摘要
目的
探究不同盐分类型土壤微生物群落结构特征及其与盐分离子的关联性,为盐碱土壤改良提供理论依据。
方法
沿北纬38°采集石家庄(LC)、衡水(SZ)和沧州(HX) 3个地区的土壤样品,测定样品中水溶性总盐含量(total content of water-soluble salt, TSS)、盐分离子、酶活性及微生物群落结构,并采用Mantel分析法研究土壤盐分特征与微生物群落结构的相关性。
结果
在LC、SZ和HX 3个样地中,土壤电导率(electrical conductance, EC)、TSS、N
结论
不同盐分类型土壤微生物群落存在显著差异,土壤中盐分离子通过抑制非耐盐菌和选择性富集耐盐菌驱动群落结构变化。微生物群落的改变和土壤酶活性的降低是盐碱土壤养分循环和供应障碍的关键因素,该研究为盐碱土壤改良中关键菌群的调控提供了理论依据。
土壤盐碱化是威胁全球生态安全与农业可持续发展的重大环境问
微生物在地球上数量极多且分布广泛,是各种生态系统的重要组成部
然而,尽管目前对我国盐碱土壤微生物已有诸多研究,但主要集中于少数地区的极端嗜盐微生物分离鉴定,或针对单一盐碱土壤类型的微生物菌群分析。研究内容也多聚焦于总盐含量与微生物多样性的线性关
1 材料与方法
1.1 试验地概况
土壤样品分别采自河北省石家庄市栾城区栾城镇(37°88′15″N,114°65′24″E),年均气温12.8 ℃,年均降水量474.0 mm,年日照时间2 177.3 h,土壤类型为潮土;河北省衡水市深州市护驾池镇(37°89′28″N,115°71′08″E),年均气温13.4 ℃,年降水量486.0 mm,年日照时间2 563.0 h,土壤类型为潮土;河北省沧州市海兴县小山乡(38°16′52″N,117°57′22″E),年均气温13.8 ℃,年降水量570.0 mm,年日照时间2 718.8 h,土壤类型为滨海盐土。
1.2 样品采集与测定方法
土壤样品于小麦拔节期(2023年4月)进行采集。每个土壤类型区在县域内均匀布设3个标准样地(均为小麦-玉米一年两作种植模式),面积均为1 600
取过20目筛的干土,使用去离子水按照5:1的水土比例制备浸提液,使用pH计[梅特勒-托利多仪器(上海)有限公司]测定pH,采用电导计(上海仪电科学仪器股份有限公司)测定电导率(electrical conductance, EC);水溶性总盐(total content of water-soluble salt, TSS)含量采用残渣烘干法测定(土水比为1:5);N
采用磁珠法土壤DNA提取试剂盒[天根生化科技(北京)有限公司]进行土壤样品中DNA的提取,以质量合格的DNA为模板进行PCR扩增。细菌16S rRNA基因的V3-V4高变区扩增上游引物序列为338F:5′-ACTCCTACGGGAG GCAGCA-3′;下游引物序列为806R:5′-GGA CTACHVGGGTWTCTAAT-3
1.3 数据分析
高通量测序得到的原始图像数据文件,经碱基识别分析转化为原始序列后,使用QIIME 2 v2020.6中的DADA2插件去除引物、质量滤波、去噪、剪接和嵌合,获得扩增子序列变体(amplicon sequence variants, ASVs)。土壤细菌和真菌群落α多样性和β多样性利用Origin 2022软件进行绘制。使用QIIME软件生成不同分类水平上的物种丰度表,并利用R语言工具绘制样品各分类学水平下的群落结构图。分别使用FAPROTAX和FUNGuild数据库对土壤细菌和真菌群落进行功能预测。相关性分析、Mantel分析和相关性热图均使用R语言进行绘制。利用R语言对细菌和真菌群落中丰度前100的ASVs进行相关性分析,选取P<0.05的ASVs在Gephi软件中对网络进行可视化。
使用Excel 2021进行数据整理,IBM SPSS 26.0进行单因素ANOVA方差分析。方差分析后的多重比较采用邓肯法(Duncan),显著性水平分别设定为P<0.05和P<0.01。相关性分析采用Spearman法。
2 结果与分析
2.1 不同样地土壤盐分差异及其离子特征
三个样地土壤盐分离子含量具有显著差异(
Treatment | pH | EC(μs/cm) | TSS(g/kg) | N | M | C | C | SO | NO | HCO | |
---|---|---|---|---|---|---|---|---|---|---|---|
LC | 8.03±0.09ab | 274.00±61.88c | 1.36±0.36c | 24.33±1.10c | 17.33±0.57b | 25.43±1.37b | 114.37±4.27c | 18.07±0.21c | 36.27±6.55c | 79.17±16.88c | 333.00±19.05b |
SZ | 7.95±0.11b | 397.00±54.62b | 2.08±0.32b | 81.50±2.59b | 30.10±1.49a | 21.93±0.35c | 152.80±7.48a | 73.73±13.78b | 93.50±4.00b | 149.73±23.84b | 344.00±19.05a |
HX | 8.06±0.04a | 540.33±16.29a | 2.93±0.10a | 96.10±0.79a | 27.40±4.90a | 39.70±0.61a | 142.63±1.81b | 129.03±1.80a | 110.23±1.15a | 187.23±3.70a | 279.33±18.48c |
数值为平均值±标准偏差,同一列不同小写字母表示差异显著(P<0.05)。LC:栾城土壤;SZ:深州土壤;HX:海兴土壤,下同。
Values are mean±SD. Different lowercase letters in the same column indicate significant differences (P<0.05). LC: Luancheng soil; SZ: Shenzhou soil; HX: Haixing soil. The same notation applies below.
进一步分析了土壤盐分离子之间的相关性(

图1 土壤盐分离子含量和酶活性的相关性分析。椭圆向左倾斜表示正相关,椭圆向右倾斜表示负相关,椭圆越小表示相关性越强。红色表示正相关,蓝色表示负相关,颜色越深表示相关性越强。
Figure 1 Correlation analysis of soil salt ion content and enzyme activity. The ellipse tilted to left represent positive correlation and to right represent negative correlation. The smaller the ellipse, the stronger the correlation. Red represents a positive correlation, and blue represents a negative correlation. The darker the color, the stronger the correlation. *: P<0.05; **: P<0.01.
2.2 不同样地土壤酶活性分析
由
Treatment | SC (mg/(d·g)) | ALP (nmol/(h·g)) | UE (U/g) | CAT (μmol/(h·g)) |
---|---|---|---|---|
LC | 57.05±0.08a | 3 133.47±15.10a | 1 926.27±140.48a | 425.06±0.43a |
SZ | 40.59±4.64b | 3 047.82±2.62a | 1 775.48±154.20a | 411.39±13.74a |
HX | 20.28±0.01c | 1 023.26±18.97b | 1 242.18±61.24b | 334.18±8.13b |
数值为平均值±标准偏差,同一列不同小写字母表示差异显著(P<0.05)。
Values are mean±SD. Different lowercase letters in the same column indicate significant differences (P<0.05).
土壤酶活性与盐分离子的相关性分析表明(
2.3 土壤微生物群落多样性和结构差异
2.3.1 土壤微生物群落多样性指数分析

图2 土壤细菌和真菌α多样性分析。A:细菌的ACE指数;B:细菌的Shannon指数;C:真菌的ACE指数;D:真菌的Shannon指数。
Figure 2 Analysis of alpha diversity of soil bacteria and fungi. A: ACE index of bacteria; B: Shannon index of bacteria; C: ACE index of fungi; D: Shannon index of fungi.
主成分分析(PCoA) (

图3 土壤细菌和真菌主坐标(PCoA)图。A:细菌PCoA图;B:真菌PCoA图。
Figure 3 Main coordinates (PCoA) diagram of the soil bacteria and fungi. A: Bacterial PCoA diagram; B: Fungal PCoA plot.
2.3.2 土壤微生物群落组成分析
如

图4 土壤细菌组成分析。A:不同组间相对丰度前10的门水平柱形图;B:不同组间相对丰度前10的属水平柱形图。不同小写字母表示处理间差异显著(P<0.05)。
Figure 4 Analysis of soil bacterial composition. A: Bar chart of the top 10 phyla by relative abundance among different groups; B: Bar chart of the top 10 genus by relative abundance among different groups. Different lowercase letters indicate significant difference among different treatments at the 0.05 level.
三个样地真菌群落的门水平组成如

图5 土壤真菌组成分析。A:不同组间相对丰度前10的门水平柱形图;B:不同组间相对丰度前10的属水平柱形图。不同小写字母表示处理间差异显著(P<0.05)。
Figure 5 Analysis of soil fungal composition. A: Bar chart of the top 10 phyla by relative abundance among different groups; B: Bar chart of the top 10 genus by relative abundance among different groups. Different lowercase letters indicate significant difference among different treatments at the 0.05 level.
2.3.3 土壤微生物群落功能预测分析
对土壤中细菌菌群进行代谢通路富集分析发现(

图6 土壤细菌和真菌功能分析。A:不同组间相对丰度前10的细菌功能柱形图;B:不同组间相对丰度前10的真菌功能柱形图。不同小写字母表示处理间差异显著(P<0.05)。
Figure 6 Functional analysis of soil bacteria and fungi. A: Bar chart of the top 10 bacterial function by relative abundance among different groups; B: Bar chart of the top 10 fungal function by relative abundance among different groups. Different lowercase letters indicate significant difference among different treatments at the 0.05 level.
2.3.4 土壤微生物群落生态网络分析
Treatment | Number ofnodes | Number ofedges | Modularity | Networkdensity | Averagedegree | Bacterialratio (%) | Fungalratio (%) | Positivecorrelation (%) | Negative correlation (%) |
---|---|---|---|---|---|---|---|---|---|
LC | 199 | 3 284 | 0.824 | 0.165 | 32.84 | 50.00 | 50.00 | 72.56 | 27.44 |
SZ | 200 | 3 319 | 0.819 | 0.167 | 33.19 | 50.00 | 50.00 | 66.32 | 33.68 |
HX | 200 | 4 864 | 0.747 | 0.247 | 48.88 | 49.75 | 50.25 | 68.34 | 31.66 |

图7 细菌和真菌菌群共线网络图。A:LC;B:SZ;C:HX。节点表示ASVs,点的大小表示不同ASVs丰度,绿色节点代表细菌,红色节点代表真菌;2个节点之间的连接表示显著相关(P<0.05),红色表示正相关,绿色表示负相关。
Figure 7 Co-occurrence network of bacterial and fungal community. A: Luancheng soil; B: Shenzhou soil; C: Haixing soil. The nodes represent ASVs, and the size of the nodes indicates the abundances of different ASVs. Green nodes represent bacteria, while red nodes represent fungi. The connection between two nodes stands for a significant correlation (P<0.05). Positive correlations are in red, whereas negative correlations in green edges.
2.4 土壤盐分因子与微生物群落相关性分析
如

图8 土壤盐分因子与微生物群落的Mantel分析
Figure 8 Mantel analysis of soil salinity factors and microbial communities.
采用相关性热图分析了土壤盐分因子与微生物菌属及其功能的相关性(

图9 土壤盐分因子与微生物群落的相关性分析。A:土壤盐分因子与微生物菌属的相关性分析;B:土壤盐分因子与微生物功能的相关性分析。红色表示正相关,蓝色表示负相关,颜色越深,相关性越强。
Figure 9 Correlation analysis between soil salinity factors and microbial communities. A: Correlation analysis between soil salinity factors and microbial genera; B: Correlation analysis of soil salt factor and microbial function. Red represents a positive correlation, and blue represents a negative correlation. The darker the color, the stronger the correlation. *: P<0.05; **: P<0.01.
3 讨论
3.1 土壤盐分离子类型和含量对土壤酶活性及微生物多样性的影响
土壤盐渍化是造成滨海土壤质量下降的重要原因之
3.2 微生物菌群的结构和功能及其与盐分因子的相关性
在盐碱土壤中广泛分布着大量发挥重要功能的微生物类
土壤功能预测分析可以为深入理解土壤养分转化的微生物驱动过程提供依
土壤生态网络揭示了微生物群落之间的相互作用及其对环境变化的响
4 结论
由内陆到沿海的LC、SZ和HX样地土壤呈现显著的盐分含量和种类差异,其中盐分含量高低与土壤SC、ALP、UE、CAT酶活性呈显著负相关,表明盐分升高导致土壤中碳、氮、磷等元素循环受阻。盐分离子含量和类型导致了土壤细菌和真菌群落的α、β多样性的差异,并引起了微生物菌群结构和功能的变化,表明土壤中盐分离子通过抑制非耐盐菌和选择性富集耐盐菌驱动群落结构变化。微生物群落的改变和土壤酶活性的降低是盐碱土壤养分循环和供应障碍的关键,该研究为盐碱土壤改良中关键菌群的调控提供了理论依据。
作者贡献声明
侯瑞楠:论文撰写;崔钰爽:数据收集和处理;王雨:论文修改;黄亚丽:项目监管、论文修改;陈晓波:实验设计。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
OMUTO CT, KOME GK, RAMAKHANNA SJ, MUZIRA NM, RULEY JA, JAYEOBA OJ, RAHARIMANANA V, OWUSU AA, KHAMIS NA, MATHAFENG KK, ELMOBARAK AA, VARGAS RR, KOETLISI AK, DEMBELE D, DIWARA M, MBAIKOUBOU M, MARIA RM, BOUKARY IA, MALATJI A, AMIN TM, et al. Trend of soil salinization in Africa and implications for agro-chemical use in semi-arid croplands[J]. Science of the Total Environment, 2024, 951: 175503. [百度学术]
ZHANG YT, HOU K, QIAN H, GAO YY, FANG Y, XIAO S, TANG SQ, ZHANG QY, QU WG, REN WH. Characterization of soil salinization and its driving factors in a typical irrigation area of Northwest China[J]. Science of the Total Environment, 2022, 837: 155808. [百度学术]
QU YK, TANG J, LIU B, LV H, DUAN YC, YANG Y, WANG SN, LI ZY. Rhizosphere enzyme activities and microorganisms drive the transformation of organic and inorganic carbon in saline-alkali soil region[J]. Scientific Reports, 2022, 12(1): 1314. [百度学术]
侯晖, 龚佳, 谢沁宓, 赵宏亮, 程昊, 王芳, 倪细炉. 宁夏4种耐盐植物对根际土壤养分及微生物功能多样性的影响[J]. 西北林学院学报, 2023, 38(4): 61-73. [百度学术]
HOU H, GONG J, XIE QM, ZHAO HL, CHENG H, WANG F, NI XL. Effects of four salt-tolerant plants on rhizosphere soil nutrients and microbial functional diversity in Ningxia[J]. Journal of Northwest Forestry University, 2023, 38(4): 61-73 (in Chinese). [百度学术]
PÉREZ-HERNÁNDEZ V, HERNÁNDEZ-GUZMÁN M, LUNA-GUIDO M, NAVARRO-NOYA YE, ROMERO-TEPAL EM, DENDOOVEN L. Bacterial communities in alkaline saline soils amended with young maize plants or its (Hemi) cellulose fraction[J]. Microorganisms, 2021, 9(6): 1297. [百度学术]
刘银双, 牛宏进, 赵阳阳, 孙宏勇, 陈晓波, 黄亚丽. 河北省不同盐渍化土壤类型的微生物多样性与种群结构[J]. 环境科学, 2023, 44(12): 7004-7013. [百度学术]
LIU YS, NIU HJ, ZHAO YY, SUN HY, CHEN XB, HUANG YL. Microbial diversity and population structure of different salinized soil types in Hebei Province[J]. Environmental Science, 2023, 44(12): 7004-7013 (in Chinese). [百度学术]
WANG YD, SUN QH, LIU JA, WANG LS, WU XL, ZHAO ZY, WANG NX, GAO Z. Suaeda salsa root-associated microorganisms could effectively improve maize growth and resistance under salt stress[J]. Microbiology spectrum, 2022, 10(4): e0134922. [百度学术]
DARAZ U, AHMAD I, LI QS, ZHU B, SAEED MF, LI Y, MA JG, WANG XB. Plant growth promoting rhizobacteria induced metal and salt stress tolerance in Brassica juncea through ion homeostasis[J]. Ecotoxicology and Environmental Safety, 2023, 267: 115657. [百度学术]
NAN LL, GUO QE, CAO SY, ZHAN ZB. Diversity of bacterium communities in saline-alkali soil in arid regions of Northwest China[J]. BMC Microbiology, 2022, 22(1): 11. [百度学术]
FU JH, LIU YW, LIU XC, GUO MF, GAO JZ, YANG M, LIU XS, WANG W, JIN Y, QU JJ. Screening of saline-alkali tolerant microorganisms and their promoting effects on rice growth under saline-alkali stress[J]. Journal of Cleaner Production, 2024, 481: 144176. [百度学术]
邢硕, 邹荣松, 李素艳, 朱建峰, 陈军华, 罗志斌. 耐盐碱根际微生物在盐碱地生态修复中的应用[J]. 世界林业研究, 2024, 37(5): 30-36. [百度学术]
XING S, ZOU RS, LI SY, ZHU JF, CHEN JH, LUO ZB. Application of saline-alkali tolerant rhizosphere microorganisms to ecological restoration of saline-alkali land[J]. World Forestry Research, 2024, 37(5): 30-36 (in Chinese). [百度学术]
田雨雨, 李东伟, 曲子良, 荆锐, 赵青青, 周新国. 生物炭协同暗管排水对滨海盐碱土壤微生物群落的影响[J]. 灌溉排水学报, 2024, 43(4): 82-89. [百度学术]
TIAN YY, LI DW, QU ZL, JING R, ZHAO QQ, ZHOU XG. Effect of biochar amendment and subsurface drainage on microbial communities in saline coastal soils[J]. Journal of Irrigation and Drainage, 2024, 43(4): 82-89 (in Chinese). [百度学术]
ZHAO XY, GAO JL, YU XF, BORJIGIN QG, QU JW, ZHANG BZ, ZHANG SN, LI Q, GUO JA, LI DB. Evaluation of the microbial community in various saline alkaline-soils driven by soil factors of the Hetao Plain, Inner Mongolia[J]. Scientific Reports, 2024, 14(1): 28931. [百度学术]
郭晓雯, 向贵琴, 张发朝, 江山, 闵伟. 生物炭和秸秆还田对咸水滴灌棉田土壤微生物群落特征及功能差异的影响[J]. 环境科学, 2024, 45(6): 3571-3583. [百度学术]
GUO XW, XIANG GQ, ZHANG FC, JIANG S, MIN W. Effects of biochar and straw return on soil microbial community characteristics and functional differences in saline water drip irrigation cotton fields[J]. Environmental Science, 2024, 45(6): 3571-3583 (in Chinese). [百度学术]
杜思垚, 陈静, 刘佳炜, 郭晓雯, 闵伟. 基于宏基因组学揭示咸水滴灌对棉田土壤微生物的影响[J]. 环境科学, 2023, 44(2): 1104-1119. [百度学术]
DU SY, CHEN J, LIU JW, GUO XW, MIN W. Revealing the effect of saline water drip irrigation on soil microorganisms in cotton fields based on metagenomics[J]. Environmental Science, 2023, 44(2): 1104-1119 (in Chinese). [百度学术]
李硕, 吴振超, 康杰, 葛菁萍. 土壤微生物群落组装策略在改良盐碱化土壤中的应用研究[J]. 黑龙江大学自然科学学报, 2024, 41(5): 505-512. [百度学术]
LI S, WU ZC, KANG J, GE JP. Research on the application of soil microbial community assembly strategy in amelioration of saline-alkali soils[J]. Journal of Natural Science of Heilongjiang University, 2024, 41(5): 505-512 (in Chinese). [百度学术]
肖飞, 贾壮壮, 刘鹏元, 王世民, 赵峰德. 耐盐好氧颗粒污泥胞外聚合物组分及微生物群落结构特征[J]. 干旱区资源与环境, 2024, 38(10): 121-132. [百度学术]
XIAO F, JIA ZZ, LIU PY, WANG SM, ZHAO FD. Composition of extracellular polymeric substances and microbial community structure in salt-tolerant aerobic granular sludge[J]. Journal of Arid Land Resources and Environment, 2024, 38(10): 121-132 (in Chinese). [百度学术]
张旭萍, 刘强, 王锦, 胡娟, 周宸宇, 拉本. 盐碱胁迫下盐生植物与根际土壤微生物交互作用机制研究进展[J]. 土壤通报, 2024, 55(4): 1191-1200. [百度学术]
ZHANG XP, LIU Q, WANG J, HU J, ZHOU CY, LA B. Progress on the mechanism of interaction between saline plants and inter-rooted soil microorganisms under saline stress[J]. Chinese Journal of Soil Science, 2024, 55(4): 1191-1200 (in Chinese). [百度学术]
李泉泉, 王芸, 王科珂, 倪萍, 孙鹏, 苏为涌, 张碧柳. 新疆两盐湖可培养极端嗜盐菌组成及功能多样性研究[J]. 微生物学报, 2022, 62(6): 2074-2089. [百度学术]
LI QQ, WANG Y, WANG KK, NI P, SUN P, SU WY, ZHANG BL. Composition and functional diversity of extreme halophiles isolated from two salt lakes in Xinjiang[J]. Acta Microbiologica Sinica, 2022, 62(6): 2074-2089 (in Chinese). [百度学术]
王泽林. 非常规水滴灌对土壤理化性质及棉花生理生长影响的试验研究[D]. 石河子: 石河子大学硕士学位论文, 2020. [百度学术]
WANG ZL. Effect of drip irrigation with unconventional water on the soil physical and chemical properties and physiological growth of cotton (Gossypium hirsutum L.)[D]. Shihezi: Master’s Shihezi University, 2020 (in Chinese). [百度学术]
郑立伟, 赵阳阳, 王一冰, 黄亚丽, 范凤翠, 刘胜尧. 不同连作年限甜瓜种植土壤性质和微生物多样性[J]. 微生物学通报, 2022, 49(1): 101-114. [百度学术]
ZHENG LW, ZHAO YY, WANG YB, HUANG YL, FAN FC, LIU SY. Soil properties and microbial diversity in the muskmelon fields after continuous cropping for different years[J]. Microbiology China, 2022, 49(1): 101-114 (in Chinese). [百度学术]
赵阳阳, 刘银双, 牛宏进, 贾振华, 李再兴, 陈晓波, 黄亚丽. 鸡粪好氧堆肥过程中细菌群落结构和功能分析[J]. 生物工程学报, 2023, 39(3): 1175-1187. [百度学术]
ZHAO YY, LIU YS, NIU HJ, JIA ZH, LI ZX, CHEN XB, HUANG YL. The structure and function analysis of bacterial community during aerobic composting of chicken manure[J]. Chinese Journal of Biotechnology, 2023, 39(3): 1175-1187 (in Chinese). [百度学术]
周斯豪, 王美琦, 宋瑶, 牛宏进, 赵经纬, 侯瑞楠, 陈晓波, 黄亚丽. 长期秸秆还田对下茬还田秸秆的降解及土壤微生物群落的影响[J]. 环境科学, 2025, 46(1): 532-542. [百度学术]
ZHOU SH, WANG MQ, SONG Y, NIU HJ, ZHAO JW, HOU RN, CHEN XB, HUANG YL. Legacy effects of long-term straw returning on straw degradation and microbial communities of the aftercrop[J]. Environmental Science, 2025, 46(1): 532-542 (in Chinese). [百度学术]
SONG Y, GAO MX, WANG ZR, GONG TF, CHEN WF. Spatio-Temporal variability characteristics of coastal soil salinization and its driving factors detection[J]. Water, 2022, 14(20): 3326. [百度学术]
王伟, 赵月, 钮力亚, 王伟伟, 王连鹏, 陆莉, 王奉芝, 于亮. 沧州市滨海盐碱区耕层土壤盐分特征[J]. 陕西农业科学, 2021, 67(7): 62-66. [百度学术]
WANG W, ZHAO Y, NIU LY, WANG WW, WANG LP, LU L, WANG FZ, YU L. Characteristics of soil salinity in plough layer of coastal saline alkali area of Cangzhou[J]. Shaanxi Journal of Agricultural Sciences, 2021, 67(7): 62-66 (in Chinese). [百度学术]
张凯. 天津滨海重盐碱地区行道树土壤化学性质研究[J]. 安徽农学通报, 2020, 26(14): 122-125. [百度学术]
ZHANG K. Soil chemical properties of street trees in coastal heavy saline-alkali area of Tianjin[J]. Anhui Agricultural Science Bulletin, 2020, 26(14): 122-125 (in Chinese). [百度学术]
HAN DW, ZHANG D, HAN DZ, REN HL, WANG Z, ZHU ZJ, SUN HY, WANG LX, QU ZC, LU WC, YUAN M. Effects of salt stress on soil enzyme activities and rhizosphere microbial structure in salt-tolerant and-sensitive soybean[J]. Scientific Reports, 2023, 13(1): 17057. [百度学术]
YANG DH, TANG L, CUI Y, CHEN JX, LIU L, GUO CH. Saline-alkali stress reduces soil bacterial community diversity and soil enzyme activities[J]. Ecotoxicology, 2022, 31(9): 1356-1368. [百度学术]
林力涛, 刘煜杰, 冯文婷, 王玉刚, 张超, 马斌, 韩风, 王龙龙, 耿建阳, 李福杰. 土壤盐渍化对稀有和常见细菌群落结构和功能的影响[J]. 环境科学研究, 2024, 37(10): 2126-2137. [百度学术]
LIN LT, LIU YJ, FENG WT, WANG YG, ZHANG C, MA B, HAN F, WANG LL, GENG JY, LI FJ. Effects of soil salinization on the structure and function of rare and common bacteria[J]. Research of Environmental Sciences, 2024, 37(10): 2126-2137 (in Chinese). [百度学术]
张露, 张水清, 任科宇, 李俊杰, 段英华, 徐明岗. 不同肥力潮土的酶活计量比特征及其与微生物量的关系[J]. 中国农业科学, 2020, 53(20): 4226-4236. [百度学术]
ZHANG L, ZHANG SQ, REN KY, LI JJ, DUAN YH, XU MG. Soil ecoenzymatic stoichiometry and relationship with microbial biomass in fluvo-aquic soils with various fertilities[J]. Scientia Agricultura Sinica, 2020, 53(20): 4226-4236 (in Chinese). [百度学术]
ZHANG GL, BAI JH, ZHAI YJ, JIA J, ZHAO QQ, WANG W, HU XY. Microbial diversity and functions in saline soils: a review from a biogeochemical perspective[J]. Journal of Advanced Research, 2023, 59: 129-140. [百度学术]
WANG JL, YASEN M, GONG MX, ZHOU Q, LI MY. Structural variability in the rhizosphere bacterial communities of three halophytes under different levels of salinity-alkalinity[J]. Plant and Soil, 2024, 502(1): 709-723. [百度学术]
YANG C, LI KJ, LV DT, JIANG SY, SUN JQ, LIN H, SUN J. Inconsistent response of bacterial phyla diversity and abundance to soil salinity in a Chinese delta[J]. Scientific Reports, 2021, 11(1): 12870. [百度学术]
SONG TR, LIANG QY, DU ZZ, WANG XQ, CHEN GJ, DU ZJ, MU DS. Salinity gradient controls microbial community structure and assembly in coastal solar salterns[J]. Genes, 2022, 13(2): 385. [百度学术]
蔡树美, 诸海焘, 俞晓梅, 张德闪, 徐四新. 土壤盐分含量对设施蔬菜根际微生物群落结构的影响[J]. 土壤通报, 2024, 55(5): 1453-1461. [百度学术]
CAI SM, ZHU HT, YU XM, ZHANG DS, XU SX. Effects of soil salinity on microbial community structure in rhizosphere of greenhouse vegetables[J]. Chinese Journal of Soil Science, 2024, 55(5): 1453-1461 (in Chinese). [百度学术]
ZHANG ZC, FENG SC, LUO JQ, HAO BH, DIAO FW, LI X, JIA BB, WANG LX, BAO ZH, GUO W. Evaluation of microbial assemblages in various saline-alkaline soils driven by soluble salt ion components[J]. Journal of Agricultural and Food Chemistry, 2021, 69(11): 3390-3400. [百度学术]
HENG T, YANG LL, HERMANSEN C, DE JONGE LW, ZHANG ZY, WU BJ, CHEN J, ZHAO L, YU JW, HE XL. Linking microbial community compositions to cotton nitrogen utilization along soil salinity gradients[J]. Field Crops Research, 2022, 288: 108697. [百度学术]
XU DL, YU XW, CHEN J, LI XF, CHEN J, LI JH. Effects of compost as a soil amendment on bacterial community diversity in saline-alkali soil[J]. Frontiers in Microbiology, 2023, 14: 1253415. [百度学术]
DONG S, YAN PF, MEZZARI MP, ABRIOLA LM, PENNELL KD, CÁPIRO NL. Using network analysis and predictive functional analysis to explore the fluorotelomer biotransformation potential of soil microbial communities[J]. Environmental Science & Technology, 2024, 58(17): 7480-7492. [百度学术]
XU DL, WANG QK, GAO M, LI YT, WANG YJ, JIANG YX, GUO XH, WU N. Diversity of nitrogen-fixing bacteria in Suaeda salsa rhizosphere during reproduction in the Yellow River delta[J]. iScience, 2024, 27(12): 111267. [百度学术]
LI SP, WANG C, HUANG HY, ZHAO L, CAO J, WANG BL, DING HJ. Vermicompost and Azotobacter chroococcum increase nitrogen retention in saline-alkali soil and nitrogen utilization of maize[J]. Applied Soil Ecology, 2024, 201: 105512. [百度学术]
LI B, LIU XQ, ZHU D, SU H, GUO KW, SUN GY, LI X, SUN L. Crop diversity promotes the recovery of fungal communities in saline-alkali areas of the Western Songnen Plain[J]. Frontiers in Microbiology, 2023, 14: 1091117. [百度学术]
QIU LP, ZHANG Q, ZHU HS, REICH PB, BANERJEE S, VAN DER HEIJDEN MGA, SADOWSKY MJ, ISHII S, JIA XX, SHAO MA, LIU BY, JIAO H, LI HQ, WEI XR. Erosion reduces soil microbial diversity, network complexity and multifunctionality[J]. The ISME Journal, 2021, 15(8): 2474-2489. [百度学术]
NURRAHMA AHI, HARSONOWATI W, PUTRI HH, IQBAL R. Current research trends in endophytic fungi modulating plant adaptation to climate change-associated soil salinity stress[J]. Journal of Soil Science and Plant Nutrition, 2024, 24(4): 1-21. [百度学术]