网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

CsgD对沙门氏菌生物膜形成的调控作用及其影响因素的研究进展  PDF

  • 黄颖 1
  • 彭玉倩 1
  • 王琪 2
  • 邱少富 1,2
  • 向莹 2
1. 郑州大学 公共卫生学院,河南 郑州; 2. 解放军疾病预防控制中心,北京

最近更新:2025-03-07

DOI: 10.13343/j.cnki.wsxb.20240552

CSTR: 32112.14.j.AMS.20240552

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

CsgD作为沙门氏菌生物膜形成的核心调控蛋白,通过调控生物膜的关键组成成分——纤维素和卷曲菌毛的表达,进而影响生物膜的形成。近年来,科学界在剖析沙门氏菌CsgD蛋白的调控网络及其复杂影响因素方面取得了较大进展。本文聚焦于CsgD在沙门氏菌生物膜形成过程中的调控功能,系统梳理了环境因素如何影响CsgD的功能表达,并全面分析了多种调控因子对CsgD的多层次调控作用,旨在加深对沙门氏菌生物膜形成机制及其调控网络的理解,并为后续研究提供可能的方向。

沙门氏菌(Salmonella)属于肠杆菌科,是一种革兰阴性杆状细[

1],在自然界中广泛存在。沙门氏菌是全球食源性疾病的主要致病菌之一,相关统计数据显示,全球范围内约30%的食源性疾病病例可归因于沙门氏菌感染,每年约有1.31亿腹泻病例由沙门氏菌引发,导致约37万人死[2-4]。在我国,2020年全国发生7 073起食源性疾病暴发事件,其中沙门氏菌作为最常见的细菌性病原体,造成了3 446起食源性疾[5-6]。沙门氏菌频繁引发与食物中毒紧密相关的公共卫生突发事件,不仅严重威胁公众健康,也凸显了沙门氏菌病防控工作的紧迫性与挑战性。

在沙门氏菌生长过程中,随着环境中营养物质的消耗,其生长速度减慢,并伴随有细胞外聚合物(extracellular polymeric substances, EPS)的分泌,这些EPS促使沙门氏菌形成复杂的多细胞聚集体,即生物膜(biofilm),该结构以细胞间紧密交织、增强长期存活能力和耐药性为显著特[

7-8]。因此,生物膜的形成被认为是沙门氏菌在极端恶劣环境条件下(如极端干燥和营养匮乏)维持生存能力的重要策略。鉴于此,深入剖析生物膜的形成过程及其背后的调控机制,对于制定有效的沙门氏菌防控策略具有重要作用。

CsgD,作为一个核心调控蛋白,主要通过激活csgBcsgAadrA基因从而影响生物膜中的关键成分卷曲菌毛(curli)和纤维素(cellulose)的表达,在生物膜的形成过程中发挥着至关重要的调控作[

9-11]。同时,CsgD的表达本身也受到一系列环境因子的精密调控,如温度、营养条件和渗透压等,这些环境因素通过改变相关基因的表达水平从而发挥作用,体现了微生物对外部环境变化的敏锐响应与适应机[9,11-13]。近期,科研界在揭示多调节因子如何协同作用于CsgD的调控网络方面取得了显著进展,这不仅深化了对生物膜形成复杂性的认识,也为理解CsgD在其中的核心作用提供了新的视[14-15]。本文通过系统性的文献综述,对现有关于CsgD在沙门氏菌生物膜形成过程中调控机制的研究成果进行归纳与分析,力图构建一个更为全面和深入的CsgD调控网络框架,为进一步揭示沙门氏菌生物膜形成的分子机制、开发针对性的防控策略提供坚实的理论基础。

1 CsgD调控沙门氏菌生物膜形成

1.1 CsgD的核心调控作用

生物膜的核心组成成分之一为EPS,该复合物关键组成因素为卷曲菌毛、纤维素、生物膜相关蛋白(biofilm associated proteins, Bap)和O抗原多糖[

16-17]。其中,卷曲菌毛和纤维素作为2个关键成分,通过增强细菌对宿主细胞及非生物表面的黏附能力,显著促进了细胞间的相互作用,在沙门氏菌生物膜的形成及其后续功能实现中扮演着至关重要的角[9,18-20]。相比之下,CsgD作为沙门氏菌生物膜形成中的核心调控因子,通过精细调控卷曲菌毛和纤维素的合成与组装,不仅确保了生物膜结构的完整性,还维护了其功能的稳定性,从而在沙门氏菌生物膜的形成与功能实现中发挥着不可替代的作[12,21-23] (图1)。

fig

图1  csgD对生物膜形成的调控网络和影响csgD表达的细胞内外部因素。csgD调控纤维素和卷曲菌毛的合成,以及影响csgD表达的细胞内外因素(温度、营养、氧分压、渗透压、pH等)和OmpR、IHF、H-NS等细胞内调控因子。

Figure 1  Regulatory network of csgD on biofilm formation and intracellular and external factors affecting csgD expression. csgD regulates cellulose and curli, as well as the intracellular and extracellular factors that affect csgD expression, including extracellular factors such as temperature, nutrition, oxygen partial pressure, osmolal pressure, pH, and intracellular regulators such as OmpR, IHF, and H-NS.

1.1.1 卷曲菌毛表达途径

卷曲菌毛作为一种独特的淀粉样蛋白纤维结构,在细菌表面形成并广泛参与细菌与环境的相互作用。这些复杂的纤维结构由特定的基因簇——csgBAC-csgDEFG操纵子编码,体现了基因表达与细胞外基质构建之间的高度协[

24]csgBAC操纵子负责编码卷曲菌毛的2个关键成分:主要亚基CsgA和核心蛋白CsgB,其中,CsgA是卷曲菌毛的主要构成成分,其高度保守的氨基酸序列使得多个CsgA分子能够自组装成β-折叠的淀粉样纤维结构;相比之下,CsgB则作为支架蛋白,帮助稳定并引导CsgA的组装过程,确保卷曲菌毛的正确形成;CsgE和CsgF蛋白作为转运辅助因子,在内膜与外膜之间形成了一个有效的通道,促进了CsgA和CsgB从细胞质到外膜的转运,最终,这些蛋白在外膜转运蛋白CsgG的协助下,被释放到细胞外空间,开始卷曲菌毛的组装过[25]。CsgC作为一种抑制因子,在细胞内阻止CsgA蛋白过早地形成淀粉样纤维结[26]。转录因子CsgD在卷曲菌毛生物合成的调控网络中处于核心地位,它通过特异性地结合到csgBAC操纵子的启动子区域,激活该操纵子的转录,从而上调CsgA、CsgB等关键蛋白的表达水[27]。这一过程是卷曲菌毛生物合成的起始步骤,对于后续蛋白的合成、转运及组装过程具有深远的影响。

1.1.2 纤维素合成途径

纤维素即αβ-1,4-d-葡萄糖聚合物,与生物膜中的其他胞外基质成分相互交织,共同构建了一个复杂的三维网络结构,促进细胞间相互作用,保护细胞使其免受不利环境的影响;纤维素的合成受到bcsABZC-bcsEFG操纵子的编码控制,这一操纵子的精确表达对于细菌在特定生态位(如支持生物膜生长的环境)中构建稳定且功能性的纤维素支架至关重[

27]

纤维素的生物合成也受到CsgD的正向调控。CsgD激活adrA的转录后,AdrA通过与细菌纤维素合成操纵子bcsABZC-bcsEFG的一个或多个基因产物的直接相互作用,在转录后水平上激活纤维素的合成;或通过其C末端的GGDEF结构域产生c-di-GMP,从而激活纤维素合成酶BcsA,激活纤维素的生物合[

10,27-29]。这一过程在转录后水平实现了对纤维素合成速率的精确调控,确保了细胞能够根据环境需求适时调整其胞外基质成分的合成与组装。

1.2 CsgD表达的双稳态特征

CsgD在生物膜细菌群落中的表达存在双稳态特征,即CsgD的表达水平在细菌群体中呈现出显著的异质性,细菌群落内自然分化为高表达与低表达CsgD的2个亚群,这一独特的表达模式不仅体现了细菌在能量利用上的高效策略,还可能为细菌群落赋予额外的适应性和进化上的优[

11]。Grantcharova[13]在单细胞水平通过检测绿色荧光蛋白(green fluorescent protein, GFP)标记的CsgD表达水平,发现CsgD在生物膜发育过程中以双稳态方式表达;高表达CsgD的细菌亚群在生物膜边缘负责合成并分泌大量的细胞外基质成分(如卷曲菌毛和纤维素),这些成分构成了生物膜的物理骨架,与生物膜的形成与细胞聚集有关,为细菌群落提供了结构上的稳定性;生物膜内部低CsgD表达的细菌亚群被高表达CsgD的细菌亚群包裹,由于生物膜内部营养物质缺失,这些细菌可能将资源更多地投入到与其他生存和适应相关的活动中,如代谢调节和探索新的生态[13]。该研究以蛋白标记的方式观察了CsgD蛋白在生物膜内的双稳态的表达,但CsgD的双稳态表达模式形成的具体通路目前尚不清楚,CsgD表达水平不同的细菌亚群之间如何进行物质交流和信号传递也尚不明确。

这种双稳态的CsgD表达模式为沙门氏菌生物膜构建了一种精细的资源分配机制,它确保了生物膜结构的稳固性,同时保留了细菌群落的多样性和适应性,使得整个群落能够更灵活地应对环境变[

11]。从进化生态学的角度来看,这种表达模式可能促进了细菌在多变环境中的生存和繁衍,增加了其适应不同生态位的能力。未来的研究可以进一步探索CsgD双稳态表达在不同环境条件下的变化规律,以及其对沙门氏菌适应性和进化潜力的具体影响,为开发新型抗菌疗法和疫苗提供科学依据。

2 影响csgD表达的环境因素

环境因素如温度、营养、氧分压、渗透压和pH等对生物膜EPS的产生及其化学组成的调控具有显著作[

9,11-13]csgD基因的转录激活受到低渗透压环境、低温以及营养受限状态等一系列体外环境因素的诱导,这些诱导作用通过RNA聚合酶的sigma (σ)因子RpoS、多样化的转录因子以及小RNA分子(small RNAs, sRNAs)等分子的作用于CsgD的调控网络(表1)[30-32]

表1  细胞内外因素对csgD的调控作用
Table 1  Regulation of csgD by intracellular and extracellular factors
FactorsRegulation of csgDReferences
Positive regulationNegative regulation
Extracellular factors
Temperature Below 30 °C Higher than 30 °C [12,30-32]
Nutritional conditions Nutritional limitation Glucose [9,33-34]
Partial pressure of oxygen Microoxygen condition Aerobic and anaerobic conditions [9]
pH Alkaline condition (pH 8.5) Acidic conditions (pH 5.5) [9,35]
Osmotic pressure Low osmotic pressure High osmotic pressure [36-41]
Intracellular factors
OmpR D1 and D2 binding sites D3-D7 binding sites [12,15,30,43-44]
MltE and MltC Up-regulation of transcriptional activity - [43,45-46]
IHF IHF1 binding sites IHF3 binding site [30,47-48]
H-NS - Repression of transcription [44,49-51]

- means there are no reference.

2.1 温度

在沙门氏菌和大肠杆菌中,csgD基因的表达模式与生物膜构建过程紧密关联于环境温度的变化,具体而言,当环境温度降至30 ℃以下时,csgD基因的表达被显著激活,进而促进生物膜的形成;相反,在较高温度条件下,此过程则受到明显的抑[

30-32],这一温度依赖性调控机制已在多项研究中得到确凿证据支持。

Römling[

12]观察细菌在不同温度下的生长情况时,发现一种与细菌生物膜形成相关的特定菌落形态——红色、干燥、粗糙型(red, dry and rough, rdar)仅在低温(28 ℃)下表达,在许多研究中,是否具有rdar形态是评价某些肠杆菌科细菌(如沙门氏菌和大肠杆菌)生物膜形成能力的指[7,13]。这意味着温度变化作为上游信号,在分子水平上直接调控csgD基因的转录活性,从而调控生物膜的形成过程。

2.2 营养

葡萄糖在体外环境中被确认为是抑制csgD表达和生物膜形成的重要因素,其存在显著削弱了这些过程的启动,相反,营养限制状态被视为激活csgD转录的早期信号之[

9,33]。在细菌生长的早期阶段,csgD的表达被严格抑制,然而,当细菌进入生长稳定期,伴随着细菌密度的增高和营养的逐渐耗尽,csgD的表达经历了一个显著的诱导过程,其表达水平可较初期激增高达370[34],标志着细菌向生物膜形成阶段的过渡。

2.3 氧分压

在沙门氏菌中,氧分压对csgD转录活性的影响在细菌生物学中展现出复杂的环境依赖性:在无盐LB培养基中,当菌株在微氧条件下培养时,csgD的转录活性达到最大,这表明有限的氧气供应对csgD的表达和沙门氏菌生物膜形成具有的促进作用;而在好氧和厌氧环境下,csgD的转录活性明显降低,仅有0-30%的活性,揭示了氧气浓度对csgD转录的双向调控作[

9]。然而,在M9基础培养基中,氧分压对csgD转录活性的影响模式发生了显著变化,好氧条件成为促进csgD转录的关键因素,而在微氧和厌氧环境中,csgD的转录活性显著降低,降幅约为35%,这表明培养基的成分及其所营造的微生物生长环境对氧分压调控csgD转录的机制具有重要影响,氧分压对csgD转录的调控是一个多因素共同作用的结果,其中包括培养基的成分以及细菌的代谢状况[9]

2.4 pH

在沙门氏菌中,pH值对CsgD的表达和生物膜的形成具有重要影响。研究表明,碱性环境(pH 8.5)显著增强了csgD启动子的活性,进而促进了生物膜相关基因的表达,这对于沙门氏菌在碱性条件下的生存和适应至关重要;相反,在酸性环境(pH 5.5)中,csgD启动子的活性受到抑制,导致生物膜形成减弱,这反映了沙门氏菌在面对不利pH条件时的一种适应性策[

9]。这种pH依赖性的表达调控机制是沙门氏菌高度灵活的环境适应能力的体现。通过精细调控CsgD的表达水平,细菌能够根据不同环境pH的变化,调整其生物膜的形成能力,进而优化其在不同生态位中的生存和繁[35]

值得注意的是,在酸性条件下,细菌csgD启动子的活性受到抑制的具体机制尚未完全明确,但研究发现插入点突变会改变酸性环境对其活性的抑制作用,如在野生型鼠伤寒沙门氏菌株14028-4r的csgD启动子区域-17后插入单个T,将高度调控的野生型启动子转化为半组成型启动子(emiconstitutive promoter, scPcsgD),这种半组成型启动子在酸性条件下(pH 5.5)表现出较高的活性,而在碱性条件下(pH 8.5)活性相对较低,同时,由于scPcsgD的固有活性较高,即使在不利的环境pH下,CsgD和生物膜形成也能保持一定程度的表[

9],这进一步拓宽了沙门氏菌在不同环境条件下的生存策略。

2.5 渗透压

在沙门氏菌中,渗透压是一个关键的环境因素,它通过EnvZ/OmpR和CpxA/CpxR双组分信号系统来精细调控csgD及其相关基因(如csgBAC)的表达,这种调控机制在细菌的不同生长阶段展现出不同的效[

36]

在细菌生长的迟缓期和对数期,渗透压对CsgD的表达有显著影响:当处于低渗透压环境时,EnvZ的活性降低,导致外膜蛋白R (outer membrane protein R, OmpR)保持低磷酸化状态,低水平的OmpR-P激活ompF的转录,OmpF的较大孔隙有利于外部环境中较低浓度营养物质向细胞内部扩散,同时低水平的OmpR-P结合到csgD转录起始位点上游的高亲和力结合位点(-50.5 bp),从而促进csgD的转录,随后激活csgDEFG表达,进而增加csgBA的表达,这种机制有助于细菌在低渗透压条件下增强生物膜的形成能力,以更好地适应环境;相反,在高渗透压条件下,CpxA/CpxR和EnvZ/OmpR这2个信号系统均被激活,从而导致OmpR-P和CpxR-P水平升高,OmpR-P的水平升高可以抑制ompF的转录,并激活ompC的转录,此时,OmpC的较小孔隙会阻碍细胞外大分子的进入,CpxR-P和OmpR-P分别结合到csgD启动子的不同位点,这种结合模式会干扰RNA聚合酶的结合,从而导致csgD的转录受到抑[

36-39]。这种抑制机制可能是细菌在高渗透压条件下减少不必要能量消耗的一种策略。

随着细菌的生长进入稳定期(如生长18 h后),渗透压对CsgD及其相关基因表达的影响变得有限,虽然高渗透压仍然能够激活CpxA/CpxR信号系统,但这种激活并不再进一步影响csgDcsgBAC的表[

40]。这表明细菌在稳定期已经建立了稳定的基因表达模式,不再像生长初期和对数期那样对渗透压变化敏感。

同时,在EnvZ/OmpR和CpxA/CpxR双组分信号系统中,也存在一定的相互作用。CpxA对OmpR有弱磷酸化作用,但在EnvZ存在时,与EnvZ的强磷酸化作用相比,CpxA对OmpR的弱磷酸化作用不显现,此时,EnvZ激酶和磷酸酶活性之间的平衡能够使OmpR的磷酸化速度和去磷酸化过程都保持在高水平,使得OmpR-P处于中间水平;当EnvZ不存在、CpxR与CpxA同时存在时,CpxA可对CpxR和OmpR进行磷酸化,由于CpxR能够与OmpR竞争,从而导致CpxA磷酸化OmpR的过程被抑制,OmpR-P水平降[

41]。EnvZ/OmpR和CpxA/CpxR双组分信号系统这种复杂的调控网络不仅展示了细菌能够巧妙地利用环境信号来调整其生理状态,还揭示了生物体内在的复杂性和适应性。

3 多种调节因子调控csgD表达

在细菌生物膜的构建过程中,多种调节因子发挥着关键作用,这些调节因子不仅可诱导生物膜的形成,还深刻影响着关键调控基因csgD的表达水平。csgD的表达机制复杂且精细,受到一系列细胞内调节蛋白的严密监控,每种调节蛋白专门响应特定的环境参数或条件变[

14]

在沙门氏菌中,csgBACcsgDEFG操纵子之间的基因间区即是csgD的启动子,也为多个转录因子提供了结合位点,这一区域因此成为了一个信息整合的中心,能够汇集并整合来自不同环境源头的信号,协调调控生物膜形成相关基因的表达。截至目前,已发现至少有48个转录因子与csgD启动子区域强结合,其中OmpR、裂解性转糖基酶E (lytic transglycosylase E, MltE)、裂解性转糖基酶C (lytic transglycosylase C, MltC)、整合作用宿主因子(integration host factor, IHF)和组蛋白样类核结构蛋白(histone-like nucleoid structuring protein, H-NS)等转录因子的调控作用目前已较为明确(表1)[

14-15,42]

3.1 OmpR

反应调节因子OmpR,作为EnvZ/OmpR双组分系统中的核心响应元件,其磷酸化状态直接调控着csgD基因的转录活性,在面临如低渗透压和酸性环境等外部刺激时,OmpR经历磷酸化修饰,随后与csgD启动子区域的特定序列紧密结合,显著促进该基因的转录增[

43]。研究表明,在鼠伤寒沙门氏菌及大肠杆菌的csgD启动子上游,均明确识别出2个与OmpR高度亲和的推定结合位点D1和D2,分别定位于启动子上游-50.5 bp和-49.5 bp的位置,其中D1位点对于csgD的转录激活尤为关键,此外,研究证实,当ompR基因缺失时,这2种细菌中csgD的转录活动受到显著抑制甚至终止,显示出OmpR在csgD转录调控中的不可或缺[12]

在特定环境条件下,如有氧环境中,高水平的OmpR通过与位于csgD启动子上游-34 bp至-220 bp区间内的4个额外结合位点(D3-D6)的相互作用,转而抑制CsgD的表达,新近发现的D7位点在微需氧条件下也展现出类似的抑制作用,这种复杂的调控机制使得细菌能够精准且灵活地根据外界环境的变化调整csgD基因的表达水平,以优化其生存策略和适应能[

15,30,44]

3.2 MltEMltC

MltE和MltC作为2种关键的裂解性转糖基酶(lytic transglycosylase, LTG),通过调控csgD的表达来影响生物膜的生成,在沙门氏菌ΔmltE和ΔmltC双突变体的研究中发现,相较于野生型菌株,这些突变体中的csgD的mRNA水平下降至约为野生型的47%,且在刚果红琼脂平板上生长24 h后出现白色光滑的菌落外观,这一结果明确指出了这2种酶在csgD表达调控中的重要作[

45]。然而,在ΔmltE和ΔmltC的单突变体中CsgD表达变化不大,且关于mltEmltC如何通过联合作用从而影响生物膜的形成的研究尚不十分明确。

尽管已知RpoS和OmpR是调控沙门氏菌生物膜生成的重要因素,但研究发现RpoS和OmpR的过表达未恢复ΔmltEΔmltC双突变体的CsgD表达,所以它们并未直接参与MltE和MltC介导的csgD表达调控路径;然而,在ΔmltEΔmltC突变体中过表达二鸟苷酸环化酶时,CsgD表达上调,表明细胞内第二信使c-di-GMP的积累能够补偿部分ΔmltEΔmltC双突变体对rdar形态及CsgD表达的影响,这表明了c-di-GMP信号传导可能位于MltE和MltC调控路径的下游,其作为关键的调控节点,在调节生物膜相关基因如csgD的表达中发挥着不可替代的作[

43]

Son[

46]的研究发现,当mltEmltC缺失时,细菌在中性环境下形态及生长情况正常,但在酸性环境下显示出明显的细胞分离缺陷,同时细菌生物膜通透性增加,细菌对抗生素的耐药性下降,研究表明MltE和MltC可在酸性条件下促进细菌生存和提高细菌对抗生素的耐药性。

3.3 IHF

IHF作为一种在细菌中广泛存在且高度丰富的组蛋白样异二聚体蛋白,由2-10 kDa的同源亚基构成,是多种细菌生理活动不可或缺的结构成分,IHF通过与csgD启动子区内的特定DNA序列特异性结合,从而调控csgD基因的转录激活或抑制状态,进而影响生物膜的形[

47]

针对鼠伤寒沙门氏菌的IHF突变体研究表明,与野生型相比,突变体在刚果红琼脂上展现出rdar形态的细菌数量显著减少,且这一现象在不同温度条件下均保持稳定,近年的一些的研究还揭示了IHF在不同氧气浓度条件下的特定作用模式,即在液体微氧环境中,IHF突变株的csgD转录活性显著下降至野生型菌株的1/3,而在充分有氧的培养条件下,其活性则未见明显变[

30]。目前已在csgD基因的上、下游鉴定出3个IHF的结合位点:IHF1位于csgD转录起始位点上游181 bp处,IHF2位于下游273 bp处,而IHF3则位于下游626-666 bp的位置,在微需氧条件下,IHF与IHF1位点的结合能够激活csgD的转录,而与IHF2位点的结合则未观察到对csgD转录活性的显著影响,然而,当IHF与IHF3位点结合时,csgD和scPcsgD的转录水平显著下降,其中对scPcsgD的影响更为突[47-48]

3.4 H-NS

H-NS是一种分子量为15.4 kDa的DNA结构蛋白,它在细菌(特别是革兰氏阴性菌)中扮演着基因表达调控的重要角色,主要通过转录水平的沉默机制来实[

49]。H-NS蛋白能够直接结合到csgD基因的启动子区域,通过其N端结构域自聚合,改变DNA的结构,使得csgD周围的DNA更加紧密,从而干扰RNA聚合酶的结合和转录起始,抑制csgD[50]。Kim[51]研究表明,H-NS缺失会导致CsgD及其下游基因的表达上调,从而增强生物膜的形成。

H-NS对csgD基因的调控可能是细菌适应不同环境条件的一种机制,并且可能因具体环境条件的不同而有所差异;在细菌生长稳定期,IHF水平的增加可能会抵消H-NS的抑制作用,从而增加csgD的转录;细菌中的第二信使c-di-GMP能够通过与H-NS结合,封闭其部分DNA结合位点,从而解除H-NS对csgD基因表达的抑制作[

44,51]

4 csgD启动子区突变的影响

当前研究表明,沙门氏菌csgBAC-csgDEFG操纵子基因间区的755 bp核苷酸序列内存在多个位点的点突变现象,这些突变对csgD基因的转录活性产生了显著影响,具体而言,-80A>C和-189A>G双突变导致了csgD转录活性的降低,-80A>C和-189A>G双突变株在刚果红琼脂培养基中培养后形成淡红色菌落,菌落表面有不完整的皱纹图案;-47T>C突变直接失活了csgD的启动子,在刚果红琼脂培养基中培养后呈现rdar阴性,形成白色光滑型菌落;-17至-18位之间的T插入突变以及-44G>T突变均被证实能够显著上调csgD的转录活性,在刚果红琼脂培养基中培养后表现出明显的菌落形态类型,呈现出较野生株更为巨大的rdar菌落形态,这种上调不受温度和σ因子RpoS表达的影[

30,52]。在csgD启动子区发生的点突变通过影响csgD的转录活性,进而影响生物膜及菌落形态,但这些点突变是如何影响csgD的转录活性以及进而改变生物膜形态目前尚不明确。

csgD基因启动子区-44G>T点突变是由Römling等在1998年首次发现的,这种与沙门氏菌生物膜形成能力增强有关点突变先前仅在极个别的菌株中被发现,但近期有研究报道,携带此点突变的菌株近年来在我国多地广泛流行并已形成独立的流行克隆,具有国际传播的潜力,且该克隆的耐多药能力和生物膜形成能力均显著增[

12,53]

5 总结与展望

沙门氏菌生物膜的形成是一个高度复杂的分子过程,这一过程涵盖了纤维素、卷曲菌毛等多种关键组分的参与。其中,CsgD作为调控生物膜形成的核心转录因子,其表达受到多种环境因素的精密调控,这些环境因素通过直接或间接的方式作用于CsgD的表达,从而显著影响生物膜的结构与功能。

尽管当前已有诸多研究揭示了环境因素和多种调控因子对CsgD表达的影响,但大多研究局限于作用的现象层面,缺少调控作用的具体通路的研究。这些因素之间的相互作用模式以及由此构建的复杂调控网络架构,仍缺乏全面而深入的理解。因此,为了透彻阐明沙门氏菌生物膜形成的分子调控机制,并以此为基础探索针对生物膜相关疾病的新型预防与治疗策略,迫切需要开展更为系统、深入的科学研究,这些研究应聚焦于解析调控因子间的互作机制,构建详尽的调控网络模型,以及阐明这些网络如何动态响应环境变化以调控生物膜的形成与功能。

作者贡献声明

黄颖:整体构思与设计,负责收集和整理相关文献,参与文献筛选和数据整理工作,并对文献中的相关数据进行综合分析;彭玉倩:参与相关文献的筛选与整理,在论点构建过程中提供重要支持;王琪:负责图表设计和排版,协助进行校对和语言润色;邱少富:提供专业建议,协助审稿和修改,确保内容的科学性和准确性;向莹:提供专业建议,协助审稿和修改,确保内容的科学性和准确性。

利益冲突

作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。

参考文献

1

DARWIN KH, MILLER VL. Molecular basis of the interaction of Salmonella with the intestinal mucosa[J]. Clinical Microbiology Reviews, 1999, 12(3): 405-428. [百度学术] 

2

李月华, 赵格, 赵建梅, 刘俊辉, 王君玮. 欧盟、美国及国内畜禽屠宰环节沙门氏菌监控现状[J]. 中国动物检疫, 2021, 38(6): 69-75. [百度学术] 

LI YH, ZHAO G, ZHAO JM, LIU JH, WANG JW. Discussion on the monitoring status of Salmonella during livestock and poultry slaughtering in EU, the United Sstate and China[J]. China Animal Health Inspection, 2021, 38(6): 69-75 (in Chinese). [百度学术] 

3

KIRK MD, PIRES SM, BLACK RE, CAIPO M, CRUMP JA, DEVLEESSCHAUWER B, DÖPFER D, FAZIL A, FISCHER-WALKER CL, HALD T, HALL AJ, KEDDY KH, LAKE RJ, LANATA CF, TORGERSON PR, HAVELAAR AH, ANGULO FJ. World health organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis[J]. PLoS Medicine, 2015, 12(12): e1001921. [百度学术] 

4

WANG ZN, HUANG CH, LIU YH, CHEN JQ, YIN R, JIA CH, KANG XM, ZHOU X, LIAO SH, JIN XY, FENG MY, JIANG ZJ, SONG Y, ZHOU HY, YAO YC, TENG L, WANG BK, LI Y, YUE M. Salmonellosis outbreak archive in China: data collection and assembly[J]. Scientific Data, 2024, 11(1): 244. [百度学术] 

5

ZHANG YW, LIU KK, ZHANG ZB, TIAN S, LIU ML, LI XG, HAN YR, ZHU KP, LIU HB, YANG CJ, LIU HB, DU XY, WANG Q, WANG H, YANG MJ, WANG LG, SONG HB, YANG HY, XIANG Y, QIU SF. A severe gastroenteritis outbreak of Salmonella enterica serovar enteritidis linked to contaminated egg fried rice, China, 2021[J]. Frontiers in Microbiology, 2021, 12: 779749. [百度学术] 

6

LI HQ, LI WW, DAI Y, JIANG YY, LIANG JH, WANG ST, ZHUANG MQ, HUANG Z, XU LZ, XUE B, LIU JK, HAN HH, PIRES SM, FU P, GUO YC. Characteristics of settings and etiologic agents of foodborne disease outbreaks—China, 2020[J]. China CDC Weekly, 2021, 3(42): 889-893. [百度学术] 

7

MacKENZIE KD, PALMER MB, KÖSTER WL, WHITE AP. Examining the link between biofilm formation and the ability of pathogenic Salmonella strains to colonize multiple host species[J]. Frontiers in Veterinary Science, 2017, 4: 138. [百度学术] 

8

WALDNER LL, MacKENZIE KD, KÖSTER W, WHITE AP. From exit to entry: long-term survival and transmission of Salmonella[J]. Pathogens, 2012, 1(2): 128-155. [百度学术] 

9

GERSTEL U, RÖMLING U. Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella typhimurium[J]. Environmental Microbiology, 2001, 3(10): 638-648. [百度学术] 

10

ZOGAJ X, NIMTZ M, ROHDE M, BOKRANZ W, RÖMLING U. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix[J]. Molecular Microbiology, 2001, 39(6): 1452-1463. [百度学术] 

11

UHLICH GA, KEEN JE, ELDER RO. Mutations in the csgD promoter associated with variations in curli expression in certain strains of Escherichia coli O157:H7[J]. Applied and Environmental Microbiology, 2001, 67(5): 2367-2370. [百度学术] 

12

RÖMLING U, SIERRALTA WD, ERIKSSON K, NORMARK S. Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter[J]. Molecular Microbiology, 1998, 28(2): 249-264. [百度学术] 

13

GRANTCHAROVA N, PETERS V, MONTEIRO C, ZAKIKHANY K, RÖMLING U. Bistable expression of CsgD in biofilm development of Salmonella enterica serovar typhimurium[J]. Journal of Bacteriology, 2010, 192(2): 456-466. [百度学术] 

14

MA ZM, LI NA, NING CC, LIU YC, GUO Y, JI CH, ZHU XZ, MENG QL, XIA XZ, ZHANG XX, CAI XP, CAI KJ, JUN Q. A novel LysR family factor STM0859 is associated with the responses of Salmonella typhimurium to environmental stress and biofilm formation[J]. Polish Journal of Microbiology, 2021, 70(4): 479-487. [百度学术] 

15

YAN CH, CHEN FH, YANG YL, ZHAN YF, HERMAN RA, GONG LC, SHENG S, WANG J. The transcription factor CsgD contributes to engineered Escherichia coli resistance by regulating biofilm formation and stress responses[J]. International Journal of Molecular Sciences, 2023, 24(18): 13681. [百度学术] 

16

LATASA C, ROUX A, TOLEDO-ARANA A, GHIGO JM, GAMAZO C, PENADÉS JR, LASA I. BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar enteritidis[J]. Molecular Microbiology, 2005, 58(5): 1322-1339. [百度学术] 

17

SOLANO C, GARCÍA B, VALLE J, BERASAIN C, GHIGO JM, GAMAZO C, LASA I. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose[J]. Molecular Microbiology, 2002, 43(3): 793-808. [百度学术] 

18

BIAN Z, YAN ZQ, HANSSON GK, THORÉN P, NORMARK S. Activation of inducible nitric oxide synthase/nitric oxide by curli fibers leads to a fall in blood pressure during systemic Escherichia coli infection in mice[J]. The Journal of Infectious Diseases, 2001, 183(4): 612-619. [百度学术] 

19

CHEN H, YAN CH, ZHAN YF, GENG LT, ZHU LL, GONG LC, WANG J. Boron derivatives accelerate biofilm formation of recombinant Escherichia coli via increasing quorum sensing system autoinducer-2 activity[J]. International Journal of Molecular Sciences, 2022, 23(15): 8059. [百度学术] 

20

WHITE AP, GIBSON DL, KIM W, KAY WW, SURETTE MG. Thin aggregative fimbriae and cellulose enhance long-term survival and persistence of Salmonella[J]. Journal of Bacteriology, 2006, 188(9): 3219-3227. [百度学术] 

21

CUCARELLA C, SOLANO C, VALLE J, AMORENA B, LASA I, PENADÉS JR. Bap, a Staphylococcus aureus surface protein involved in biofilm formation[J]. Journal of Bacteriology, 2001, 183(9): 2888-2896. [百度学术] 

22

张若楠, 徐诺, 陆游, 冯政, 陈素娟, 秦涛, 阴银燕, 彭大新. 生物被膜形成关键基因csgD对鼠伤寒沙门菌黏附侵袭上皮细胞能力的影响[J]. 畜牧与兽医, 2022, 54(11): 65-71. [百度学术] 

ZHANG RN, XU N, LU Y, FENG Z, CHEN SJ, QIN T, YIN YY, PENG DX. Effects of the key gene csgD related biofilm formation on the abilities of Salmonella typhimurium of adhesion to and invasion into epithelial cells[J]. Animal Husbandry & Veterinary Medicine, 2022, 54(11): 65-71 (in Chinese). [百度学术] 

23

陈欢, 耿丽恬, 黄婷, 宫璐婵, 吴福安, 王俊. 转录调控因子CsgD强化重组大肠埃希菌生物被膜催化转化桑树黄酮苷的研究[J]. 蚕业科学, 2023, 49(6): 533-543. [百度学术] 

CHEN H, GENG LT, HUANG T, GONG LC, WU FA, WANG J. Study on enhancing conversion of mulberry flavonoid glycoside catalyzed by accelerating recombinant Escherichia coli biofilm formation via transcriptional regulator CsgD[J]. Acta Sericologica Sinica, 2023, 49(6): 533-543 (in Chinese). [百度学术] 

24

BARNHART MM, CHAPMAN MR. Curli biogenesis and function[J]. Annual Review of Microbiology, 2006, 60: 131-147. [百度学术] 

25

ROBINSON LS, ASHMAN EM, HULTGREN SJ, CHAPMAN MR. Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein[J]. Molecular Microbiology, 2006, 59(3): 870-881. [百度学术] 

26

EVANS ML, CHORELL E, TAYLOR JD, ÅDEN J, GÖTHESON A, LI F, KOCH M, SEFER L, MATTHEWS SJ, WITTUNG-STAFSHEDE P, ALMQVIST F, CHAPMAN MR. The bacterial curli system possesses a potent and selective inhibitor of amyloid formation[J]. Molecular Cell, 2015, 57(3): 445-455. [百度学术] 

27

LIU Z, NIU H, WU SY, HUANG R. CsgD regulatory network in a bacterial trait-altering biofilm formation[J]. Emerging Microbes & Infections, 2014, 3(1): e1. [百度学术] 

28

ZORRAQUINO V, GARCÍA B, LATASA C, ECHEVERZ M, TOLEDO-ARANA A, VALLE J, LASA I, SOLANO C. Coordinated cyclic-di-GMP repression of Salmonella motility through YcgR and cellulose[J]. Journal of Bacteriology, 2013, 195(3): 417-428. [百度学术] 

29

AHMAD I, CIMDINS A, BESKE T, RÖMLING U. Detailed analysis of c-di-GMP mediated regulation of csgD expression in Salmonella typhimurium[J]. BMC Microbiology, 2017, 17(1): 27. [百度学术] 

30

ZOGAJ X, BOKRANZ W, NIMTZ M, RÖMLING U. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract[J]. Infection and Immunity, 2003, 71(7): 4151-4158. [百度学术] 

31

GERSTEL U, PARK C, RÖMLING U. Complex regulation of csgD promoter activity by global regulatory proteins[J]. Molecular Microbiology, 2003, 49(3): 639-654. [百度学术] 

32

MILLER AL, PASTERNAK JA, MEDEIROS NJ, NICASTRO LK, TURSI SA, HANSEN EG, KROCHAK R, SOKARIBO AS, MacKENZIE KD, PALMER MB, HERMAN DJ, WATSON NL, ZHANG Y, WILSON HL, WILSON RP, WHITE AP, TÜKEL Ç. In vivo synthesis of bacterial amyloid curli contributes to joint inflammation during S. typhimurium infection[J]. PLoS Pathogens, 2020, 16(7): e1008591. [百度学术] 

33

JACKSON DW, SIMECKA JW, ROMEO T. Catabolite repression of Escherichia coli biofilm formation[J]. Journal of Bacteriology, 2002, 184(12): 3406-3410. [百度学术] 

34

ARNQVIST A, OLSÉN A, NORMARK S. Sigma S-dependent growth-phase induction of the csgBA promoter in Escherichia coli can be achieved in vivo by sigma 70 in the absence of the nucleoid-associated protein H-NS[J]. Molecular Microbiology, 1994, 13(6): 1021-1032. [百度学术] 

35

吴建菊, 冯守帅. 蓝光调控生物膜关键基因提高大肠杆菌耐酸性[J]. 食品与发酵工业, 2024, 50(15): 1-7. [百度学术] 

WU JJ, FENG SS. Enhancing the acid resistance of Escherichia coli by blue light-regulated biofilm key genes[J]. Food and Fermentation Industries, 2024, 50(15): 1-7 (in Chinese). [百度学术] 

36

JUBELIN G, VIANNEY A, BELOIN C, GHIGO JM, LAZZARONI JC, LEJEUNE P, DOREL C. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli[J]. Journal of Bacteriology, 2005, 187(6): 2038-2049. [百度学术] 

37

COLLINSON SK, EMÖDY L, MÜLLER KH, TRUST TJ, KAY WW. Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis[J]. Journal of Bacteriology, 1991, 173(15): 4773-4781. [百度学术] 

38

PASQUA M, COLUCCIA M, EGUCHI Y, OKAJIMA T, GROSSI M, PROSSEDA G, UTSUMI R, COLONNA B. Roles of two-component signal transduction systems in Shigella virulence[J]. Biomolecules, 2022, 12(9): 1321. [百度学术] 

39

GOH EB. Discovering new regulon members of the Escherichia coli EnvZ/OmpR two-component signal transduction system[D]. Vancouver: University of British Columbia, 2008. [百度学术] 

40

SOKARIBO AS, HANSEN EG, McCARTHY M, DESIN TS, WALDNER LL, MacKENZIE KD, JrMUTWIRI G, HERMAN NJ, HERMAN DJ, WANG YJ, WHITE AP. Metabolic activation of CsgD in the regulation of Salmonella biofilms[J]. Microorganisms, 2020, 8(7): 964. [百度学术] 

41

SIRYAPORN A, GOULIAN M. Cross-talk suppression between the CpxA-CpxR and EnvZ-OmpR two-component systems in E. coli[J]. Molecular Microbiology, 2008, 70(2): 494-506. [百度学术] 

42

MIKA F, HENGGE R. Small RNAs in the control of RpoS, CsgD, and biofilm architecture of Escherichia coli[J]. RNA Biology, 2014, 11(5): 494-507. [百度学术] 

43

HAMILTON S, BONGAERTS RJM, MULHOLLAND F, COCHRANE B, PORTER J, LUCCHINI S, LAPPIN-SCOTT HM, HINTON JCD. The transcriptional programme of Salmonella enterica serovar typhimurium reveals a key role for tryptophan metabolism in biofilms[J]. BMC Genomics, 2009, 10: 599. [百度学术] 

44

OGASAWARA H, YAMADA K, KORI A, YAMAMOTO K, ISHIHAMA A. Regulation of the Escherichia coli csgD promoter: interplay between five transcription factors[J]. Microbiology, 2010, 156(Pt 8): 2470-2483. [百度学术] 

45

MONTEIRO C, FANG X, AHMAD I, GOMELSKY M, RÖMLING U. Regulation of biofilm components in Salmonella enterica serovar typhimurium by lytic transglycosylases involved in cell wall turnover[J]. Journal of Bacteriology, 2011, 193(23): 6443-6451. [百度学术] 

46

SON JE, PARK SH, CHOI U, LEE CR. Lytic transglycosylase repertoire diversity enables intrinsic antibiotic resistance and daughter cell separation in Escherichia coli under acidic stress[J]. Antimicrobial Agents and Chemotherapy, 2024, 68(7): e0037224. [百度学术] 

47

GERSTEL U, KOLB A, RÖMLING U. Regulatory components at the csgD promoter: additional roles for OmpR and integration host factor and role of the 5′ untranslated region[J]. FEMS Microbiology Letters, 2006, 261(1): 109-117. [百度学术] 

48

GERSTEL U, RÖMLING U. The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium[J]. Research in Microbiology, 2003, 154(10): 659-667. [百度学术] 

49

DORMAN CJ. H-NS: a universal regulator for a dynamic genome[J]. Nature Reviews Microbiology, 2004, 2(5): 391-400. [百度学术] 

50

王洁, 董新波, 高丽晓, 周冬生, 殷喆, 张义全. H-NS蛋白对副溶血弧菌hcp1的转录调控[J]. 微生物学报, 2016, 56(1): 143-149. [百度学术] 

WANG J, DONG XB, GAO LX, ZHOUT D, YIN Z, ZHANG YQ. Transcriptional regulation of hcp1 by H-NS in Vibrio parahaemolyticus[J]. Acta Microbiologica Sinica, 2016, 56(1): 143-149. [百度学术] 

51

KIM EA, BLAIR DF. Function of the histone-like protein H-NS in motility of Escherichia coli: multiple regulatory roles rather than direct action at the flagellar motor[J]. Journal of Bacteriology, 2015, 197(19): 3110-3120. [百度学术] 

52

RÖMLING U, BIAN Z, HAMMAR M, SIERRALTA WD, NORMARK S. Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation[J]. Journal of Bacteriology, 1998, 180(3): 722-731. [百度学术] 

53

XIANG Y, ZHU KP, MIN KY, ZHANG YW, LIU JF, LIU KK, HAN YR, LI XG, DU XY, WANG X, HUANG Y, LI XP, PENG YQ, YANG CJ, LIU HB, LIU HB, LI XY, WANG H, WANG C, WANG Q, et al. Characterization of a Salmonella enterica serovar typhimurium lineage with rough colony morphology and multidrug resistance[J]. Nature Communications, 2024, 15(1): 6123. [百度学术]