网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

高原环境下皮肤微生物群对皮肤病影响的研究进展  PDF

  • 白雪 1
  • 杨建鑫 2
1. 青海民族大学 药学院,青海 西宁; 2. 苏州大学附属第二医院 药学部,江苏 苏州

最近更新:2025-03-07

DOI: 10.13343/j.cnki.wsxb.20240691

CSTR: 32112.14.j.AMS.20240691

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

高原特殊环境下,机体皮肤会出现一系列适应性反应和病理性变化,这些变化包括皮肤屏障功能受损、皮肤血管收缩障碍、角质层异常增厚、纤维素沉积等,导致高原地区皮肤疾病的发病率相对较高。研究表明,高原环境中皮肤微生物的组成和多样性会发生变化,这可能与皮肤疾病的发生、发展密切相关。本文旨在综述高原环境对皮肤的影响、高原常见皮肤病,以及微生物对皮肤疾病的影响,并探讨高原环境下皮肤微生物群对皮肤疾病的影响及作用机制。

高原地形在全球分布极为广泛,约占陆地总面积的45%。我国也是一个高原地形广布的国家,其中青藏高原是我国第一大高[

1]。青藏高原整体具有空气稀薄、气压低、紫外线强烈、寒冷干燥、昼夜温差大等气候特征,其特殊的环境会对机体产生复杂而多元的影[2]。在高原环境中,皮肤干燥症、痤疮、日光性皮炎、冻疮、手足皲裂和湿疹等皮肤疾病的发生率相对较高,这些皮肤问题已逐渐成为影响高原居民日常生活的主要障碍之[3]

皮肤作为机体与环境之间最大的界面,能直接且敏锐地感知环境的变化,从而有效抵御来自外部环境的伤[

4]。皮肤微生物群作为皮肤生理和病理过程的主要参与者,在保护皮肤组织、促进皮肤组织修复等方面发挥重要作[5]。刘[6]研究表明,在高原特殊环境中皮肤微生物的组成结构及多样性会发生显著变化,这会影响皮肤的稳定性并增加感染的可能性,进而导致罹患皮肤疾病的几率上升。然而,由于高原条件下皮肤微生物介导皮肤疾病的作用机制涉及多个方面且相对复杂,目前该领域的研究仍处于探索阶段。因此,本文综述了高原环境对皮肤的影响、高原常见皮肤病、皮肤微生物对皮肤疾病的影响,提出了关于皮肤微生物改变与高原地区常见皮肤疾病关系的推测,并对皮肤微生物变化引起高原常见皮肤疾病的发生机制进行了总结,旨在为合理解释高原环境中常见皮肤疾病的发生发展提供参考依据。

1 高原环境对皮肤的影响

地理学上,将海拔在500 m以上、顶面平缓、面积辽阔且边界清晰的高地称为高原。医学上所说的高原是指海拔在2 500 m以上,能产生明显生理学效应的地[

7]。按照地理分类,高原主要包括亚洲高原、青藏高原、蒙古高原、帕米尔高原、羌塘高原、亚美尼亚高原、伊朗高原、阿拉伯高原、美洲高原、欧洲高原和南极冰雪高原[1]。依据海拔的不同,高原可被划分为低海拔高原、中海拔高原、高海拔高原、特高海拔高原和极高海拔高[7]。高原地区普遍具有空气稀薄、低氧、低压、强紫外线、寒冷、干燥、昼夜温差大等环境特征,其特殊的环境因素会破坏机体的第一道防线——皮肤,使细菌或病原体更易侵入体内,导致皮脂分泌增多、表皮角化过度,甚至引发炎[8]

皮肤作为覆盖人体的最大器官,能够敏锐地感知到氧含量的波动。在低氧条件下,缺氧诱导因子1α (hypoxia-inducible factor 1α, HIF-1α)被激活,进而调节皮肤成纤维细胞及角质形成细胞的黏附和迁移,引起皮肤血管收缩,导致血流量减少,表明HIF-1α的表达与皮肤内稳态变化密切相[

9]。此外,低氧还会增加调控血管新生因子的活性,包括血管内皮生长因子、血管生成素及转化生长因子,影响内皮细胞的增殖和细胞外基质的降解,从而参与表皮的增殖和分化过[10]。强紫外线照射是影响皮肤维持正常生理功能的另一重要因素。机体暴露于高原强紫外线环境会导致皮肤发生皮革样改变,主要表现为表皮不均增厚、真皮层变薄和皮肤毛细血管网紊乱等,通过激活血管周围的炎症介质和细胞因子,触发真皮的炎症反应,进而引起皮肤光老[11-12]。同样地,高原环境中的寒冷和干燥也会对皮肤造成一定损伤。研究表明,长期处于寒冷且干燥的环境会使机体分泌的去甲肾上腺素升高,加速血管收缩和糖原分解,导致肢体产生麻木感,并伴有肢体和皮肤的疼痛[13]

2 高原环境导致的皮肤疾病

在高原特殊环境下,机体皮肤会出现一系列适应性反应和病理性变化,这些变化包括皮肤屏障功能受损、皮肤血管收缩障碍、角质层异常增厚、纤维素沉积等,导致高原地区皮肤疾病的发病率相对较高,尤其是日光性皮炎、光老化和冻疮等皮肤疾病易发、多[

11-12]

2.1 日光相关性皮肤疾病

日光作为重要的环境因素,对机体健康具有双重影响。适度的日光照射对机体有益,如改善血液循环、促进维生素D合成及微量元素吸[

14]。然而,过度日光暴露不仅会导致皮肤晒伤、加速光老化,还可能诱发或加剧各种日光相关皮肤病的产[15]。多数日光相关皮肤病的发生是由紫外线辐射造成,尤其是紫外线A (320-400 nm)和紫外线B (280-320 nm)具有很强的穿透力,能穿过皮肤表皮,到达真皮层,从而影响皮肤正常的生理功能,造成急性晒伤,并诱发某些慢性皮肤病[16]

高原地区大气层较薄,多属日光照射丰富区,大量日光辐射会增加紫外线暴露。对于急进高原人群而言,强紫外线照射极易导致晒伤、神经性皮炎的发生。晒伤的症状与体征通常在紫外线照射后1-24 h内出现,皮肤的改变从轻度的红斑发展到表浅的鳞屑及水疱的产生,还会引起皮肤疼痛,严重者会出现感染、永久性斑点色素沉着等症[

17]。此外,特殊的高原环境,加之不合理的饮食习惯,如过量摄入高糖、高蛋白、高脂肪、刺激性食物,导致急进高原人群患神经性皮炎的几率也相对较[18]。神经性皮炎以局部皮肤剧烈瘙痒、表皮组织改变、角蛋白形成增加、色素沉着及皮肤苔藓样变为主要特征,是一种皮肤功能障碍性疾病,严重影响患病者的生活质[3]

久居高原人群因长期处于强紫外线环境中,更容易出现日光性皮炎、光老化、日光性角化病和皮肤癌等疾病。日光性皮炎是高原常见皮肤病,通常在春末夏初高发,临床表现为局部皮肤充血,继而出现红肿,甚至破溃,且有触压过敏现象,严重者还可引起全身不良反[

19]。通过对驻扎在海拔3 600-4 000 m范围内的官兵进行皮肤患病情况调查,发现日光性皮炎患病率位居前列,其发病率与紫外线辐射强度显著相[20]。此外,海拔越高、日光暴露时间越长,皮肤表皮层增厚越明显,提示海拔高度、日光暴露时间与皮肤光老化程度呈正相[21]。究其原因,发现造成皮肤光老化的主要原因是紫外线照射,紫外线会诱导表皮和真皮中基质金属蛋白酶的形成,引起细胞外基质成分的改变,造成胶原蛋白损伤,从而导致皮肤粗糙、皱纹增多、色素加深、斑点形成、毛细血管扩张或增[22]。对于高原移居者和世居者而言,日光性角化病也是高原常见、多发的皮肤疾病。日光性角化病是皮肤角质形成细胞的癌前变化,若受损皮肤迅速扩大呈疣状或结节状,甚至破溃,则提示有恶化鳞癌的可[23]

2.2 寒冷损伤性皮肤疾病

高原地区海拔高,气温低,寒冷时间长,形成了独特的高寒气候。Dow[

24]研究表明,寒冷会降低血管一氧化氮合酶活性,使皮肤血管痉挛、收缩,甚至会形成血栓,久之血管麻痹扩张,引起静脉瘀血,毛细血管扩张,渗透性增加,从而发生冻疮、冻伤。冻疮是指组织温度在冰点以上引起的损伤,是一种与寒冷相关的末梢部位局限性、炎症性皮肤病,一般多发于高原地区劳作者,春、冬季节发病率较高,皮损表现为紫红、肿胀性斑块、硬结,严重者还可能出现疱疹、溃烂、疼痛等症[25-26]。冻伤是指组织温度在冰点以下引起的损伤,常发生于极其寒冷的环境中,常见受损部位有足趾尖、手指、鼻尖及耳廓,冻伤部位可出现麻木、发白、肿胀、起水疱、变黑和皮革[27]。依据损伤程度不同,冻伤分为浅表冻伤和深部冻伤,其中浅表冻伤仅累及表皮层,严重者会导致全层皮肤受损,而深部冻伤涉及全层皮肤、皮下和底层组织损伤,甚至包括肌肉、骨骼和神[28]

越来越多的研究表明,在高海拔地区,低氧会加重冻伤的程度。Yang[

29]通过比较常氧冻伤和低氧冻伤对皮肤组织的损伤程度,发现低氧冻伤可加剧血管破裂出血、创面肿胀、坏死以及溃疡形成,表明血液流变学行为的改变可能是造成缺氧大鼠冻伤加重的原因之一。同样地,Hu[30]利用低压氧舱模拟海拔5 000 m的低压低氧环境,证实寒冷联合缺氧环境对冻伤组织的损伤远超于单纯的寒冷环境。刘嘉瀛[31]也证实,缺氧与寒冷之间存在负交叉习服,低氧寒冷暴露过程中缺氧对机体冻伤的影响比低温更明显。然而,有关高原特殊环境引起、加剧冻伤的发病机制尚未被阐明,研究推测可能与皮肤血管对寒冷过敏及遗传因素有[32]

2.3 干燥相关性皮肤疾病

高原环境的低温、干燥、强风、温差大等因素均可造成皮肤表皮屏障水分丢失、皮脂减少,诱导皮肤出现干燥、瘙痒、皲裂和渗出等症状。通过对急进高原某部队深入调查,发现官兵皮肤的干燥、皲裂状况占到62%,而冻疮则仅为15%[

33]。郑[34]研究发现,新兵到达高原后有56.4%的人员出现皮肤黏膜干燥、皮肤皲裂性溃疡等病症,主要表现为指尖、足侧、足跟处见深浅不等的皮肤裂口,部分裂口深达真皮层,伴出血、疼痛。李姗姗[35]发现皮肤干燥症、手足皲裂是高原常见的皮肤疾病,冬季好发,主要是由表皮角质层结构改变和皮肤屏障功能紊乱引起。此外,在3 000 m以上的高海拔地区,唇部易出现干燥、脱皮、溃烂、肿胀等症状,而且随着海拔增高,症状也会加[36]

3 皮肤微生物群概述

3.1 皮肤微生物群的组成

人体微生态系统主要由皮肤、口腔、泌尿及胃肠道构成,各系统间相互协同,其中肠道微生态系统最为复杂且丰富,已被广泛研究,而皮肤微生态系统近年来才逐渐受到关[

37]。皮肤微生态系统由皮肤微生物群、皮肤表面的组织细胞及各种分泌物组成,其中皮肤微生物群占据核心地位;皮肤与微生物群之间互惠共生:一方面微生物群有助于修复皮肤屏障、维持免疫系统平衡和抑制病原微生物生长,另一方面皮肤也为微生物群的生长和繁殖提供了多样化的环[38]

根据微生物的形态特征,皮肤微生物群通常分为细胞型微生物和非细胞型微生物(图1)。细胞型微生物主要由细菌和真菌等组成,其中细菌是皮肤中分布最广的一类微生物,由放线菌门、厚壁菌门、变形菌门和拟杆菌门等优势菌门构成,是皮肤生理和病理过程的主要参与者,在保护皮肤组织和促进皮肤组织修复等方面发挥重要作[

5]。除细菌外,皮肤中也富含真菌,以马拉色菌、曲霉菌和隐球菌最为常[39]。不同皮肤部位会影响真菌群落的组成结构,且这些部位是决定真菌种类丰富度的关键因[40]。不同于细菌和真菌,病毒属于非细胞型微生物,皮肤病毒的定殖具有个体特异性,主要与皮肤微环境相[41]

fig

图1  皮肤微生物的组成

Figure 1  Composition of skin microorganisms.

根据与宿主的共生关系,皮肤微生物群还可分为共生菌和致病[

42]。共生菌通过与皮肤细胞如角质细胞和成纤维细胞的交流,为宿主组织提供必需的营养物质,促进皮肤屏障功能的建立,有利于对抗感[43]。致病菌通过直接定位到宿主组织导致伤口部位感染,延迟伤口愈合,甚至引发皮肤疾病的发[44]。例如,痤疮丙酸杆菌基因型多样性丧失是引发痤疮的主要原因之一,致病性金黄色葡萄球菌和表皮葡萄球菌增加与特应性皮炎的发生有[45]。此外,葡萄球菌属相对丰度的减少也与皮肤敏感和干燥等非病理性疾病的发生密切相[46]

3.2 皮肤微生物群的影响因素

皮肤微生物群是一个庞杂而动态的群落,其稳态是评价皮肤健康状况的重要指标。目前已知多种因素可影响皮肤微生物群落的动态平衡,主要包括内源性因素(皮肤结构和皮肤区域)和外源性因素(环境暴露);这些复杂的影响因素共同决定了皮肤微生物群在维持皮肤环境内稳态和影响皮肤疾病发生发展的作[

47]

在一定程度上,皮肤结构决定了微生物群落的组成。皮肤作为人体的天然屏障,由表皮和真皮组成,大量微生物寄居于表皮层。共生菌群在表皮层中占绝对优势,主要包括放线菌门、厚壁菌门、葡萄球菌属和棒状杆菌属等,在维持皮肤屏障中具有关键作[

48]。相比之下,只有少量微生物栖息于真皮层,且与皮肤的健康状况相[49]。表皮与真皮不仅在微生物组成上存在显著差异,而且其微生物群落的潜在功能也有所区[50]。表皮层中的微生物常与皮肤疾病有关,而真皮层中的微生物群落能更准确地反映宿主的遗传或免疫状[51]。由此可见,皮肤结构不仅对微生物的分布具有重要影响,也为解释皮肤微生物与机体间的交流提供了参考依据。

除皮肤的分层结构外,皮肤区域也是调控个体皮肤微生物异质性的关键因素。腹股沟和腋窝等较湿润的部位为葡萄球菌、棒状杆菌和β-变形杆菌的繁殖提供了理想的生存环境;颜面和胸背等富含皮脂腺的部位会促进亲脂性微生物,如丙酸杆菌和马拉色菌的生长;而四肢等干燥的部位其微生物群落具有丰富的多样[

52]。针对特定皮肤区域的研究同样发现,额头上的微生物种类相对较少,以丙酸杆菌为[53]。然而,前臂上微生物种类却显示出较高的多样性,主要包括丙酸杆菌、棒状杆菌、葡萄球菌、链球菌和不动杆[54]。对于掌侧区域而言,丙酸杆菌、链球菌和葡萄球菌为优势菌属,但这些菌属的相对数量呈现出明显的不均匀性,推测可能与经常暴露于不同的外部环境有[55]

尽管皮肤结构和皮肤区域等内在因素对皮肤微生物的塑造具有重要的影响,但环境暴露对皮肤微生物群物种组成及功能特征的影响更为显著。王逸[

56]通过对不同国家健康人群皮肤微生物组进行测序,发现不同国家人群皮肤细菌群落组成和多样性存在显著差异,例如,巴基斯坦居民的优势菌是变形菌门,而中国居民皮肤中相对富集的是厚壁菌门。Kim[57]分析了不同城市居住人群皮肤微生物的组成,发现不同的居住环境会显著影响皮肤微生物的丰富度和稳定性,提示皮肤微生物的组成具有地域异质性。研究还发现,城市化进程与皮肤潜在致病菌的分布息息相关。例如,与农村居民相比,城镇居民患痤疮、特应性皮炎和金黄色葡萄球菌感染等皮肤相关疾病的患病率更[58]。然而,关于不同环境对皮肤微生物影响的研究还相当有限,考虑到环境因子的重要性,特别是低氧、干燥、高寒和强辐射等特殊环境对皮肤微生物组成结构的影响仍需深入探讨。

4 皮肤微生物群与高原常见皮肤疾病的关系

4.1 高原环境对皮肤微生物群的影响

环境因素与皮肤微生物群的改变紧密相关,然而,当前研究主要聚焦于高原特有物种,而对于高原居民皮肤微生物群落的物种组成及功能特性的探究则相对较少。小头裸裂尻鱼是青藏高原特有的鱼类,利用高通量测序发现其皮肤黏膜微生物中放线菌门和变形菌门为优势菌门,推测可能与小头裸裂尻鱼适应高原低温、低氧环境有[

59]。高原林蛙作为青藏高原特有种,多栖息于高寒湿地。对不同海拔高原林蛙体表菌群测序结果显示,高海拔体表菌群多样性显著高于低海拔种群,且厚壁菌门丰度较高,这可能与高原林蛙对高海拔环境的适应性有[60]。徐亮[61]研究发现,高海拔两栖动物体表微生物中富含盐单胞菌科、杆菌科和鞘脂菌科等极端环境微生物,表明海拔对两栖动物的体表微生物具有显著影响。此外,通过对比高原和平原健康人群皮肤菌群的分布特点,发现高原人群皮肤微生物多样性相对较低,但四氢叶酸生物合成能力较强,推测这可能赋予了他们潜在的抗紫外线能[6]。然而,截至目前,关于高原特殊环境对皮肤微生物群影响进而导致皮肤疾病的研究仍十分有限。因此迫切需要构建一个系统、全面的研究体系,描述高原环境中皮肤微生物群落的特征及分布规律,进一步阐明高原环境对皮肤健康影响的内在机制。

4.2 皮肤微生物稳态改变与皮肤相关疾病

皮肤微生物稳态对于维持皮肤健康至关重要。大量研究表明,皮肤微生物群参与多种皮肤疾病的发生发展过程。Edslev[

62]研究表明,与健康皮肤相比,特应性皮炎患者皮肤微生物群α、β多样性降低,特别是链球菌属、棒状杆菌属、表皮杆状菌、葡萄球菌属的相对丰度发生显著变化。利用菌株水平测序还发现,葡萄球菌属的相对丰度与特应性皮炎患者的发作严重程度密切相关,其中金黄色葡萄球菌与较严重的病例相关,而病情较轻的患者中表皮葡萄球菌富[63]。此外,皮肤微生物动态平衡的破坏还会导致痤疮丙酸杆菌异常增殖,是引发痤疮的主要原[64]。一项病例对照研究发现,痤疮的发生与皮肤中痤疮丙酸杆菌的相对丰度呈正相关,且痤疮丙酸杆菌导致的痤疮其严重程度通常具有菌株特异[65]。研究筛选了健康和痤疮特异性关联的前10种最丰富的核糖型,发现核糖型1、核糖型2和核糖型3具有相似的相对丰度,均匀分布在痤疮和正常皮脂腺[66]。然而,核糖型4和核糖型5在多达40%的痤疮患者个体中显著富集,但在正常个体中却很少发现,它们的富集会增加炎症;相比之下,核糖型6在99%的健康皮肤个体中富[66-67]。除了特应性皮炎和痤疮外,银屑病也与皮肤微生物组的变化有关。银屑病患者的皮肤微生物中,厚壁菌门、放线菌门、拟杆菌门和变形菌门显著富集,其中厚壁菌门和变形菌门占绝大多[68]。在银屑病皮损部位,持续观察到金黄色葡萄球菌的异常定殖和表皮葡萄球菌相对丰度的下[69-70]。值得注意的是,皮肤微生物群,尤其是特定的微生物病原体,是造成伤口感染的主要原[71]

皮肤微生态的失衡与特应性皮炎、痤疮、银屑病及皮肤炎症的发生发展有密切相关,因此,可以尝试以修复皮肤微生物动态平衡为切入点,调节皮肤微生物群,恢复皮肤屏障,减少炎症反应,以期在皮肤病的治疗中获得良好的效果。近年来,随着对微生态制剂研究的不断深入,以益生菌、益生元和合生元为代表的微生态制剂,不仅具有抵抗、抑制病原菌生长繁殖的特性,还能增强固有免疫系统和免疫耐受机[

72-73]。摄入益生菌唾液乳杆菌(Lactobacillus salivarius) LS01和短双歧杆菌(Bifidobacterium breve) BR03,可降低皮肤微生物易位,激活免疫反应,显著改善特应性皮炎评分和皮肤病生活质量指数,进而调控特异性皮炎的进[74]。由此可见,皮肤微生物对于调控疾病发展和维护皮肤健康中发挥重要作用。然而,微生态制剂的有益作用存在个体差异,将微生态制剂用于精准治疗或将成为今后微生态制剂研究的热点。

4.3 高原条件下皮肤微生态的变化与皮肤疾病

由于急进高原和久居高原者受到高原特殊环境的影响,皮肤微生物群结构及多样性发生改变,导致皮肤屏障功能及抵御病原体的能力发生变化,从而影响皮肤的稳定性并增加感染的可能性,使得罹患皮肤疾病的几率增大,且容易反复发[

8,75]。然而,这一研究领域的障碍是缺乏直接证据来证明高原特殊环境下皮肤微生物群变化与皮肤疾病的关系。因此,我们提出了关于皮肤微生物改变与高原地区常见皮肤疾病关系的推测,并对皮肤微生物变化引起皮肤疾病的发生机制进行了总结,详见图2

fig

图2  高原环境下皮肤微生物变化引起皮肤疾病的发生机制

Figure 2  Mechanisms of dermatologic disorders caused by microbial changes in the skin in plateau environments.

在高原环境下皮肤微生物多样性相对较低,一些低氧、紫外线敏感的微生物及其代谢产物的相对丰度发生变化,从而诱导抗菌肽及细胞因子的表达,使皮肤抵御病原体入侵的能力减弱,加重皮肤炎症反应,进而导致特应性皮炎、异位性皮炎等慢性复发性皮肤炎症疾病的发[

75-76]。此外,在高原特殊环境下,特征菌的种类及相对丰度发生变化,促使皮肤局部免疫应答发生改变,影响皮肤中菌群特异性T细胞、黏膜相关恒定T细胞的生成及功能,从而影响皮肤吸收紫外线、抗氧化和抗炎的特性,导致日光性皮炎、光老化的发[75,77]

综上所述,对皮肤菌群特征的全面理解是对高原皮肤疾病认识的前提,也是应用微生物制剂对高原皮肤病进行靶向干预、预防和治疗的基础。因此,未来应利用功能性的多组学方法(如16S rRNA基因、宏基因组、宏转录组和宏蛋白组等)从微生物多样性、种群结构、进化关系、功能活性等方面来表征高原特殊环境下皮肤微生物群变化与常见皮肤疾病的关系,筛选出与高原皮肤病相关的特定微生物种/株/代谢产物,从而开发和优化各种体外微生物组培养模型,将微生物组整合到未来的预防和治疗策略中,为高原皮肤病的诊断与治疗带来新的希[

78-79]

5 总结与展望

皮肤作为人体与外界环境最大的交互界面,寄居着数量庞大的微生物群。这些微生物之间相互制约、共存,最终形成了微妙的生态平衡。大量研究表明,皮肤微生物与皮肤疾病的发生密切相关。例如,葡萄球菌属的相对丰度增加可能引发特应性皮炎,而痤疮丙酸杆菌的大量繁殖则可能导致痤[

62,65]。然而,目前关于皮肤微生物与皮肤疾病关系的机制研究仍处于早期阶段,主要揭示了它们之间的相关性,而非因果关系。基于皮肤微生物群的皮肤疾病研究,无疑是未来该领域的一个热点。

高原地区普遍具有低气压、低氧含量、寒冷干燥等独特的环境特征,这些环境因素会对人体产生不同程度的影[

2]。在高原特殊环境下,皮肤会出现一系列适应性反应和病理性变化,从而增加了神经性皮炎、日光性皮炎、光老化和冻疮等皮肤疾病的发病率。现有研究表明,不同海拔地区人类皮肤微生物的组成结构及多样性存在差异,低氧环境会加速内皮细胞、成纤维细胞和角质形成细胞的增殖和迁移,介导促炎因子、创伤愈合因子的表[80]。此外,表皮葡萄球菌的富集与强紫外线照射显著相关,提示表皮葡萄球菌相对丰度的变化可能与皮肤光老化、皮肤癌的发生密切相[81]。因此,本文推测在高原环境下,低氧及紫外线敏感的微生物及其代谢物相对丰度的变化,一方面可能会诱导抗菌肽、细胞因子的表达,从而激活或抑制不同的信号通路;另一方面还可能通过改变与上皮细胞结合、竞争吸收营养物质和分泌杀菌、抑菌物质等方式介导不同的免疫应答,促进特应性皮炎、异位性皮炎、日光性皮炎、光老化等皮肤疾病的发生与发[75-77]

由于皮肤微生物群组成的复杂性和分析技术的局限性,使得皮肤微生物群的研究仍面临巨大挑战。此外,高原不仅具有低压、低氧、强辐射等环境特征,且长期“偏远化、多元化、滞后化”的社会现状,进一步加剧了高原常见皮肤疾病研究的难[

37]。因此,在高原环境下,探讨皮肤微生物变化与皮肤疾病的发生发展、相关效应分子及具体作用机制应是未来的研究重点。

随着测序技术和分析方法的不断进步,我们对皮肤微生物群落有了更深入的认识。目前,关于高原特殊环境下皮肤微生物的改变在维持机体皮肤稳态或加剧皮肤疾病中所扮演的角色仍不清楚。我们可以通过全基因组、宏基因组测序来表征微生物序列数据,整合现有数据库资源,构建高原地区人群皮肤微生物基因目录,并筛选出具有潜在生物标记物功能的致病菌、特征菌及微生物代谢物。进一步地,可以利用单体分离或培养等方法来获得这些可能的致病菌、特征菌及微生物代谢物,并分析其功能。在动物模型中进行验证,从而揭示高原特殊环境中皮肤菌群生态变化与皮肤疾病的关联,并探索消除相应病原体的有效方[

82]。未来,应联合多组学、多技术、多学科来揭示这些相关性,并对其作用机制进行验证。因此,研究高原环境中皮肤微生物与皮肤疾病的关系及相关作用机制,将在很大程度上增强高原地区的常见皮肤疾病研究和防治能力,推动高原地区精准化和个体化医疗的发展。

作者贡献声明

白雪:全文撰写、绘图并核对论文内容;杨建鑫:对论文进行整体的指导和修改。

利益冲突

作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。

参考文献

1

吴天一. 吴天一高原医学[M]. 武汉: 湖北科学技术出版社, 2020: 1-225. [百度学术] 

WU TY. Wu Tianyi High Altitude Medicine[M]. Wuhan: Hubei Science and Technology Press, 2020: 1-225 (in Chinese). [百度学术] 

2

杨建鑫. 高原低氧条件下HNF1α与HNF4α对CYP450的转录调控[D]. 西宁: 青海大学博士学位论文, 2023. [百度学术] 

YANG JX. Transcriptional regulation of HNF1α and HNF4α on CYP450 under high-altitude hypoxia[D]. Xining: Doctoral Dissertation of Qinghai University, 2023 (in Chinese). [百度学术] 

3

曹馨予. 低氧暴露对汗液分泌的影响及其作用机制的初步研究[D]. 西安: 中国人民解放军空军军医大学硕士学位论文, 2024. [百度学术] 

CAO YX. A preliminary study on the effect of hypoxic exposure on sweat secretion and its mechanism[D]. Xi’an: Master’s Thesis of Air Force Medical University, 2024 (in Chinese). [百度学术] 

4

HARRIS-TRYON TA, GRICE EA. Microbiota and maintenance of skin barrier function[J]. Science, 2022, 376(6596): 940-945. [百度学术] 

5

FOURNIÈRE M, LATIRE T, SOUAK D, FEUILLOLEY MGJ, BEDOUX G. Staphylococcus epidermidis and Cutibacterium acnes: two major sentinels of skin microbiota and the influence of cosmetics[J]. Microorganisms, 2020, 8(11): 1752. [百度学术] 

6

刘祎. 人类皮肤微生物参考基因目录及高原成年人皮肤微生物景观描绘[D]. 上海: 中国人民解放军海军军医大学硕士学位论文, 2023. [百度学术] 

LIU Y. Directory of reference genes of human skin microorganisms and description of skin microbial landscape of plateau adults[D]. Shanghai: Master’s Thesis of Naval Medical University, 2023 (in Chinese). [百度学术] 

7

格日力. 高原医学[M]. 北京: 北京大学医学出版社, 2015: 1-10. [百度学术] 

GE RL. High Altitude Medicine[M]. Beijing: Peking University Medical Press, 2015: 1-10 (in Chinese). [百度学术] 

8

高钰琪. 高原军事医学[M]. 重庆: 重庆出版社, 2005: 373-385. [百度学术] 

GAO YQ. Gao Yuan Jun Shi Yi Xue[M]. Chongqing: Chongqing Publishing & Media Co., Ltd., 2005: 373-385 (in Chinese). [百度学术] 

9

李莲, 张禁. 高原特勤人员皮肤病防治研究进展[J]. 武警医学, 2022, 33(9): 821-823. [百度学术] 

LI L, ZHANG J. Research progress on prevention and treatment of dermatosis in plateau secret service personnel[J]. Medical Journal of the Chinese People’s Armed Police Force, 2022, 33(9): 821-823 (in Chinese). [百度学术] 

10

李勇坚. 银屑病皮损及缺氧条件下HaCaT细胞HIF-1α与血管生成相关蛋白表达关系的研究[D]. 长沙: 中南大学博士学位论文, 2010. [百度学术] 

LI YJ. Study on the relationship between HIF-1α and angiogenesis-related protein expression in HaCaT cells under psoriasis lesions and hypoxia[D]. Changsha: Doctoral Dissertation of Central South University, 2010 (in Chinese). [百度学术] 

11

陈宇杰. 角质形成细胞调节性细胞死亡在紫外线诱发的皮肤炎症中的作用研究[D]. 北京: 北京协和医学院博士学位论文, 2023. [百度学术] 

CHEN YJ. Study on the role of keratinocyte regulatory cell death in ultraviolet-induced skin inflammation[D]. Beijing: Doctoral Dissertation of Peking Union Medical College, 2023 (in Chinese). [百度学术] 

12

TODOROVA K, MANDINOVA A. Novel approaches for managing aged skin and nonmelanoma skin cancer[J]. Advanced Drug Delivery Reviews, 2020, 153: 18-27. [百度学术] 

13

SHIN N, LEE SH, CHO Y, PARK TH, HONG S. Bioelectronic skin based on nociceptive ion channel for human-like perception of cold pains[J]. Small, 2020, 16(30): e2001469. [百度学术] 

14

HOSEINZADEH E, TAHA P, WEI CA, GODINI H, ASHRAF GM, TAGHAVI M, MIRI M. The impact of air pollutants, UV exposure and geographic location on vitamin D deficiency[J]. Food and Chemical Toxicology, 2018, 113: 241-254. [百度学术] 

15

BATTIE C, JITSUKAWA S, BERNERD F, del BINO S, MARIONNET C, VERSCHOORE M. New insights in photoaging, UVA induced damage and skin types[J]. Experimental Dermatology, 2014, 23(Suppl 1): 7-12. [百度学术] 

16

ZASTROW L, GROTH N, KLEIN F, KOCKOTT D, LADEMANN J, RENNEBERG R, FERRERO L. The missing link: light-induced (280-1, 600 nm) free radical formation in human skin[J]. Skin Pharmacology and Physiology, 2009, 22(1): 31-44. [百度学术] 

17

De GRUIJL FR. UV adaptation: pigmentation and protection against overexposure[J]. Experimental Dermatology, 2017, 26(7): 557-562. [百度学术] 

18

李辉周文. 124例高原神经性皮炎的治疗体会[J]. 大家健康(学术版), 2013, 7(18): 101-102. [百度学术] 

LI H, ZHOU W. Treatment of 124 cases of plateau neurodermatitis[J]. For all Health, 2013, 7(18):101-102 (in Chinese). [百度学术] 

19

汉瑞娟, 李娟, 朱鑫华, 陆皓. 高原日光性皮炎防护研究进展[J]. 解放军护理杂志, 2016, 33(17): 45-46. [百度学术] 

HAN RJ, LI J, ZHU XH, LU H. Advances in the study of protection against solar dermatitis in the highlands[J]. Military Nursing, 2016, 33(17): 45-46 (in Chinese). [百度学术] 

20

杨维玲, 张继刚, 张重军, 王玉真. 某驻藏部队官兵皮肤病患病情况调查分析[J]. 人民军医, 2013, 56(4): 376-377. [百度学术] 

YANG WL, ZHANG JG, ZHANG CJ, WANG YZ. Investigation and analysis of dermatosis in officers and men of a certain army stationed in Xizang[J]. People’s Military Surgeon, 2013, 56(4): 376-377 (in Chinese). [百度学术] 

21

徐晴, 赵芸珂, 孙敏, 余玲, 刘红梅, 肖蓉. 不同海拔高原日光照射对正常藏族人群皮肤弹性的影响[J]. 中国医学影像技术, 2022, 38(4): 516-519. [百度学术] 

XU Q, ZHAO YK, SUN M, YU L, LIU HM, XIAO R. Impacts of different altitudes sunlight on skin elasticity of normal Tibetan population[J]. Chinese Journal of Medical Imaging Technology, 2022, 38(4): 516-519 (in Chinese). [百度学术] 

22

金媛媛. 刺五加糖蛋白对紫外线引起的皮肤光老化的修复作用及机制研究[D]. 长春: 长春中医药大学博士学位论文, 2022. [百度学术] 

JIN YY. Study on the repair effect and mechanism of Acanthopanax senticosus glycoprotein on ultraviolet-induced skin photoaging[D]. Changchun: Doctoral Dissertation of Changchun University of Chinese Medicine, 2022 (in Chinese). [百度学术] 

23

JANSEN MHE, KESSELS JPHM, NELEMANS PJ, KOULOUBIS N, ARITS AHMM, van PELT HPA, QUAEDVLIEG PJF, ESSERS BAB, STEIJLEN PM, KELLENERS-SMEETS NWJ, MOSTERD K. Randomized trial of four treatment approaches for actinic keratosis[J]. New England Journal of Medicine, 2019, 380(10): 935-946. [百度学术] 

24

DOW J, GIESBRECHT GG, DANZL DF, BRUGGER H, SAGALYN EB, WALPOTH B, AUERBACH PS, McINTOSH SE, NÉMETHY M, McDEVITT M, SCHOENE RB, RODWAY GW, HACKETT PH, ZAFREN K, BENNETT BL, GRISSOM CK. Wilderness medical society clinical practice guidelines for the out-of-hospital evaluation and treatment of accidental hypothermia: 2019 update[J]. Wilderness & Environmental Medicine, 2019, 30(4S): S47-S69. [百度学术] 

25

王园园, 邢微微, 付文亮, 徐东刚. 高原部队常见皮肤病及防治[J]. 军事医学, 2020, 44(6): 470-474. [百度学术] 

WANG YY, XING WW, FU WL, XU DG. Clinical manifestations and prevention of common dermatoses among plateau troops[J]. Military Medical Sciences, 2020, 44(6): 470-474 (in Chinese). [百度学术] 

26

马新苹. 冬病夏治隔姜灸治疗女性手部Ⅰ、Ⅱ度冻疮的临床观察[D]. 成都: 成都中医药大学硕士学位论文, 2013. [百度学术] 

MA XP. Clinical observation of ginger moxibustion treatment of female Ⅰ, Ⅱ degree hand Chilblain of treating winter diseases in summer[D]. Chengdu: Master’s Thesis of Chengdu University of TCM, 2013 (in Chinese). [百度学术] 

27

张婧. 富血小板血浆对兔冻伤创面影响的实验研究[D]. 南充: 川北医学院硕士学位论文, 2023. [百度学术] 

ZHANG J. Experimental study on the effects of PRP on frostbite wound of rabbits[D]. Nanchong: Master’s Thesis of North Sichuan Medical College, 2023 (in Chinese). [百度学术] 

28

PERSITZ J, ESSA A, NER EB, ASSARAF E, AVISAR E. Frostbite of the extremities-recognition, evaluation and treatment[J]. Injury, 2022, 53(10): 3088-3093. [百度学术] 

29

YANG ZR, LIU JY, LI FZ, YAN PH, LIU YM, SUN FR. Effect of acute hypoxia and hypoxic acclimation on hemorheological behavior in rats with frostbite[J]. Clinical Hemorheology and Microcirculation, 1999, 20(3): 189-195. [百度学术] 

30

HU J, LI H, GENG XL, JIAO L, SONG HP, LOU L, JIAO MK. Pathophysiologic determination of frostbite under high altitude environment simulation in sprague-dawley rats[J]. Wilderness & Environmental Medicine, 2016, 27(3): 355-363. [百度学术] 

31

刘嘉瀛, 张智勇, 杨增仁, 李凤芝, 颜培华, 刘友梅. 冷冻和缺氧对大鼠血清肌酸激酶活性的影响[J]. 航天医学与医学工程, 1996, 9(4): 291-294. [百度学术] 

LIU JY, ZHANG ZY, YANG ZR, LI FZ, YAN PH, LIU YM. Effects of freezing and hypoxia on serum creatine kinase activity in rats[J]. Space Medicine & Medical Engineering, 1996, 9(4): 291-294 (in Chinese). [百度学术] 

32

DAANEN HA, van RUITEN HJ. Cold-induced peripheral vasodilation at high altitudes: a field study[J]. High Altitude Medicine & Biology, 2000, 1(4): 323-329. [百度学术] 

33

刘莉. 高原某部新兵身体状况和膳食营养调查研究[D]. 西安: 第四军医大学硕士学位论文, 2013. [百度学术] 

LIU L. Investigation and study on physical condition and dietary nutrition of recruits in a certain unit of plateau[D]. Xi’an: Master’s Thesis of The Fourth Military Medical University, 2013 (in Chinese). [百度学术] 

34

郑婷. 急进高原部队特需药品保障现状及对策研究[D]. 重庆: 第三军医大学硕士学位论文, 2014. [百度学术] 

ZHENG T. Study on the present situation and countermeasures of special drug support for troops entering the plateau rapidly[D]. Chongqing: Master’s Thesis of Third Military Medical University, 2014 (in Chinese). [百度学术] 

35

李姗姗, 聂舒, 吕婷, 张洁尘, 王宏伟. 皮肤干燥症研究进展[J]. 中国皮肤性病学杂志, 2019, 33(5): 599-603. [百度学术] 

LI SS, NIE S, LÜ T, ZHANG JC, WANG HW. Advances in xerosis cutis[J]. The Chinese Journal of Dermatovenereology, 2019, 33(5): 599-603 (in Chinese). [百度学术] 

36

CABEZAS JE, CABEZAS M, UREÑA-LÓPEZ V, LAFUENTE LV, MÉNDEZ-FLORES KM, LUNA JF, MIÑO C, PALACIOS-ALVAREZ SA. Dermoscopic evaluation of actinic changes in the lips of indigenous children living at high altitude in Ecuador: a descriptive study[J]. Medical Science Monitor, 2023, 29: e942554. [百度学术] 

37

白雪. 高原低氧环境肠道菌群对CYP450和药物转运体的调节作用[D]. 西宁: 青海大学博士学位论文, 2023. [百度学术] 

BAI X. Regulation of CYP450 and drug transporter on gut microbiota under high-altitude hypoxia[D]. Xining: Doctoral Dissertation of Qinghai University, 2023 (in Chinese). [百度学术] 

38

SFRISO R, EGERT M, GEMPELER M, VOEGELI R, CAMPICHE R. Revealing the secret life of skin-with the microbiome you never walk alone[J]. International Journal of Cosmetic Science, 2020, 42(2): 116-126. [百度学术] 

39

FINDLEY K, OH J, YANG J, CONLAN S, DEMING C, MEYER JA, SCHOENFELD D, NOMICOS E, PARK M, NIH INTRAMURAL SEQUENCING CENTER COMPARATIVE SEQUENCING PROGRAMH, KONG HH, SEGRE JA. Topographic diversity of fungal and bacterial communities in human skin[J]. Nature, 2013, 498(7454): 367-370. [百度学术] 

40

CUNDELL AM. Microbial ecology of the human skin[J]. Microbial Ecology, 2018, 76(1): 113-120. [百度学术] 

41

HANNIGAN GD, MEISEL JS, TYLDSLEY AS, ZHENG Q, HODKINSON BP, SanMIGUEL AJ, MINOT S, BUSHMAN FD, GRICE EA. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome[J]. mBio, 2015, 6(5): e01578-15. [百度学术] 

42

ERSANLI C, TZORA A, VOIDAROU CC, SKOUFOS S, ZEUGOLIS DI, SKOUFOS I. Biodiversity of skin microbiota as an important biomarker for wound healing[J]. Biology, 2023, 12(9): 1187. [百度学术] 

43

PISTONE D, MERONI G, PANELLI S, D’AURIA E, ACUNZO M, PASALA AR, ZUCCOTTI GV, BANDI C, DRAGO L. A journey on the skin microbiome: pitfalls and opportunities[J]. International Journal of Molecular Sciences, 2021, 22(18): 9846. [百度学术] 

44

KALAN LR, MEISEL JS, LOESCHE MA, HORWINSKI J, SOAITA I, CHEN XX, UBEROI A, GARDNER SE, GRICE EA. Strain- and species-level variation in the microbiome of diabetic wounds is associated with clinical outcomes and therapeutic efficacy[J]. Cell Host & Microbe, 2019, 25(5): 641-655.e5. [百度学术] 

45

GRICE EA, SEGRE JA. The skin microbiome[J]. Nature Reviews Microbiology, 2011, 9(4): 244-253. [百度学术] 

46

ZHENG YM, LIANG HY, LI ZY, TANG M, SONG LY. Skin microbiome in sensitive skin: the decrease of Staphylococcus epidermidis seems to be related to female lactic acid sting test sensitive skin[J]. Journal of Dermatological Science, 2020, 97(3): 225-228. [百度学术] 

47

张盼伦文辉. 皮肤微生物与皮肤疾病的研究进展[J]. 中国医学前沿杂志(电子版), 2024, 16(1): 17-20. [百度学术] 

ZHANG P, LUN WH. Research advances in skin microbes and skin disease[J]. Chinese Journal of the Frontiers of Medical Science (Electronic Version), 2024, 16(1): 17-20 (in Chinese). [百度学术] 

48

庞梦茹. 皮肤表面微生物菌群结构变化与糖尿病皮肤病变的相关性研究[D]. 广州: 南方医科大学硕士学位论文, 2020. [百度学术] 

PANG MR. The dynamic changes of the microbiome on the skin surface of diabetic[D]. Guangzhou: Master’s Thesis of Southern Medical University, 2020 (in Chinese). [百度学术] 

49

NAKATSUJI T, CHIANG HI, JIANG SB, NAGARAJAN H, ZENGLER K, GALLO RL. The microbiome extends to subepidermal compartments of normal skin[J]. Nature Communications, 2013, 4: 1431. [百度学术] 

50

刘祎, 杜明威, 何海洋, 朱星睿, 廖万清, 潘炜华. 皮肤微生态强化皮肤屏障功能[J]. 中国皮肤性病学杂志, 2023, 37(11): 1217-1221. [百度学术] 

LIU Y, DU MW, HE HY, ZHU XR, LIAO WQ, PAN WH. Skin microecology strengthens skin barrier function[J]. The Chinese Journal of Dermatovenereology, 2023, 37(11): 1217-1221 (in Chinese). [百度学术] 

51

BAY L, BARNES CJ, FRITZ BG, THORSEN J, RESTRUP MEM, RASMUSSEN L, SØRENSEN JK, HESSELVIG AB, ODGAARD A, HANSEN AJ, BJARNSHOLT T. Universal dermal microbiome in human skin[J]. mBio, 2020, 11(1): e02945-19. [百度学术] 

52

BYRD AL, BELKAID Y, SEGRE JA. The human skin microbiome[J]. Nature Reviews Microbiology, 2018, 16(3): 143-155. [百度学术] 

53

STAUDINGER T, PIPAL A, REDL B. Molecular analysis of the prevalent microbiota of human male and female forehead skin compared to forearm skin and the influence of make-up[J]. Journal of Applied Microbiology, 2011, 110(6): 1381-1389. [百度学术] 

54

COSTELLO EK, LAUBER CL, HAMADY M, FIERER N, GORDON JI, KNIGHT R. Bacterial community variation in human body habitats across space and time[J]. Science, 2009, 326(5960): 1694-1697. [百度学术] 

55

FIERER N, HAMADY M, LAUBER CL, KNIGHT R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(46): 17994-17999. [百度学术] 

56

王逸洁. 24名中国和巴基斯坦大学生皮肤微生物组研究[D]. 兰州: 兰州大学硕士学位论文, 2021. [百度学术] 

WANG YJ. Study on skin microbiome of 24 China and Pakistani college students[D]. Lanzhou: Master’s Thesis of Lanzhou University, 2021 (in Chinese). [百度学术] 

57

KIM HJ, KIM H, KIM JJ, MYEONG NR, KIM T, PARK T, KIM E, CHOI JY, LEE J, AN SS, SUL WJ. Fragile skin microbiomes in megacities are assembled by a predominantly niche-based process[J]. Science Advances, 2018, 4(3): e1701581. [百度学术] 

58

CALLEWAERT C, RAVARD HELFFER K, LEBARON P. Skin microbiome and its interplay with the environment[J]. American Journal of Clinical Dermatology, 2020, 21(Suppl 1): 4-11. [百度学术] 

59

郝佳慧, 蔡伟杰, 李柯懋, 关弘弢, 杨朝杰, 高强, 刘丹, 聂苗苗, 祁得林, 张存芳. 高通量测序分析小头裸裂尻鱼皮肤和肠道的微生物多样性[J]. 微生物学报, 2023, 63(1): 233-250. [百度学术] 

HAO JH, CAI WJ, LI KM, GUAN HT, YANG ZJ, GAO Q, LIU D, NIE MM, QI DL, ZHANG CF. Skin and intestinal microbial diversity of Herzensteinia microcephalus determined by high-throughput sequencing[J]. Acta Microbiologica Sinica, 2023, 63(1): 233-250 (in Chinese). [百度学术] 

60

马明. 基于多组学分析高原林蛙响应高海拔胁迫的分子机制[D]. 兰州: 兰州大学博士学位论文, 2022. [百度学术] 

MA M. Analysis of the molecular mechanism of Rana kukunoris response to high altitude stress based on Mmulti-omics[D]. Lanzhou: Doctoral Dissertation of Lanzhou University, 2023 (in Chinese). [百度学术] 

61

徐亮亮. 海拔对两栖动物共生微生物(体表和肠道微生物)的影响[D]. 南京: 南京师范大学硕士学位论文, 2019. [百度学术] 

XU LL. Effects of altitude on symbiotic microorganisms (surface and intestinal microorganisms) of amphibians[D]. Nanjing: Master’s Thesis of Nanjing Normal University, 2019 (in Chinese). [百度学术] 

62

EDSLEV SM, AGNER T, ANDERSEN PS. Skin microbiome in atopic dermatitis[J]. Acta Dermato-Venereologica, 2020, 100(12): adv00164. [百度学术] 

63

BYRD AL, DEMING C, CASSIDY SKB, HARRISON OJ, NG WI, CONLAN S, COMPARATIVE SEQUENCING PROGRAM NISC, BELKAID Y, SEGRE JA, KONG HH. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis[J]. Science Translational Medicine, 2017, 9(397): eaal4651. [百度学术] 

64

FITZ-GIBBON S, TOMIDA S, CHIU BH, NGUYEN L, DU C, LIU M, ELASHOFF D, ERFE MC, LONCARIC A, KIM J, MODLIN RL, MILLER JF, SODERGREN E, CRAFT N, WEINSTOCK GM, LI HY. Propionibacterium acnes strain populations in the human skin microbiome associated with acne[J]. Journal of Investigative Dermatology, 2013, 133(9): 2152-2160. [百度学术] 

65

JAHNS AC, LUNDSKOG B, GANCEVICIENE R, PALMER RH, GOLOVLEVA I, ZOUBOULIS CC, McDOWELL A, PATRICK S, ALEXEYEV OA. An increased incidence of Propionibacterium acnes biofilms in acne vulgaris: a case-control study[J]. The British Journal of Dermatology, 2012, 167(1): 50-58. [百度学术] 

66

ALLHORN M, ARVE S, BRÜGGEMANN H, LOOD R. A novel enzyme with antioxidant capacity produced by the ubiquitous skin colonizer Propionibacterium acnes[J]. Scientific Reports, 2016, 6: 36412. [百度学术] 

67

O’NEILL AM, GALLO RL. Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris[J]. Microbiome, 2018, 6(1): 177. [百度学术] 

68

LEE HJ, KIM M. Skin barrier function and the microbiome[J]. International Journal of Molecular Sciences, 2022, 23(21): 13071. [百度学术] 

69

NG CY, HUANG YH, CHU CF, WU TC, LIU SH. Risks for Staphylococcus aureus colonization in patients with psoriasis: a systematic review and meta-analysis[J]. The British Journal of Dermatology, 2017, 177(4): 967-977. [百度学术] 

70

CHANG HW, YAN D, SINGH R, LIU J, LU XY, UCMAK D, LEE K, AFIFI L, FADROSH D, LEECH J, VASQUEZ KS, LOWE MM, ROSENBLUM MD, SCHARSCHMIDT TC, LYNCH SV, LIAO W. Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization[J]. Microbiome, 2018, 6(1): 154. [百度学术] 

71

NAIK S, BOULADOUX N, WILHELM C, MOLLOY MJ, SALCEDO R, KASTENMULLER W, DEMING C, QUINONES M, KOO L, CONLAN S, SPENCER S, HALL JA, DZUTSEV A, KONG HD, CAMPBELL DJ, TRINCHIERI G, SEGRE JA, BELKAID Y. Compartmentalized control of skin immunity by resident commensals[J]. Science, 2012, 337(6098): 1115-1119. [百度学术] 

72

马晨, 张和平. 皮肤微生物与益生菌在皮肤疾病诊疗中的应用[J]. 食品科学, 2016, 37(9): 269-273. [百度学术] 

MA C, ZHANG HP. Skin microbiome and probiotic therapeutic approaches for skin diseases[J]. Food Science, 2016, 37(9): 269-273 (in Chinese). [百度学术] 

73

WANG YZ, LI YX, XIE JM, ZHANG Y, WANG JL, SUN XL, ZHANG HP. Protective effects of probiotic Lactobacillus casei Zhang against endotoxin- and d-galactosamine-induced liver injury in rats via anti-oxidative and anti-inflammatory capacities[J]. International Immunopharmacology, 2013, 15(1): 30-37. [百度学术] 

74

IEMOLI E, TRABATTONI D, PARISOTTO S, BORGONOVO L, TOSCANO M, RIZZARDINI G, CLERICI M, RICCI E, FUSI A, de VECCHI E, PICONI S, DRAGO L. Probiotics reduce gut microbial translocation and improve adult atopic dermatitis[J]. Journal of Clinical Gastroenterology, 2012, 46(Suppl): S33-S40. [百度学术] 

75

LI H, WANG Y, YU Q, FENG T, ZHOU R, SHAO L, QU J, LI N, BO T, ZHOU H. Elevation is associated with human skin microbiomes[J]. Microorganisms, 2019, 7(12): 611. [百度学术] 

76

YANG Y, QU L, MIJAKOVIC I, WEI Y. Advances in the human skin microbiota and its roles in cutaneous diseases[J]. Microbial Cell Factories, 2022, 21(1): 176. [百度学术] 

77

BELKAID Y, SEGRE JA. Dialogue between skin microbiota and immunity[J]. Science, 2014, 346(6212): 954-959. [百度学术] 

78

ZHANG X, DEEKE SA, NING ZB, STARR AE, BUTCHER J, LI J, MAYNE J, CHENG K, LIAO B, LI LY, SINGLETON R, MACK D, STINTZI A, FIGEYS D. Metaproteomics reveals associations between microbiome and intestinal extracellular vesicle proteins in pediatric inflammatory bowel disease[J]. Nature Communications, 2018, 9(1): 2873. [百度学术] 

79

NIELSEN TC, ROZEK T, HOPWOOD JJ, FULLER M. Determination of urinary oligosaccharides by high-performance liquid chromatography/electrospray ionization-tandem mass spectrometry: application to hunter syndrome[J]. Analytical Biochemistry, 2010, 402(2): 113-120. [百度学术] 

80

GHAHREMANI-NASAB M, del BAKHSHAYESH AR, AKBARI-GHARALARI N, MEHDIPOUR A. Biomolecular and cellular effects in skin wound healing: the association between ascorbic acid and hypoxia-induced factor[J]. Journal of Biological Engineering, 2023, 17(1): 62. [百度学术] 

81

WATSON M, HOLMAN DM, MAGUIRE-EISEN M. Ultraviolet radiation exposure and its impact on skin cancer risk[J]. Seminars in Oncology Nursing, 2016, 32(3): 241-254. [百度学术] 

82

王琰. 肠道菌与药物代谢[M]. 北京: 科学出版社, 2022: 355-365. [百度学术] 

WANG Y. Gut Microbiota and Drug Metabolism[M]. Beijing: Science Press, 2022: 355-365 (in Chinese). [百度学术]