现奠定基础。通过科学评估与合理调控,确保生物可降解地膜在促进农业生产的同时,不会对生态环境造成不可逆的损害,最终实现农业可持续发展和生态环境保护的双赢目标。
作者贡献声明
王玉:论文资料检索、论文撰写;王琰:论文构思和设计、论文修订;聂红云:论文资料收集、审阅和修订;姚建民:论文构思、审阅和修订;李瑞珍:论文审阅;万一:论文审阅和修订。
致谢
感谢在线平面设计网站(gdp.renlab.cn)提供绘图元素。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
李伟, 李明军, 赵恒章, 孙冬霞, 李树兵, 韩小伟. 地膜覆盖种植技术及残膜污染防控[J]. 农业工程, 2024, 14(6): 65-71. [百度学术]
LI W, LI MJ, ZHAO HZ, SUN DX, LI SB, HAN XW. Plastic film covering planting technology and residual film pollution prevention and control[J]. Agricultural Engineering, 2024, 14(6): 65-71 (in Chinese). [百度学术]
赵佳佳. 新中国成立以来种子事业的发展历程与经验启示[J]. 当代中国史研究, 2021, 28(6): 47-65, 158. [百度学术]
ZHAO JJ. The developmental course, experience and enlightenment of the seed industry since the founding of new China[J]. Contemporary China History Studies, 2021, 28(6): 47-65, 158 (in Chinese). [百度学术]
李真, 秦丽娟, 何文清, 刘勤, 刘恩科, 严昌荣. 应用可降解地膜, 推动农业清洁生产[J]. 蔬菜, 2017(8): 1-7. [百度学术]
LI Z, QIN LJ, HE WQ, LIU Q, LIU EK, YAN CR. Application of degradable plastic film to promote agricultural cleaner production[J]. Vegetables, 2017(8): 1-7 (in Chinese). [百度学术]
严昌荣, 何文清, 薛颖昊, 刘恩科, 刘勤. 生物降解地膜应用与地膜残留污染防控[J]. 生物工程学报, 2016, 32(6): 748-760. [百度学术]
YAN CR, HE WQ, XUE YH, LIU EK, LIU Q. Application of biodegradable plastic film to reduce plastic film residual pollution in Chinese agriculture[J]. Chinese Journal of Biotechnology, 2016, 32(6): 748-760 (in Chinese). [百度学术]
张美, 刘金铜, 付同刚, 高会. 农田残留地膜累积生态效应研究进展[J]. 生态毒理学报, 2023, 18(3): 223-237. [百度学术]
ZHANG M, LIU JT, FU TG, GAO H. Review on cumulative ecological effects of mulching film residues in farmland[J]. Asian Journal of Ecotoxicology, 2023, 18(3): 223-237 (in Chinese). [百度学术]
朱文悦, 吴景贵, 王蒙. 残留地膜对土壤物理性质及玉米根系生长的影响[J]. 环境科学与技术, 2019, 42(12): 33-38. [百度学术]
ZHU WY, WU JG, WANG M. Effects of residual mulch on soil physical properties and root growth of maize[J]. Environmental Science & Technology, 2019, 42(12): 33-38 (in Chinese). [百度学术]
严昌荣, 侯靖岳, 徐运赟, 洪志杰, 马志刚, 崔吉晓. 发达国家地膜应用及回收处理[J]. 农业环境科学学报, 2024, 43(6): 1288-1293. [百度学术]
YAN CR, HOU JY, XU YY, HONG ZJ, MA ZG, CUI JX. Plastic mulch film application and management: experience from developed countries[J]. Journal of Agro-Environment Science, 2024, 43(6): 1288-1293 (in Chinese). [百度学术]
YU YX, VELANDIA M, HAYES DG, DEVETTER LW, MILES CA, FLURY M. Chapter Three: Biodegradable Plastics as Alternatives for Polyethylene Mulch Films, Advances in Agronomy[M]. United States: Elsevier Science & Technology, 2024: 121-192. [百度学术]
毕昕媛, 姚建民. 聚碳酸亚丙酯生物降解渗水地膜的研制及性能分析[J]. 中国塑料, 2021, 35(10): 21-25. [百度学术]
BI XY, YAO JM. Preparation and performance analysis of PPC-based biodegradable water-permeable mulch film[J]. China Plastics, 2021, 35(10): 21-25 (in Chinese). [百度学术]
黄瑶珠, 高旭华, 谢东, 陈明周, 张文桦. 生物降解地膜田间应用降解效果及对后茬早稻产量的影响[J]. 现代农业科技, 2018(23): 1-3. [百度学术]
HUANG YZ, GAO XH, XIE D, CHEN MZ, ZHANG WH. Degradation effects of biodegradable mulch film applied in field and its effect on yield of succeeding crop early rice[J]. Modern Agricultural Science and Technology, 2018(23): 1-3 (in Chinese). [百度学术]
张会平, 谢东, 李发勇, 陈明周. 生物降解地膜及其应用研究进展[J]. 甘蔗糖业, 2018, 47(3): 60-64. [百度学术]
ZHANG HP, XIE D, LI FY, CHEN MZ. Research progress of biodegradable plastic film and its application[J]. Sugarcane and Canesugar, 2018, 47(3): 60-64 (in Chinese). [百度学术]
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 全生物降解农用地面覆盖薄膜: GB/T 35795—2017[S]. 北京: 中国标准出版社, 2017. [百度学术]
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Biodegradable mulching film for agricultural uses: GB/T 35795—2017[S]. Beijing: Standards Press of China, 2017 (in Chinese). [百度学术]
BRANNIGAN RP, DOVE AP. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates[J]. Biomaterials Science, 2017, 5(1): 9-21. [百度学术]
ALHARBI N, GUTHOLD M. Mechanical properties of hydrated electrospun polycaprolactone (PCL) nanofibers[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2024, 155: 106564. [百度学术]
INKINEN S, HAKKARAINEN M, ALBERTSSON AC, SÖDERGÅRD A. From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors[J]. Biomacromolecules, 2011, 12(3): 523-532. [百度学术]
陈国强, 刘心怡, 刘絮. 聚羟基脂肪酸酯在组织工程中的应用[J]. 同济大学学报(自然科学版), 2023, 51(11): 1657-1662. [百度学术]
CHEN GQ, LIU XY, LIU X. Application of polyhydroxyalkanoates in tissue engineering[J]. Journal of Tongji University (Natural Science Edition), 2023, 51(11): 1657-1662 (in Chinese). [百度学术]
杨志海, 谢众, 任鑫祺, 庄启昕. 生物可降解PHB材料的研究[J]. 中国塑料, 2023, 37(4): 95-103. [百度学术]
YANG ZH, XIE Z, REN XQ, ZHUANG QX. Research progress in biodegradable PHB materials[J]. China Plastics, 2023, 37(4): 95-103 (in Chinese). [百度学术]
MANDRAGUTTI T, JARSO TS, GODI S, BEGUM SS, BEULAH K. Physicochemical characterization of polyhydroxybutyrate (PHB) produced by the rare halophile Brachybacterium paraconglomeratum MTCC 13074[J]. Microbial Cell Factories, 2024, 23(1): 59. [百度学术]
RAHMAYANTI W, NAGARAJAN S, SU CC, NURKHAMIDAH S, LEE LT, WOO EM. Nano-assembly architectures and structural iridescence in poly(3-hydroxybutyric acid-co-3-hydroxyvaleric)[J]. ACS Applied Polymer Materials, 2024, 6(11): 6229-6240. [百度学术]
李鑫, 李想, 杨浦. PBAT基降解薄膜的阻隔性能[J]. 塑料, 2024, 53(6): 102-105. [百度学术]
LI X, LI X, YANG P. Barrier properties of PBAT-based degradable films[J]. Plastics, 2024, 53(6): 102-105 (in Chinese). [百度学术]
王美珍, 张玉, 孟兵, 邓晶晶. PBAT的加工性能与降解性能[J]. 工程塑料应用, 2023, 51(5): 68-74. [百度学术]
WANG MZ, ZHANG Y, MENG B, DENG JJ. Processing performance and degradability of PBAT[J]. Engineering Plastics Application, 2023, 51(5): 68-74 (in Chinese). [百度学术]
TROFIMCHUK ES, CHERNOV IV, TOMS RV, RZHEVSKIY SA, ASACHENKO AF, PLUTALOVA AV, SHANDRYUK GA, CHERNIKOVA EV, BELETSKAYA IP. Novel simple approach for production of elastic poly(propylene carbonate)[J]. Polymers, 2024, 16(23): 3248. [百度学术]
金琰, 蔡凡凡, 王立功, 宋超, 金文雄, 孙俊芳, 刘广青, 陈畅. 生物可降解塑料在不同环境条件下的降解研究进展[J]. 生物工程学报, 2022, 38(5): 1784-1808. [百度学术]
JIN Y, CAI FF, WANG LG, SONG C, JIN WX, SUN JF, LIU GQ, CHEN C. Advance in the degradation of biodegradable plastics in different environments[J]. Chinese Journal of Biotechnology, 2022, 38(5): 1784-1808 (in Chinese). [百度学术]
TYAGI P, AGATE S, VELEV OD, LUCIA L, PAL L. A Critical review of the performance and soil biodegradability profiles of biobased natural and chemically synthesized polymers in industrial applications[J]. Environmental Science & Technology, 2022, 56(4): 2071-2095. [百度学术]
张莉娟, 陈洁, 敖瑞雪, 赵秀兰. 土壤中生物降解塑料的降解过程及其对土壤动物的影响[J]. 环境科学, 2025, 46(2): 1145-1154. [百度学术]
ZHANG LJ, CHEN J, AO RX, ZHAO XL. Degradation processes of biodegradable plastics in soil and their effects on soil animals[J]. Environmental Science, 2025, 46(2): 1145-1154 (in Chinese). [百度学术]
AL HOSNI AS, PITTMAN JK, ROBSON GD. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic[J]. Waste Management, 2019, 97: 105-114. [百度学术]
SOULENTHONE P, SUZUKI M, TACHIBANA Y, FURUKORI M, SAITO T, KAWAMURA R, BANKOLE PO, KASUYA KI. Halopseudomonas sp. MFKK-1: a marine-derived bacterium capable of degrading poly(butylene succinate-co-adipate), poly(ε-caprolactone), and poly(butylene adipate-co-terephthalate) in marine ecosystems[J]. Polymer Degradation and Stability, 2025, 232: 111161. [百度学术]
HAIDER TP, VÖLKER C, KRAMM J, LANDFESTER K, WURM FR. Plastics of the future The impact of biodegradable polymers on the environment and on society[J]. Angewandte Chemie (International Ed), 2019, 58(1): 50-62. [百度学术]
贾骏, 段嫄嫄, 周建学, 张少锋. 聚己内酯电纺纤维支架材料对骨髓基质细胞增殖及分化的影响[J]. 第四军医大学学报, 2007(13): 1153-1155. [百度学术]
JIA J, DUAN YY, ZHOU JX, ZHANG SF. Effect of polycaprolactone-based electrospun nanofibrous framework on proliferation and differentiation of bone marrow stromal cells in vitro[J]. Journal of the Fourth Military Medical University, 2007(13): 1153-1155 (in Chinese). [百度学术]
MA QF, SHI K, SU TT, WANG ZY. Biodegradation of polycaprolactone (PCL) with different molecular weights by Candida antarctica lipase[J]. Journal of Polymers and the Environment, 2020, 28(11): 2947-2955. [百度学术]
FENG SS, YUE Y, CHEN JF, ZHOU J, LI YW, ZHANG QZ. Biodegradation mechanism of polycaprolactone by a novel esterase MGS0156: a QM/MM approach[J]. Environmental Science Processes & Impacts, 2020, 22(12): 2332-2344. [百度学术]
于丹, 付晓, 李凡, 陈珊. 一株可降解聚己内酯的细菌菌株选育及其生物降解过程[J]. 吉林农业大学学报, 2017, 39(5): 539-543. [百度学术]
YU D, FU X, LI F, CHEN S. Breeding and biodegradation of a PCL degradable bacterial strain[J]. Journal of Jilin Agricultural University, 2017, 39(5): 539-543 (in Chinese). [百度学术]
TSENG M, HOANG KC, YANG MK, YANG SF, CHU WS. Polyester-degrading thermophilic Actinomycetes isolated from different environment in Taiwan, China[J]. Biodegradation, 2007, 18(5): 579-583. [百度学术]
IKURA Y, KUDO T. Isolation of a microorganism capable of degrading poly-(l-lactide)[J]. The Journal of General and Applied Microbiology, 1999, 45(5): 247-251. [百度学术]
PRANAMUDA H, TOKIWA Y, TANAKA H. Polylactide degradation by an Amycolatopsis sp.[J]. Applied and Environmental Microbiology, 1997, 63(4): 1637-1640. [百度学术]
NAKAMURA K, TOMITA T, ABE N, KAMIO Y. Purification and Characterization of an extracellular poly(l-lactic acid) depolymerase from a soil isolate, Amycolatopsis sp. strain K104-1[J]. Applied and Environmental Microbiology, 2001, 67(1): 345-353. [百度学术]
LI F, WANG S, LIU WF, CHEN GJ. Purification and characterization of poly(l-lactic acid)-degrading enzymes from Amycolatopsis orientalis ssp. orientalis[J]. FEMS Microbiology Letters, 2008, 282(1): 52-58. [百度学术]
WILLIAMS DF. Enzymic hydrolysis of polylactic acid[J]. Engineering in Medicine, 1981, 10(1): 5-7. [百度学术]
ODA Y, YONETSU A, URAKAMI T, TONOMURA K. Degradation of Polylactide by Commercial Proteases[J]. Journal of Polymers and the Environment, 2000, 8(1): 29-32. [百度学术]
MATSUDA E, ABE N, TAMAKAWA H, KANEKO J, KAMIO Y. Gene cloning and molecular characterization of an extracellular poly(l-lactic acid) depolymerase from Amycolatopsis sp. Strain K104-1[J]. Journal of Bacteriology, 2005, 187(21): 7333-7340. [百度学术]
KHANDARE SD, CHAUDHARY DR, JHA B. Marine bacterial biodegradation of low-density polyethylene (LDPE) plastic[J]. Biodegradation, 2021, 32(2): 127-143. [百度学术]
BUBPACHAT T, SOMBATSOMPOP N, PRAPAGDEE B. Isolation and role of polylactic acid-degrading bacteria on degrading enzymes productions and PLA biodegradability at mesophilic conditions[J]. Polymer Degradation and Stability, 2018, 152: 75-85. [百度学术]
AKUTSU Y, NAKAJIMA-KAMBE T, NOMURA N, NAKAHARA T. Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35[J]. Applied and Environmental Microbiology, 1998, 64(1): 62-67. [百度学术]
AKUTSU-SHIGENO Y, TEERAPHATPORNCHAI T, TEAMTISONG K, NOMURA N, UCHIYAMA H, NAKAHARA T, NAKAJIMA-KAMBE T. Cloning and sequencing of a poly(dl-lactic acid) depolymerase gene from Paenibacillus amylolyticus strain TB-13 and its functional expression in Escherichia coli[J]. Applied and Environmental Microbiology, 2003, 69(5): 2498-2504. [百度学术]
WATANABE T, SUZUKI K, SHINOZAKI Y, YARIMIZU T, YOSHIDA S, SAMESHIMA-YAMASHITA Y, KOITABASHI M, KITAMOTO HK. A UV-induced mutant of Cryptococcus flavus GB-1 with increased production of a biodegradable plastic-degrading enzyme[J]. Process Biochemistry, 2015, 50(11): 1718-1724. [百度学术]
SHALEM A, YEHEZKELI O, FISHMAN A. Enzymatic degradation of polylactic acid (PLA)[J]. Applied Microbiology and Biotechnology, 2024, 108(1): 413. [百度学术]
张宗豪, 何宏韬, 张旭, 郑爽, 郑陶然, 刘絮, 陈国强. 塑料的降解与可降解塑料: 聚羟基脂肪酸酯的合成[J]. 生物工程学报, 2023, 39(5): 2053-2069. [百度学术]
ZHANG ZH, HE HT, ZHANG X, ZHENG S, ZHENG TR, LIU X, CHEN GQ. The degradation of plastics and the production of polyhydroxyalkanoates (PHA)[J]. Chinese Journal of Biotechnology, 2023, 39(5): 2053-2069 (in Chinese). [百度学术]
PÉREZ-ARAUZ AO, AGUILAR-RABIELA AE, VARGAS-TORRES A, RODRÍGUEZ-HERNÁNDEZ AI, CHAVARRÍA-HERNÁNDEZ N, VERGARA-PORRAS B, LÓPEZ-CUELLAR MR. Production and characterization of biodegradable films of a novel polyhydroxyalkanoate (PHA) synthesized from peanut oil[J]. Food Packaging and Shelf Life, 2019, 20: 100297. [百度学术]
CHHETRI G, KIM HJ, JEON JM, YOON JJ. Isolation of Massilia species capable of degrading poly(3-hydroxybutyrate) isolated from eggplant (Solanum melongena L.) field[J]. Chemosphere, 2024, 368: 143776. [百度学术]
ABE H, DOI Y. Structural effects on enzymatic degradabilities for poly[(R)-3-hydroxybutyric acid] and its copolymers[J]. International Journal of Biological Macromolecules, 1999, 25(1/2/3): 185-192. [百度学术]
LUSTY CJ, DOUDOROFF M. Poly-beta-hydroxybutyrate depolymerases of Pseudomonas lemoignei[J]. Proceedings of the National Academy of Sciences of the United States of America, 1966, 56(3): 960-965. [百度学术]
MUKAI K, YAMADA K, DOI Y. Efficient hydrolysis of polyhydroxyalkanoates by Pseudomonas stutzeri YM1414 isolated from lake water[J]. Polymer Degradation and Stability, 1994, 43(3): 319-327. [百度学术]
TANIO T, FUKUI T, SHIRAKURA Y, SAITO T, TOMITA K, KAIHO T, MASAMUNE S. An extracellular poly(3-hydroxybutyrate) depolymerase from Alcaligenes faecalis[J]. European Journal of Biochemistry, 1982, 124(1): 71-77. [百度学术]
MUKAI K, YAMADA K, DOI Y. Enzymatic degradation of poly(hydroxyalkanoates) by a marine bacterium[J]. Polymer Degradation and Stability, 1993, 41(1): 85-91. [百度学术]
KASUYA K, INOUE Y, TANAKA T, AKEHATA T, IWATA T, FUKUI T, DOI Y. Biochemical and molecular characterization of the polyhydroxybutyrate depolymerase of Comamonas acidovorans YM1609, isolated from freshwater[J]. Applied and Environmental Microbiology, 1997, 63(12): 4844-4852. [百度学术]
CHEK MF, KIM SY, MORI T, ARSAD H, SAMIAN MR, SUDESH K, HAKOSHIMA T. Structure of polyhydroxyalkanoate (PHA) synthase PhaC from Chromobacterium sp. USM2, producing biodegradable plastics[J]. Scientific Reports, 2017, 7: 5312. [百度学术]
侯丽君. 不同类型塑料降解菌的筛选及降解机理初探[D]. 杨凌: 西北农林科技大学硕士学位论文, 2020. [百度学术]
HOU LJ. Screening of different types of plastic degrading bacteria and preliminary study on degradation mechanism[D]. Yangling: Master’s Thesis of Northwest A&F University, 2020 (in Chinese). [百度学术]
BANDOPADHYAY S, LIQUET Y GONZÁLEZ JE, HENDERSON KB, ANUNCIADO MB, HAYES DG, DEBRUYN JM. Soil microbial communities associated with biodegradable plastic mulch films[J]. Frontiers in Microbiology, 2020, 11: 587074. [百度学术]
刘佳茜, 侯丽君, 刘婷婷, 王沛媛, 高祥, 林雁冰. PBAT地膜降解菌的筛选及其降解特性研究[J]. 农业环境科学学报, 2021, 40(1): 129-136. [百度学术]
LIU JX, HOU LJ, LIU TT, WANG PY, GAO X, LIN YB. Isolation of PBAT plastic-degrading bacteria and their degradation characteristics[J]. Journal of Agro-Environment Science, 2021, 40(1): 129-136 (in Chinese). [百度学术]
SUN WX, ZHANG YZ, ZHANG H, WU H, LIU Q, YANG F, HOU MZ, Qi YJ, ZHANG WB. Exploitation of Enterobacter hormaechei for biodegradation of multiple plastics[J]. Science of the Total Environment, 2024, 907: 167708. [百度学术]
JIA XB, ZHAO K, ZHAO J, LIN CQ, ZHANG H, CHEN LJ, CHEN JC, FANG Y. Degradation of poly(butylene adipate-co-terephthalate) films by Thermobifida fusca FXJ-1 isolated from compost[J]. Journal of Hazardous Materials, 2023, 441: 129958. [百度学术]
张敏, 孟庆阳, 刁晓倩, 翁云宣. PLA/PBAT共混物的降解性能研究[J]. 中国塑料, 2016, 30(8): 79-86. [百度学术]
ZHANG M, MENG QY, DIAO XQ, WENG YX. Biodegradation behavior of PLA/PBAT blends[J]. China Plastics, 2016, 30(8): 79-86 (in Chinese). [百度学术]
QIU YZ, WANG P, ZHANG LX, LI CM, LU JX, REN LH. Enhancing biodegradation efficiency of PLA/PBAT-ST20 bioplastic using thermophilic bacteria co-culture system: new insight from structural characterization, enzyme activity, and metabolic pathways[J]. Journal of Hazardous Materials, 2024, 477: 135426. [百度学术]
ZHANG YL, GAO W, MO AY, JIANG J, HE DF. Degradation of polylactic acid/polybutylene adipate films in different ratios and the response of bacterial community in soil environments[J]. Environmental Pollution, 2022, 313: 120167. [百度学术]
HAN YJ, TENG Y, WANG X, REN WJ, WANG XM, LUO YM, ZHANG HM, CHRISTIE P. Soil type driven change in microbial community affects poly(butylene adipate-co-terephthalate) degradation potential[J]. Environmental Science & Technology, 2021, 55(8): 4648-4657. [百度学术]
DRESLER K, van den HEUVEL J, MÜLLER RJ, DECKWER WD. Production of a recombinant polyester-cleaving hydrolase from Thermobifida fusca in Escherichia coli[J]. Bioprocess and Biosystems Engineering, 2006, 29(3): 169-183. [百度学术]
GOUDA MK, KLEEBERG I, VAN DEN HEUVEL J, MÜLLER RJ, DECKWER WD. Production of a polyester degrading extracellular hydrolase from Thermomonospora fusca[J]. Biotechnology Progress, 2002, 18(5): 927-934. [百度学术]
WALLACE PW, HAERNVALL K, RIBITSCH D, ZITZENBACHER S, SCHITTMAYER M, STEINKELLNER G, GRUBER K, GUEBITZ GM, BIRNER-GRUENBERGER R. PpEst is a novel PBAT degrading polyesterase identified by proteomic screening of Pseudomonas pseudoalcaligenes[J]. Applied Microbiology and Biotechnology, 2017, 101(6): 2291-2303. [百度学术]
YANG Y, MIN J, XUE T, JIANG PC, LIU X, PENG RM, HUANG JW, QU YY, LI X, MA N, TSAI FC, DAI LH, ZHANG Q, LIU YL, CHEN CC, GUO RT. Complete bio-degradation of poly(butylene adipate-co-terephthalate) via engineered cutinases[J]. Nature Communications, 2023, 14(1): 1645. [百度学术]
陶剑, 胡丹, 刘莉, 孔梅梅, 宋存江, 王淑芳. PLA, PPC和PHBV共混物的热性能、力学性能和生物降解性能研究[J]. 离子交换与吸附, 2010, 26(1): 59-67. [百度学术]
TAO J, HU D, LIU L, KONG MM, SONG CJ, WANG SF. Thermal characteristics, mechanical properties and degradability of PLA/PPC/PHBV blends[J]. Ion Exchange and Adsorption, 2010, 26(1): 59-67 (in Chinese). [百度学术]
DU LC, MENG YZ, WANG SJ, TJONG SC. Synthesis and degradation behavior of poly(propylene carbonate) derived from carbon dioxide and propylene oxide[J]. Journal of Applied Polymer Science, 2004, 92(3): 1840-1846. [百度学术]
LIANG J, ZHANG JF, YAO ZM, LUO SY, TIAN L, TIAN CJ, SUN Y. Preliminary findings of polypropylene carbonate (PPC) plastic film mulching effects on the soil microbial community[J]. Agriculture, 2022, 12(3): 406. [百度学术]
张加凡. PPC地膜对土壤群落的影响及促降解菌株的筛选[D]. 长春: 吉林农业大学, 2022. [百度学术]
ZHANG JF. Effects of PPC film mulching on soil community and screening of pro-degrading strains[D]. Changchun: Jilin Agricultural University, 2022 (in Chinese). [百度学术]
孙雨, 张加凡, 田春杰. 一种高效降解PPC地膜的方法: CN114570751A[P]. 2022-06-03. [百度学术]
TSUBOI S, HOSHINO YT, YAMAMOTO-TAMURA K, UENISHI H, OMAE N, MORITA T, SAMESHIMA-YAMASHITA Y, KITAMOTO H, KISHIMOTO-MO AW. Enhanced biodegradable polyester film degradation in soil by sequential cooperation of yeast-derived esterase and microbial community[J]. Environmental Science and Pollution Research International, 2024, 31(9): 13941-13953. [百度学术]
BONIFER KS, WEN XF, HASIM S, PHILLIPS EK, DUNLAP RN, GANN ER, DEBRUYN JM, REYNOLDS TB. Bacillus pumilus B12 degrades polylactic acid and degradation is affected by changing nutrient conditions[J]. Frontiers in Microbiology, 2019, 10: 2548. [百度学术]
PANYACHANAKUL T, KITPREECHAVANICH V, TOKUYAMA S, KRAJANGSANG S. Poly(dl-lactide)-degrading enzyme production by immobilized Actinomadura keratinilytica strain T16-1 in a 5-L fermenter under various fermentation processes[J]. Electronic Journal of Biotechnology, 2017, 30: 71-76. [百度学术]
OLIVEIRA J, ALMEIDA PL, SOBRAL RG, LOURENÇO ND, GAUDÊNCIO SP. Marine-derived Actinomycetes: biodegradation of plastics and formation of PHA bioplastics: a circular bioeconomy approach[J]. Marine Drugs, 2022, 20(12): 760. [百度学术]
CHATHALINGATH N, KINGSLY JS, GUNASEKAR A. Biosynthesis and biodegradation of poly(3-hydroxybutyrate) from Priestia flexa: a promising mangrove halophyte towards the development of sustainable eco-friendly bioplastics[J]. Microbiological Research, 2023, 267: 127270. [百度学术]
WANG YJ, HU T, ZHANG WT, LIN JW, WANG ZY, LYU SX, TONG HB. Biodegradation of polylactic acid by a mesophilic bacteria Bacillus safensis[J]. Chemosphere, 2023, 318: 137991. [百度学术]
HUANG QY, HIYAMA M, KABE T, KIMURA S, IWATA T. Enzymatic self-biodegradation of poly(l-lactic acid) films by embedded heat-treated and immobilized proteinase K[J]. Biomacromolecules, 2020, 21(8): 3301-3307. [百度学术]
SABAPATHY PC, DEVARAJ S, PARTHIPAN A, KATHIRVEL P. Polyhydroxyalkanoate production from statistically optimized media using rice mill effluent as sustainable substrate with an analysis on the biopolymer’s degradation potential[J]. International Journal of Biological Macromolecules, 2019, 126: 977-986. [百度学术]
CHAN CM, VANDI LJ, PRATT S, HALLEY P, RICHARDSON D, WERKER A, LAYCOCK B. Insights into the biodegradation of PHA/wood composites: micro- and macroscopic changes[J]. Sustainable Materials and Technologies, 2019, 21: e00099. [百度学术]
SONG ZW, ZHAO L, BI JG, TANG QY, WANG GD, LI YX. Classification of degradable mulch films and their promotional effects and limitations on agricultural production[J]. Agriculture, 2024, 14(8): 1235. [百度学术]
张敬勋. 聚碳酸亚丙酯在膜制品中的应用研究[D]. 青岛: 青岛科技大学硕士学位论文, 2017. [百度学术]
ZHANG JX. Study on the application of polypropylene carbonate in film products[D]. Qingdao: Master’s Thesis of Qingdao University of Science & Technology, 2017 (in Chinese). [百度学术]
SKARIYACHAN S, TASKEEN N, KISHORE AP, KRISHNA BV. Recent advances in plastic degradation: from microbial consortia-based methods to data sciences and computational biology driven approaches[J]. Journal of Hazardous Materials, 2022, 426: 128086. [百度学术]
SANDER M. Biodegradation of polymeric mulch films in agricultural soils: concepts, knowledge gaps, and future research directions[J]. Environmental Science & Technology, 2019, 53(5): 2304-2315. [百度学术]
JU ZC, DU XF, FENG K, LI SZ, GU SS, JIN DC, DENG Y. The succession of bacterial community attached on biodegradable plastic mulches during the degradation in soil[J]. Frontiers in Microbiology, 2021, 12: 785737. [百度学术]
ROMANO I, VENTORINO V, SCHETTINO M, MAGARACI G, PEPE O. Changes in soil microbial communities induced by biodegradable and polyethylene mulch residues under three different temperatures[J]. Microbial Ecology, 2024, 87(1): 101. [百度学术]
XIONG XB, WANG PY, ZHAO ZY, WANG J, LIU ST, MEI FJ, WANG WY, WANG YB, FANG XW, ZHU Y, ZHANG JL, WANG N, JIN JM, TAO HY, XIONG YC. Can biodegradable film replace polyethylene film to obtain similar mulching effects on soil functions and maize productivity in irrigation region A three-year experimental appraisal[J]. Journal of Cleaner Production, 2025, 486: 144473. [百度学术]
HUO YX, DIJKSTRA FA, POSSELL M, SINGH B. Mineralisation and priming effects of a biodegradable plastic mulch film in soils: influence of soil type, temperature and plastic particle size[J]. Soil Biology and Biochemistry, 2024, 189: 109257. [百度学术]
PISCHEDDA A, TOSIN M, DEGLI-INNOCENTI F. Biodegradation of plastics in soil: the effect of temperature[J]. Polymer Degradation and Stability, 2019, 170: 109017. [百度学术]
DI MOLA I, VENTORINO V, COZZOLINO E, OTTAIANO L, ROMANO I. Biodegradable mulching vs traditional polyethylene film for sustainable solarization: chemical properties and microbial community response to soil management[J]. Applied Soil Ecology, 2021, 163: 103921. [百度学术]
闫靖华, 费政军. 降解地膜对棉花农艺性状及土壤养分的影响[J]. 农业科技通讯, 2019(5): 133-135, 137. [百度学术]
YAN JH, FEI ZJ. Effects of degradable plastic film on agronomic traits of cotton and soil nutrients[J]. Bulletin of Agricultural Science and Technology, 2019(5): 133-135, 137 (in Chinese). [百度学术]
魏宏磊. 冷凉地区不同地膜覆盖对玉米田土壤温度、养分和酶活性的影响[D]. 长春: 吉林农业大学硕士学位论文, 2021. [百度学术]
WEI HL. Effects of different plastic film mulching on soil temperature, nutrient and enzyme activity in corn field in cold region[D]. Changchun: Master’s Thesis of Jilin Agricultural University, 2021 (in Chinese). [百度学术]
王卫星, 杨娟, 杨斌. 大豆覆盖PBAT全生物降解地膜种植效果[J]. 农业工程技术, 2024, 44(1): 18-19, 31. [百度学术]
WANG WX, YANG J, YANG B. Planting effect of soybean covered with PBAT biodegradable plastic film[J]. Agricultural Engineering Technology, 2024, 44(1): 18-19, 31 (in Chinese). [百度学术]
赵军, 李金海. PBAT型全生物降解地膜对棉花产量及土壤理化性质的影响[J]. 中国沼气, 2022, 40(3): 43-49. [百度学术]
ZHAO J, LI JH. Effects of PBAT type biodegradable plastic film on plant yield and soil physical and chemical properties[J]. China Biogas, 2022, 40(3): 43-49 (in Chinese). [百度学术]
WANG A, CHANG QT, CHEN CS, ZHONG XQ, YUAN KX, YANG MH, WU W. Degradation characteristics of biodegradable film and its effects on soil nutrients in tillage layer, growth and development of taro and yield formation[J]. AMB Express, 2022, 12(1): 81. [百度学术]
齐英, 董彰, 田尧甫, 冯志新, 江艳, 李静, 熊瑞冰, 张军帅. 可降解地膜覆盖对花生产量影响及土壤残膜存留效应研究[J]. 农业工程技术, 2024, 44(21): 43-46. [百度学术]
PALSIKOWSKI PA, ROBERTO MM, SOMMAGGIO LRD, SOUZA PMS, MORALES AR, MARIN-MORALES MA. Ecotoxicity Evaluation of the biodegradable polymers PLA, PBAT and its blends using Allium cepa as test organism[J]. Journal of Polymers and the Environment, 2018, 26(3): 938-945. [百度学术]
MUROI F, TACHIBANA Y, KOBAYASHI Y, SAKURAI T, KASUYA KI. Influences of poly(butylene adipate-co-terephthalate) on soil microbiota and plant growth[J]. Polymer Degradation and Stability, 2016, 129: 338-346. [百度学术]
SATTI SM, SHAH AA. Polyester-based biodegradable plastics: an approach towards sustainable development[J]. Letters in Applied Microbiology, 2020, 70(6): 413-430. [百度学术]
BALESTRI E, MENICAGLI V, LIGORINI V, FULIGNATI S, RASPOLLI GALLETTI AM, LARDICCI C. Phytotoxicity assessment of conventional and biodegradable plastic bags using seed germination test[J]. Ecological Indicators, 2019, 102: 569-580. [百度学术]
SCHÖPFER L, MENZEL R, SCHNEPF U, RUESS L, MARHAN S, BRÜMMER F, PAGEL H, KANDELER E. Microplastics effects on reproduction and body length of the soil-dwelling nematode Caenorhabditis elegans[J]. Frontiers in Environmental Science, 2020, 8: 41. [百度学术]
SUN YZ, DUAN CX, CAO N, DING CF, HUANG Y, WANG J. Biodegradable and conventional microplastics exhibit distinct microbiome, functionality, and metabolome changes in soil[J]. Journal of Hazardous Materials, 2022, 424: 127282. [百度学术]