网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

共生微生物对昆虫脂质代谢的影响  PDF

  • 王争艳
  • 张洁
  • 张闪
  • 周丽贞
  • 罗琼
河南工业大学 粮食和物资储备学院,河南 郑州

最近更新:2025-02-14

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

共生微生物与昆虫之间的相互作用对昆虫的生长、发育和繁殖具有至关重要的作用。本文重点阐述共生微生物如何通过复杂的信号通路来调控昆虫的脂质代谢。共生微生物通过多种机制影响昆虫的脂质代谢,不仅为宿主提供类固醇等脂质或脂质前体,还通过产生短链脂肪酸和激活免疫信号通路,来间接影响宿主的胰岛素信号通路,进而改变昆虫体内的脂质含量。此外,共生微生物还能通过激活雷帕霉素靶标蛋白和激脂激素信号通路来调节昆虫的脂质代谢过程。深入研究这些信号通路在不同昆虫种类中的共性与差异,对于理解昆虫的生态适应性和繁殖策略以及开发新的害虫治理策略具有重要意义。

脂质是脂肪和类脂及其衍生物的总称。脂肪是指由甘油和脂肪酸化合而成的甘油三酯;类脂是指结构或物理性质与脂肪相似的物质,主要包括磷脂、糖脂以及类固醇[其中类固醇涵盖麦角固醇、固醇(也被称为甾醇)、24-亚甲基胆固醇和胆固醇][

1]。脂质在昆虫的生命活动中扮演着至关重要的角色,它们不仅是昆虫能量贮存的主要形式,还是合成激素的前体物质,同时也是细胞膜和卵黄原蛋白的重要构成成分,广泛参与昆虫体内的多种生理生化过[2]

共生微生物广泛存在于昆虫体内及体表,涵盖了细菌、真菌及古细菌等多个类[

3]。在长期的协同进化历程中,昆虫与这些共生微生物之间建立起了稳定的共生关[4]。昆虫为共生微生物提供营养,而共生微生物则通过直接或间接的方式参与昆虫的生理生化过[5-6]。其中,共生微生物与昆虫脂质代谢之间的关联主要体现在为昆虫提供营养供给和调节其代谢过程2个方面。例如,共生类酵母菌或酵母菌能够向昆虫提供包括脂肪酸、胆固醇、二氢胆固醇、7-脱氢胆固醇和麦角固醇在内的多种关键脂质或脂质前[7-8];共生蓝变菌(Sporothrix sp.) 1提供的棕榈油酸能够提升松材线虫(Bursaphelenchus xylophilus)的繁殖能[9];而豌豆蚜(Acyrthosiphon pisum)在感染共生沙雷氏菌(Serratia symbiotica)后,其脂肪体中的脂肪酸合成酶和二酰基甘油酰基转移酶表达水平显著上调,进而合成更多的甘油三酯,增强了豌豆蚜对冷热胁迫的耐受[10]

目前,已有研究初步揭示了共生微生物能够通过调控胰岛素信号通路和激活免疫通路来影响黑腹果蝇(Drosophila melanogaster)的脂质代谢。当果蝇感染发光光杆状菌(Photorhabdus luminescens)后,其胰岛素信号通路中的真核翻译起始因子4E结合蛋白(eukaryotic initiation factor 4 binding protein, 4E-BP)基因和蜕皮激素诱导基因Impl2 (ecdysone-inducible gene l2)的表达水平显著上调,这导致转录因子FoxO发生核易位,并促进脂肪酶的表达,从而降低果蝇体内的脂质含[

11]。粪肠球菌(Enterococcus faecalis)会激活果蝇的Toll信号通路,导致果蝇脂肪体中脂肪酸合成酶和二酰甘油酰基转移酶的表达水平下调,进而减少脂肪体内的甘油三酯含[12]。然而,共生微生物调控宿主脂质代谢的机制因共生体系的不同而有所差异,因此需要更加深入的研究来全面解析这些相互作[13]。本文旨在综述共生微生物与昆虫脂质代谢之间的联系及其潜在机制,以期为深入研究共生微生物对昆虫生理功能的影响提供参考。

1 共生微生物为宿主提供脂质

共生微生物能够为昆虫提供脂质或脂质前体,如类固醇和脂肪酸等,这些物质在昆虫的生长、发育及繁殖过程中发挥着至关重要的营养供给和信号传导作[

14-15]。甾醇是昆虫进行蜕皮、生长和发育所不可或缺的营养素,然而,昆虫自身并不具备合成甾醇的能力,因此必须从食物或共生微生物中获取这一关键营养[16]。烟草甲(Lasioderma serricorne)、药材甲(Stegobium paniceum)、褐飞虱(Nilaparvata lugens)和无刺蜜蜂(Scaptotrigona depilis)体内的类酵母菌或酵母菌能够为宿主提供麦角固[8]。进一步地,褐飞虱体内的类酵母菌还能将麦角固醇转化为24-亚甲基胆固醇,并最终合成胆固[17]。此外,在白蚁的肠道中,拟杆菌和厚壁菌负责将多糖降解为单糖,并将其转运至细胞[18]。这些单糖在细胞内进一步被降解为丙酮酸,随后通过乙酰辅酶A和Wood-Ljungdahl途径产生乙酸,为宿主合成胆固醇和脂肪酸提供底[19]

2 共生微生物调控昆虫脂质代谢

2.1 IIS通路介导的调控

在胰岛素/胰岛素样生长因子信号(insulin/insulin-like growth factor signaling, IIS)通路中,胰岛素分泌细胞产生的胰岛素样肽(insulin-like peptides, ILPs)与细胞膜上的胰岛素受体结合,引发细胞内的级联反应,激活下游激酶如磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)和蛋白激酶B (protein kinase B, Akt),从而影响下游过程,包括抑制叉头转录因子O家族(fork head transcription factor O, FoxO)的核易位、激活固醇调节元件结合蛋白(sterol regulatory element‐binding protein, SREBP),进而诱导果蝇脂肪体合成甘油三[

20]。当IIS通路减弱时,FoxO被去磷酸化并进入核内,激活下游靶基因,启动brummer的表达,进而催化甘油三酯分[21] (图1)。

fig

图1  昆虫主要的免疫信号通路和胰岛素信号通路及其相互作用

Figure 1  Major immune and insulin pathway signaling in insects and their interactions. Arrows depict activation while bars represent suppression in molecular interactions. 4E-BP: Eukaryotic initiation factor 4 binding protein; AKH: Adipokinetic hormone; AKHR: Adipokinetic hormone receptor; Akt: Protein kinase B; cAMP: Cyclic adenosine monophosphate; Dif/Dorsal: Dorsal-related immunity factor; dREDD: Death-related ced-3/Nedd2-like protein; ERK: Extracellular signal-regulated kinase; FADD: Fas-associated death-domain-containing protein; FoxO: Fork head transcription factor O; GNBP: Gram-negative binding protein; HDAC4: Histone deacetylase 4; HSL: Hormone-sensitive triglyceride lipase; IIS: Insulin/insulin-like growth factor signaling; IKK: Inhibitor of κB kinase; ILPs: Insulin-like peptides; IMD: Immune deficiency; Impl2: Ecdysone-inducible gene l2; InR: Insulin receptor; MSP: Modular serine protease; MyD88: Myeloid differentiation factor 88; Pdk1: Serine/threonine kinase 3-phosphoinositide-dependent protein kinase 1; PI3K: Phosphatidylinositol 3-kinase; PKA: Protein kinase A; Rheb: Ras homolog enriched in brain; pro-Spz: Pro spätzle; S6K: Ribosomal S6 kinase; SPE: Spätzle-processing enzyme; SREBP: Sterol regulatory element‐binding protein; TAK1: Transforming growth factor-activated kinase 1; TGL: Triglyceride lipase; TOR: Target of rapamycin; TORC1: TOR complex 1; TSC: Tuberous sclerosis tumor suppressor.

共生微生物能激活昆虫的IIS通[

22]。当黑腹果蝇感染果实醋杆菌(Acetobacter pomorum)、植物乳杆菌(Lactobacillus plantarum)或嗜昆虫假单胞菌(Pseudomonas entomophila)后,其脂肪体内的IIS通路被激活,Akt磷酸化水平增加,同时FoxO靶基因表达水平降[23-24]。然而,一些研究得出了相反的结论。例如,当黑腹果蝇感染海分枝杆菌(Mycobacterium marinum)或球孢白僵菌(Beauveria bassiana)后,其脂肪体内的Akt磷酸化水平降低,而FoxO靶基因的表达水平上[25-26]。这些结果说明,共生微生物对宿主IIS通路的影响因微生物种类的不同而有所差异,也意味着共生微生物能通过调控IIS通路来影响宿主的脂质代谢。

进一步研究发现,共生微生物通过产生乙酸、丙酸和丁酸等短链脂肪酸来激活IIS通路,进而影响昆虫体内的脂质代[

24,27]。例如,黑腹果蝇肠道内的路氏肠杆菌(Enterobacter ludwigii)、果实醋杆菌和植物乳杆菌产生的乙酸,可以促进DILP2和DILP5的表达,从而激活IIS通路,导致果蝇体内甘油三酯含量增[28-29]。与此相反,病原菌可以刺激宿主消耗乙酸,进而抑制IIS通路。例如,当黑腹果蝇感染病原菌霍乱弧菌(Vibrio cholerae)后,其乙酰辅酶A合成酶-1基因的表达水平上[30],导致乙酸消耗量增大,肠道中乙酸水平下降,从而抑制IIS通路,干扰宿主的肠道脂质代[31-32] (图2)。

fig

图2  共生微生物对昆虫脂质代谢的影响

Figure 2  Effects of microbial symbionts on lipid metabolism in insects. Arrows depict activation while bars represent suppression in molecular interactions. AKH: Adipokinetic hormone; AKHR: Adipokinetic hormone receptor; IIS: Insulin/insulin-like growth factor signaling; ILPs: Insulin-like peptides; IMD: Immune deficiency; InR: Insulin receptor; TOR: Target of rapamycin.

2.2 IMD/IMD-IIS信号通路介导的调控

免疫缺陷(immune deficiency, IMD)信号通路在黑腹果蝇体内(包括肠道和脂肪体)发挥着重要的免疫调节作用,参与抵御革兰氏阴性菌以及部分革兰氏阳性菌的感[

33]。当细菌细胞壁中的二氨基庚二酸型肽聚糖与宿主细胞膜上的肽聚糖识别受体(peptidoglycan recognition protein LC, PGRP-LC)结合后,IMD蛋白开始募集FADD蛋白(fas-associated death-domain-containing protein)和dREDD蛋白(death-related ced-3/Nedd2-like protein)形成复合体,并通过蛋白激酶TAK1 (transforming growth factor-activated kinase 1)来激活IκB激酶(inhibitor of κB kinase, IKK)复合体,活化的IKK复合体激活转录因子Relish,促使Relish发生核易位,并启动抗菌肽的表[34] (图1)。

共生微生物可以通过激活昆虫体内的IMD信号通路来调控速激肽(tachykinin, Tk)的表达。例如,当黑腹果蝇感染果实醋杆菌后会激活IMD信号通路,促进果蝇中肠内分泌细胞合成速激[

35]。速激肽会与G蛋白偶联受体TKR99D/PKA (protein kinase A)信号传导途径相互作用,抑制肠壁细胞中SREBP的表达,从而抑制肠道内脂肪酸合成酶和乙酰辅酶A羧化酶的表达,进而抑制脂肪合[36]。据此推测,共生微生物可以通过IMD-Tk途径来调控宿主的脂质代谢。此外,共生微生物还能通过激活IMD信号通路来调控IIS通路,影响昆虫体内脂质代谢。例如,当黑腹果蝇感染病原菌霍乱弧菌或海分枝杆菌后,激活的IMD信号通路会通过抑制Pdk1 (serine/threonine kinase 3-phosphoinositide-dependent protein kinase 1)来降低IIS通路的活性,导致FoxO的关键靶基因Impl24E-BP的表达上调,而Impl2的过表达会进一步抑制IIS通路的活性,从而导致果蝇脂肪体中的脂质含量下[20,25,37] (图2)。

2.3 Toll/Toll-IIS信号通路介导的调控

在昆虫肠道和脂肪体中,真菌和革兰氏阳性菌感染会激活Toll信号通路。革兰氏阴性菌结合蛋白(Gram-negative binding protein, GNBP)受体识别病原菌细胞壁中的赖氨酸型肽聚糖,进而激活模块化丝氨酸蛋白酶(modular serine protease, MSP)的级联反[

38]。这一级联反应通过由Spӓtzle激活酶和Spӓtzle加工蛋白酶介导的裂解过程,使下游配体Spätzle产生活性,随后配体Spätzle与Toll受体结[39],进而激活接头蛋白MyD88和Pelle,促进转录因子Dif/Dorsal的核易位,最终启动载脂蛋白基因表[40] (图1)。例如,家蚕(Bombyx mori)和黄粉虫(Tenebrio molitor)在感染病原菌如球孢白僵菌、单核增生李斯特氏菌(Listeria monocytogenes)或大肠埃希氏菌(Escherichia coli)后,可以激活Toll信号通路,启动载脂蛋白III转录,从而促进宿主脂质的转[38,41-42]

共生微生物还可以通过激活Toll信号通路来抑制IIS通路,进而影响昆虫体内的脂质代谢。黑腹果蝇感染藤黄微球菌(Micrococcus luteus)、大肠埃希氏[

26]、粪肠球[43]或球孢白僵菌后,会激活脂肪体中Toll信号通路中的接头蛋白MyD88[44],MyD88通过作用于PI3K或PI3K下游蛋白激酶Pdk1来降低Akt的磷酸化水平,同时Toll信号通路还会降低DILP6的表达。IIS通路的减弱会活化FoxO,进而促进brummer的表达,导致昆虫脂肪体中脂质含量降[21,26,45] (图2)。

2.4 TOR/TOR-IIS信号通路介导的调控

雷帕霉素靶标蛋白(target of rapamycin, TOR)信号通路在调节昆虫的营养和能量可用性、生长因子信号以及免疫反应等方面起着关键作用,通过促进昆虫体内的脂质合成进而调控宿主细胞的生长、增殖和新陈代[

46]。TOR信号通路可以被氨基酸激活。结节性硬化症蛋白质复合体(tuberous sclerosis complex, TSC)会诱导Ras蛋白脑组织同源类似物(Ras homolog enriched in brain, Rheb)失活,进而抑制TOR复合体TORC1的形成,而TORC1可以激活S6激酶(ribosomal S6 kinase, S6K)和SREBP,从而促进脂质合[47] (图1)。此外,IIS通路中活化的Akt会抑制TSC复合体的形成,进而上调TOR信号通路。

共生微生物能够通过调控TOR信号通路来影响宿主体内的脂质代谢。例如,黑腹果蝇感染胡萝卜软腐坚固杆菌(Pectobacterium carotovorum)或嗜昆虫假单胞菌后,会激活肿瘤坏死因子受体相关因子蛋白3/Warts激酶信号传导途径,抑制黑腹果蝇体内的Akt磷酸化水平和TOR信号通路,进而抑制S6K以及SREBP,并激活宿主体内的丝氨酸/苏氨酸激酶ATG1,从而促进昆虫肠道的脂质分[

48]。一些研究得出了相反的结论,如当黑腹果蝇感染霍乱弧菌或嗜昆虫假单胞菌后会激活昆虫的TOR信号通路,导致S6K和SREBP被激活,使肠道中的脂质合成基因如lipindgataccfas的表达水平上[23,49]

另一项研究发现,黑腹果蝇感染植物乳杆菌后会激活IMD信号通路,导致转录因子Relish激活肠壁细胞中肽酶基因jon66Cijon66Cii的表达,导致肠道肽酶活性升高,从而促进宿主对蛋白质的消化来增加体内游离氨基酸的含量,增强了TOR信号通路,激活S6K和SREBP,同时也会进一步上调DILP的表达,共同促进宿主的脂质合[

24,50-52] (图2)。

2.5 AKH信号通路介导的调控

昆虫的脂质代谢受激脂激素(adipokinetic hormone, AKH)信号通路控[

53]。AKH由昆虫心侧体腺细胞合成、储存,并释放到血淋巴中,当与激脂激素受体(adipokinetic hormone receptor, AKHR)结合后,AKHR与G蛋白偶联增强,进而增强腺苷酸环化酶的活性,导致细胞内第二信使环磷酸腺苷(cyclic adenosine monophosphate, cAMP)的含量增加,引起细胞外调节蛋白激酶(extracellular signal-regulated kinase, ERK)发生磷酸化,从而激活PKA[54],使下游的甘油三酯酯酶(triglyceride lipase, TGL)发生磷酸化,从而催化脂肪体内的甘油三酯降解为甘油二酯,甘油二酯进入血淋巴后,经由载脂蛋白运输至昆虫的飞行肌,最终氧化产生能[55] (图1)。

共生微生物能够调控AKH信号通路促进昆虫体内的脂质分解。例如,当沙漠蝗(Schistocerca gregaria)感染金龟子绿僵菌(Metarhizium anisopliae var. acridum)或灰飞虱(Laodelphax striatellus)感染Wolbachia后,会通过激活AKH信号通路来促进脂肪体和血淋巴中的甘油三酯降解为甘油二[

56-57]。进一步的研究发现,当橘小实蝇的肠道感染密歇根克雷伯氏菌(Klebsiella michiganensis)后,会导致宿主神经肽抑咽侧体素A型(allatostatin, Ast-A)基因的表达水平下[58],而Ast-A基因通常通过刺激昆虫的AKH分泌细胞来产生AKH[59],在AKH信号通路中,激活的ERK会导致激素敏感性脂肪酶(hormone-sensitive triglyceride lipase, HSL)的Ser600位点发生磷酸化,从而催化宿主脂肪体中的脂质分[60] (图2)。然而,目前关于共生微生物如何调控神经肽表达的机制尚不明确。

3 总结与展望

昆虫的脂质代谢与其环境适应性和繁殖能力密切相关,共生微生物在昆虫宿主的脂质代谢中扮演着至关重要的角色。这些微生物能够为昆虫提供类固醇、脂肪酸等物质,以满足其生存和繁殖的需求。此外,共生微生物还通过产生短链脂肪酸激活IIS通路,通过IMD和Toll信号通路调控Akt的表达水平,通过TOR信号通路调节脂质基因表达水平以及通过调控神经肽基因表达水平影响AKH信号通路来影响昆虫的脂质代谢。深入研究这些信号通路在不同昆虫种类中的共性与差异,有助于揭示昆虫脂质代谢的调控机制。

在未来的研究中,可以进一步探索共生微生物产生的脂质代谢物在建立和维持共生关系中的作用,如进一步明确棕榈油酸在松材线虫与蓝变菌共生关系中的作[

9]。在微观层面,共生微生物如何调控宿主信号通路也存在很多未知,如尚需进一步研究共生微生物产生的乙酸如何调控宿主的IIS通[31],以及感染共生微生物后宿主免疫信号通路如何调控脂质代[45]。因此,对共生微生物如何调控昆虫脂质代谢仍有许多未知,需要进一步深入研究。

深入理解共生微生物对宿主脂质代谢的影响及其机制,对于开发新型病虫害防治策略至关重要。可以直接利用影响宿主脂质代谢的共生微生物及其产生的次级代谢物,开发新型农药或生物制[

61],以干扰昆虫脂质代谢来影响其繁殖能力。例如,利用肠道微生物调节昆虫卵黄原蛋白合成可以有效抑制害虫的繁殖,从而达到防治害虫的目[62]。此外,共生微生物的研究涉及生物学、医学和环境科学等多个领[63],深入理解其在昆虫脂质代谢中的作用,不仅能丰富基础生物学知识,还能为医学研究和环境保护提供新思路。

作者贡献声明

王争艳:项目管理、写作;张洁:写作;张闪:论文修改;周丽贞:论文修改;罗琼:论文修改。

利益冲突

公开声明

参考文献

1

王镜岩, 朱圣庚, 徐长法. 生物化学[M]. 3版. 北京: 高等教育出版社, 2002: 79-120. [百度学术] 

WANG JY, ZHU SG, XU CF. Biochemistry[M]. 3rd ed. Beijing: Higher Education Press, 2002: 79-120 (in Chinese). [百度学术] 

2

TRINH I, BOULIANNE GL. Modeling obesity and its associated disorders in Drosophila[J]. Physiology, 2013, 28(2): 117-124. [百度学术] 

3

DOUGLAS AE. Multiorganismal insects: diversity and function of resident microorganisms[J]. Annual Review of Entomology, 2015, 60: 17-34. [百度学术] 

4

王争艳, 王文芳, 鲁玉杰. 共生菌与昆虫抗药性[J]. 应用昆虫学报, 2021, 58(2): 265-276. [百度学术] 

WANG ZY, WANG WF, LU YJ. Symbiotic microbiota and insecticide resistance in insects[J]. Chinese Journal of Applied Entomology, 2021, 58(2): 265-276 (in Chinese). [百度学术] 

5

王争艳, 何梦婷, 鲁玉杰. 共生微生物对昆虫化学通讯的影响[J]. 应用昆虫学报, 2020, 57(6): 1240-1248. [百度学术] 

WANG ZY, HE MT, LU YJ. Influence of microbial symbionts on chemical communication in insects[J]. Chinese Journal of Applied Entomology, 2020, 57(6): 1240-1248 (in Chinese). [百度学术] 

6

ENGEL P, MORAN NA. The gut microbiota of insects: diversity in structure and function[J]. FEMS Microbiology Reviews, 2013, 37(5): 699-735. [百度学术] 

7

戈惠明, 谭仁祥. 共生菌-新活性天然产物的重要来源[J]. 化学进展, 2009, 21(1): 30-46. [百度学术] 

GE HM, TAN RX. Symbionts, an important source of new bioactive natural products[J]. Progress in Chemistry, 2009, 21(1): 30-46 (in Chinese). [百度学术] 

8

NASIR H, NODA H. Yeast-like symbiotes as a sterol source in anobiid beetles (Coleoptera, Anobiidae): Possible metabolic pathways from fungal sterols to 7-dehydrocholesterol[J]. Archives of Insect Biochemistry and Physiology, 2003, 52(4): 175-182. [百度学术] 

9

NING J, GU XT, ZHOU J, ZHANG HX, SUN JH, ZHAO LL. Palmitoleic acid as a coordinating molecule between the invasive pinewood nematode and its newly associated fungi[J]. The ISME Journal, 2023, 17(11): 1862-1871. [百度学术] 

10

ZHOU XF, LING XY, GUO HJ, ZHU-SALZMAN K, GE F, SUN YC. Serratia symbiotica enhances fatty acid metabolism of pea aphid to promote host development[J]. International Journal of Molecular Sciences, 2021, 22(11): 5951. [百度学术] 

11

HARSH S, HERYANTO C, ELEFTHERIANOS I. Intestinal lipid droplets as novel mediators of host-pathogen interaction in Drosophila[J]. Biology Open, 2019, 8(7): bio039040. [百度学术] 

12

MARTÍNEZ BA, HOYLE RG, YEUDALL S, GRANADE ME, HARRIS TE, CASTLE JD, LEITINGER N, BLAND ML. Innate immune signaling in Drosophila shifts anabolic lipid metabolism from triglyceride storage to phospholipid synthesis to support immune function[J]. PLoS Genetics, 2020, 16(11): e1009192. [百度学术] 

13

ATTARDO GM, BENOIT JB, MICHALKOVA V, KONDRAGUNTA A, BAUMANN AA, WEISS BL, MALACRIDA A, SCOLARI F, AKSOY S. Lipid metabolism dysfunction following symbiont elimination is linked to altered Kennedy pathway homeostasis[J]. iScience, 2023, 26(7): 107108. [百度学术] 

14

BAUMANN P, BAUMANN L, LAI CY, ROUHBAKHSH D, MORAN NA, CLARK MA. Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids[J]. Annual Review of Microbiology, 1995, 49: 55-94. [百度学术] 

15

郑林宇, 伦才智, 柳丽君, 李志红. 昆虫共生菌调控宿主生长发育和生殖的研究进展[J]. 植物保护学报, 2022, 49(1): 207-219. [百度学术] 

ZHENG LY, LUN CZ, LIU LJ, LI ZH. Influences of insect symbionts on host growth, development and reproduction: a review[J]. Journal of Plant Protection, 2022, 49(1): 207-219 (in Chinese). [百度学术] 

16

王争艳, 胡海生, 雍晗紫, 鲁玉杰. 共生菌与昆虫的营养互作[J]. 生物技术通报, 2022, 38(7): 99-108. [百度学术] 

WANG ZY, HU HS, YONG HZ, LU YJ. Nutritional interactions between symbiotic microbiota and insect hosts[J]. Biotechnology Bulletin, 2022, 38(7): 99-108 (in Chinese). [百度学术] 

17

WETZEL JM, OHNISHI M, FUJITA T, NAKANISHI K, NAYA Y, NODA H, SUGIURA M. Diversity in steroidogenesis of symbiotic microorganisms from planthoppers[J]. Journal of Chemical Ecology, 1992, 18(11): 2083-2094. [百度学术] 

18

HU HF, da COSTA RR, PILGAARD B, SCHIØTT M, LANGE L, POULSEN M. Fungiculture in termites is associated with a mycolytic gut bacterial community[J]. mSphere, 2019, 4(3): e00165-19. [百度学术] 

19

刘昭曦, 王禄山, 陈敏. 肠道菌群多糖利用及代谢[J]. 微生物学报, 2021, 61(7): 1816-1828. [百度学术] 

LIU ZX, WANG LS, CHEN M. Glycan utilization and metabolism by gut microbiota[J]. Acta Microbiologica Sinica, 2021, 61(7): 1816-1828 (in Chinese). [百度学术] 

20

DARBY AM, LAZZARO BP. Interactions between innate immunity and insulin signaling affect resistance to infection in insects[J]. Frontiers in Immunology, 2023, 14: 1276357. [百度学术] 

21

ZHANG YF, XI YM. Fat body development and its function in energy storage and nutrient sensing in Drosophila melanogaster[J]. Journal of Tissue Science & Engineering, 2014, 6(1): 141. [百度学术] 

22

李玉娟, 苏琬真, 胡坤坤, 李鹏程, 刘威, 姚红. 植物乳杆菌促进黑腹果蝇生长发育[J]. 昆虫学报, 2017, 60(5): 544-552. [百度学术] 

LI YJ, SU WZ, HU KK, LI PC, LIU W, YAO H. Lactobacillus plantarum promotes the growth and development of Drosophila melanogaster[J]. Acta Entomologica Sinica, 2017, 60(5): 544-552 (in Chinese). [百度学术] 

23

DESHPANDE R, LEE B, QIAO YM, GREWAL SS. TOR signalling is required for host lipid metabolic remodelling and survival following enteric infection in Drosophila[J]. Disease Models & Mechanisms, 2022, 15(5): dmm049551. [百度学术] 

24

YUN HM, HYUN S. Role of gut commensal bacteria in juvenile developmental growth of the host: insights from Drosophila studies[J]. Animal Cells and Systems, 2023, 27(1): 329-339. [百度学术] 

25

DIONNE MS, PHAM LN, SHIRASU-HIZA M, SCHNEIDER DS. Akt and FOXO dysregulation contribute to infection-induced wasting in Drosophila[J]. Current Biology, 2006, 16(20): 1977-1985. [百度学术] 

26

DIANGELO JR, BLAND ML, BAMBINA S, CHERRY S, BIRNBAUM MJ. The immune response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49): 20853-20858. [百度学术] 

27

DALILE B, van OUDENHOVE L, VERVLIET B, VERBEKE K. The role of short-chain fatty acids in microbiota-gut-brain communication[J]. Nature Reviews Gastroenterology & Hepatology, 2019, 16(8): 461-478. [百度学术] 

28

SHIN SC, KIM SH, YOU H, KIM B, KIM AC, LEE KA, YOON JH, RYU JH, LEE WJ. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling[J]. Science, 2011, 334(6056): 670-674. [百度学术] 

29

PRIYADARSINI S, MUKHERJEE S, SAMIKSHYA SN, BHANJA A, PAIKARA S, NAYAK N, MISHRA M. Dietary infection of Enterobacter ludwigii causes fat accumulation and resulted in the diabetes-like condition in Drosophila melanogaster[J]. Microbial Pathogenesis, 2020, 149: 104276. [百度学术] 

30

WOLFE AJ. The acetate switch[J]. Microbiology and Molecular Biology Reviews, 2005, 69(1): 12-50. [百度学术] 

31

HANG SY, PURDY AE, ROBINS WP, WANG ZP, MANDAL M, CHANG S, MEKALANOS JJ, WATNICK PI. The acetate switch of an intestinal pathogen disrupts host insulin signaling and lipid metabolism[J]. Cell Host & Microbe, 2014, 16(5): 592-604. [百度学术] 

32

HUANG JH, DOUGLAS AE. Consumption of dietary sugar by gut bacteria determines Drosophila lipid content[J]. Biology Letters, 2015, 11(9): 20150469. [百度学术] 

33

KHAN SA, KOJOUR MAM, HAN YS. Recent trends in insect gut immunity[J]. Frontiers in Immunology, 2023, 14: 1272143. [百度学术] 

34

LI SR, WANG J, TIAN X, TOUFEEQ S, HUANG WR. Immunometabolic regulation during the presence of microorganisms and parasitoids in insects[J]. Frontiers in Immunology, 2023, 14: 905467. [百度学术] 

35

KAMAREDDINE L, ROBINS WP, BERKEY CD, MEKALANOS JJ, WATNICK PI. The Drosophila immune deficiency pathway modulates enteroendocrine function and host metabolism[J]. Cell Metabolism, 2018, 28(3): 449-462. [百度学术] 

36

SONG W, VEENSTRA JA, PERRIMON N. Control of lipid metabolism by tachykinin in Drosophila[J]. Cell Reports, 2014, 9(1): 40-47. [百度学术] 

37

DAVOODI S, GALENZA A, PANTELUK A, DESHPANDE R, FERGUSON M, GREWAL S, FOLEY E. The immune deficiency pathway regulates metabolic homeostasis in Drosophila[J]. The Journal of Immunology, 2019, 202(9): 2747-2759. [百度学术] 

38

PETRONIO GP, PIETRANGELO L, CUTULI MA, MAGNIFICO I, VENDITTI N, GUARNIERI A, ABATE GA, YEWHALAW D, DAVINELLI S, MARCO RD. Emerging evidence on Tenebrio molitor immunity: a focus on gene expression involved in microbial infection for host-pathogen interaction studies[J]. Microorganisms, 2022, 10(10): 1983. [百度学术] 

39

ZHANG W, MENG J, NING J, QIN PJ, ZHOU J, ZOU Z, WANG YH, JIANG H, AHMAD F, ZHAO LL, SUN JH. Differential immune responses of Monochamus alternatus against symbiotic and entomopathogenic fungi[J]. Science China Life Sciences, 2017, 60(8): 902-910. [百度学术] 

40

BUCHON N, SILVERMAN N, CHERRY S. Immunity in Drosophila melanogaster: from microbial recognition to whole-organism physiology[J]. Nature Reviews Immunology, 2014, 14: 796-810. [百度学术] 

41

WU WM, LIN S, ZHAO Z, SU Y, LI RL, ZHANG ZD, GUO XJ. Bombyx mori apolipophorin-III inhibits Beauveria bassiana directly and through regulating expression of genes relevant to immune signaling pathways[J]. Journal of Invertebrate Pathology, 2021, 184: 107647. [百度学术] 

42

van der HORST DJ, RODENBURG KW. Locust flight activity as a model for hormonal regulation of lipid mobilization and transport[J]. Journal of Insect Physiology, 2010, 56(8): 844-853. [百度学术] 

43

SUZAWA M, MUHAMMAD NM, JOSEPH BS, BLAND ML. The toll signaling pathway targets the insulin-like peptide Dilp6 to inhibit growth in Drosophila[J]. Cell Reports, 2019, 28(6): 1439-1446. [百度学术] 

44

ROTH SW, BITTERMAN MD, BIRNBAUM MJ, BLAND ML. Innate immune signaling in Drosophila blocks insulin signaling by uncoupling PI (3, 4, 5) P3 production and Akt activation[J]. Cell Reports, 2018, 22(10): 2550-2556. [百度学术] 

45

BLAND ML. Regulating metabolism to shape immune function: Lessons from Drosophila[J]. Seminars in Cell & Developmental Biology, 2023, 138: 128-141. [百度学术] 

46

MARKAKI M, TAVERNARAKIS N. Metabolic control by target of rapamycin and autophagy during ageing: a mini-review[J]. Gerontology, 2013, 59(4): 340-348. [百度学术] 

47

SAXTON RA, SABATINI DM. mTOR signaling in growth, metabolism, and disease[J]. Cell, 2017, 168(6): 960-976. [百度学术] 

48

LEE KA, LEE WJ. Immune-metabolic interactions during systemic and enteric infection in Drosophila[J]. Current Opinion in Insect Science, 2018, 29: 21-26. [百度学术] 

49

HEIER C, KÜHNLEIN RP. Triacylglycerol metabolism in Drosophila melanogaster[J]. Genetics, 2018, 210(4): 1163-1184. [百度学术] 

50

ERKOSAR B, STORELLI G, MITCHELL M, BOZONNET L, BOZONNET N, LEULIER F. Pathogen virulence impedes mutualist-mediated enhancement of host juvenile growth via inhibition of protein digestion[J]. Cell Host & Microbe, 2015, 18(4): 445-455. [百度学术] 

51

STORELLI G, DEFAYE A, ERKOSAR B, HOLS P, ROYET J, LEULIER F. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing[J]. Cell Metabolism, 2011, 14(3): 403-414. [百度学术] 

52

LEE KA, CHO KC, KIM B, JANG IH, NAM K, KWON YE, KIM M, HYEON DY, HWANG D, SEOL JH, LEE WJ. Inflammation-modulated metabolic reprogramming is required for DUOX-dependent gut immunity in Drosophila[J]. Cell Host & Microbe, 2018, 23(3): 338-352. [百度学术] 

53

LU K, ZHANG XY, CHEN X, LI Y, LI WR, CHENG YB, ZHOU JM, YOU KK, ZHOU Q. Adipokinetic hormone receptor mediates lipid mobilization to regulate starvation resistance in the brown planthopper, Nilaparvata lugens[J]. Frontiers in Physiology, 2018, 9: 1730. [百度学术] 

54

HUANG HS, HE XB, DENG XY, LI G, YING GY, SUN Y, SHI LG, BENOVIC JL, ZHOU NM. Bombyx adipokinetic hormone receptor activates extracellular signal-regulated kinase 1 and 2 via G protein-dependent PKA and PKC but β-arrestin-independent pathways[J]. Biochemistry, 2010, 49(51): 10862-10872. [百度学术] 

55

解鸿青, 李聪慧, 崔诗遥, 但彩云, 屠振力, 时连根. 昆虫脂动激素及其受体调控能量动态平衡的研究概述[J]. 蚕桑通报, 2020, 51(2): 7-10, 13. [百度学术] 

XIE HQ, LI CH, CUI SY, DAN CY, TU ZL, SHI LG. Regulation of energy dynamic equilibrium by insect adipokinetic hormone and adipokinetic hormone receptor[J]. Bulletin of Sericulture, 2020, 51(2): 7-10, 13 (in Chinese). [百度学术] 

56

SEYOUM E, BATEMAN RP, CHARNLEY AK. The effect of Metarhizium anisopliae var. acridum on haemolymph energy reserves and flight capability in the desert locust, Schistocerca gregaria[J]. Journal of Applied Entomology, 2002, 126(2/3): 119-124. [百度学术] 

57

李国洋. Wolbachia对灰飞虱抗逆性及AKH相关基因表达的影响[D]. 重庆: 西南大学硕士学位论文, 2021. [百度学术] 

LI GY. Effects of Wolbachia on stress resistance and AKH related genes in the Laodelphax striatellus[D]. Chongqing: Master’s Thesis of Southwest University, 2021 (in Chinese). [百度学术] 

58

马琼可. 肠道共生菌通过抑咽侧体素Allatostatin-A基因调控橘小实蝇的取食量[D]. 武汉: 华中农业大学硕士学位论文, 2022. [百度学术] 

MA QK. Gut symbiont modulates the food intake of Bactrocera dorsalis through Allatostatin-A gene[D]. Wuhan: Master’s Thesis of Huazhong Agricultural University, 2022 (in Chinese). [百度学术] 

59

HENTZE JL, CARLSSON MA, KONDO S, NÄSSEL DR, REWITZ KF. The neuropeptide Allatostatin A regulates metabolism and feeding decisions in Drosophila[J]. Scientific Reports, 2015, 5: 11680. [百度学术] 

60

GREENBERG AS, SHEN WJ, MULIRO K, PATEL S, SOUZA SC, ROTH RA, KRAEMER FB. Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway[J]. The Journal of Biological Chemistry, 2001, 276(48): 45456-45461. [百度学术] 

61

徐晓, 孙飞飞, 尹彩萍, 王滢, 张应烙. 昆虫共生菌的次级代谢产物研究进展[J]. 微生物学报, 2018, 58(6): 1126-1140. [百度学术] 

XU X, SUN FF, YIN CP, WANG Y, ZHANG YL. Research progress in the secondary metabolites of insect symbionts[J]. Acta Microbiologica Sinica, 2018, 58(6): 1126-1140 (in Chinese). [百度学术] 

62

付俊瑞, 冯启理, 邓惠敏. 肠道菌群影响昆虫生殖的研究进展[J]. 应用昆虫学报, 2024, 61(2): 237-245. [百度学术] 

FU JR, FENG QL, DENG HM. Advances in understanding the effects of gut microbiota on insect reproduction[J]. Chinese Journal of Applied Entomology, 2024, 61(2): 237-245 (in Chinese). [百度学术] 

63

栾军波, 王四宝. 昆虫共生微生物: 研究进展与展望[J]. 昆虫学报, 2023, 66(10): 1271-1281. [百度学术] 

LUAN JB, WANG SB. Insect symbionts: research progresses and prospects[J]. Acta Entomologica Sinica, 2023, 66(10): 1271-1281 (in Chinese). [百度学术]