摘要
胶原蛋白是哺乳动物体内最丰富的蛋白质,约占人体蛋白质的1/3,是结缔组织和细胞外基质的重要成分,对维持生理功能和损伤修复至关重要,在医药、食品和美容领域也有着广泛应用。胶原蛋白的生产方法主要有天然提取法、化学合成法和生物合成法。天然提取法通常从动物结缔组织中获取,但存在伦理问题、质量不稳定以及传染病风险;化学合成法成本高且难以合成复杂的胶原蛋白结构;生物合成法则通过基因工程技术,根据不同用途生产重组胶原蛋白,能够提供更可控、更安全、更精确的生产方式。然而,由于胶原蛋白结构复杂,其生物合成依赖于特定的分子伴侣和修饰酶,因此重组胶原蛋白的生产仍具挑战性。此外,不同类型的胶原蛋白需要形成特定的组织结构,如原纤维、网状或跨膜结构,这进一步增加了生产的难度。本综述旨在阐明重组人源性胶原蛋白的多功能性,分析其生物合成研究的最新进展和面临的挑战,并展望未来的发展方向。希望借此帮助科研人员、工程师和行业从业者更好地理解重组胶原蛋白的研究趋势,推动其在不同应用领域的进一步开发和商业化。
胶原蛋白是哺乳动物中含量最多的蛋白质,占人体蛋白质总量的1/3,是结缔组织中最主要的结构蛋
动物源胶原蛋白主要来源于陆生动物及海洋动
1 胶原蛋白的结构、类别及分布
胶原蛋白是一种纤维状蛋白质,它构成了人体的结缔组织,主要存在于皮肤、关节和骨骼
1.1 胶原蛋白结构
胶原蛋白的三螺旋构象首次在20世纪50年代通过皮肤中发现的胶原纤维的X射线衍射图被描
1.2 胶原蛋白家族
胶原蛋白家族是一组不同的细胞外基质分子,它们通过胶原蛋白三螺旋结构作为共同的结构元素而联系在一
Type | Distribution | Subunit composition | Function |
---|---|---|---|
I | Skin, bones, tendons, cornea, organs, and blood vessels | α1[I]2α2[I] | Mutations can lead to osteoporosis, tooth deformities, bluish sclera, thinning skin, weak tendons, and hearing loss. It binds to bone morphogenetic protein-2 and transforming growth factor P, promoting cartilage development |
II | Cartilage | α1[II]3 | Binds to bone morphogenetic protein-2 and transforming factor P, which promotes the development of cartilage |
III | Reticular fibers, blood vessels, skin, uterus, and intestines | α1[III]3 | Mutations in this gene cause Ehler-Danlos syndrome |
IV | Basement membrane and capillaries | α1[IV]2α2[IV] α3[IV]α4[IV] α5[IV]α5[IV]2α6[IV] | Support structure of cells and tissues, inhibit angiogenesis and tumor growth |
V | Cells, bones, skin, placenta, cornea, and hair | α1[V]3, α1[V]2α2[V], α1[V]α2[V]α3[V] | Neural development and regeneration, mutations in which cause Ehler-Danlos syndrome |
VI | Skin, bones, blood vessels, cartilage, and cornea | α1[VI]α2[VI]α3[VI], α1[VI]α2[VI]α4[VI] | Support structure of cells and tissues, muscle function |
VII | Mucous membranes, bladder, skin, amniotic fluid, and umbilical cord | α1[VII]2α2[VII] | Mutations in which cause epidermolysis bullosa |
VIII | Heart, skin, kidneys, brain, bones, blood vessels, and cartilage | α1[VIII]3, α2[VIII]3, α1[VIII]2α2[VIII] | Serves as a support structure for cells and tissues |
IX | Cornea, cartilage | α1[IX]α2[IX]α3[IX] | Maintain the integrity and stability of the extracellular matrix and regulate the formation process of collagen |
X | Cartilage | α1[X]3 | Acts as a support structure for cells and tissues, promoting cartilage development |
XI | Cartilage and intervertebral disc | α1[XI]α2[XI]α3[XI] | Promote cartilage development |
XII | Cartilage, skin, tendons | α1[XII]3 | Maintain the integrity and stability of the extracellular matrix and tissues, and regulate the formation of collagen |
XIII | Skeletal muscle, eyes, heart, endothelial cells, and skin | α1[XIII]3 | Transmembrane collagen associated with neuromuscular junction development |
XIV | Blood vessels, nerves, eyes, bones, tendons, cartilage, and skin | α1[XIV]3 | Maintain the integrity and stability of the extracellular matrix and tissues, and regulate the formation of collagen |
XV | Capillaries, heart, ovaries, skin, testicles, kidneys, and placenta | α1[XV]3 | Inhibits angiogenesis and tumor growth |
XVI | Skin, heart, smooth muscle, and kidneys | α1[XVI]3 | Maintain the integrity and stability of the extracellular matrix and regulate the formation process of collagen |
XVII | Skin | α1[XVII]3 | Mutations in this gene cause epidermolysis bullosa, inhibit angiogenesis and tumor growth, signaling molecule receptors, and maintain kidney morphology |
XVIII | Kidneys, liver, and lungs | α1[XVIII]3 | Mutations in this gene cause epidermolysis bullosa, inhibit angiogenesis and tumor growth, signaling molecule receptors, and maintain kidney morphology |
XIX | Skin, liver, kidneys, spleen, placenta, and prostate | α1[XIX]3 | Regulates the collagen formation process |
XX | Corneal epithelium | α1[XX]3 | Maintain the integrity and stability of the extracellular matrix and regulate the formation process of collagen |
XXI | Stomach, heart, kidneys, placenta, skeletal muscle, and blood vessels | α1[XXI]3 | Extracellular matrix component of the blood vessel wall, secreted by smooth muscle cells |
XXII | Organizational connections | α1[XXII]3 | Structurally and functionally independent aggregates of cartilage matrix that are integrated with the extracellular matrix of cartilage fibers |
XXIII | Metastatic carcinoma cells | α1[XXIII]3 | Essential for tissue proliferation, key structure of the extracellular matrix |
XXIV | Bones and cornea | α1[XXIV]3 | Participates in the formation of bones, bone mineralization and regulation of bone homeostasis |
XXV | Eyes, heart, brain, and testicles | α1[XXV]3 | Plays a role in neuromuscular development and cancer metastasis and has been implicated in Alzheimer’s disease |
XXVI | Testicles and ovaries | α1[XXVI]3 | Associated with thyroid cancer |
XXVII | Cartilage, dermis, cornea, retina, and heart arteries | α1[XXVII]3 | Involved in notochord morphogenesis, vertebral mineralization, and post-embryonic axial growth |
XXVIII | Renal tubular epithelial cells | α1[XXVIII]3 | Associated with kidney disease |
XXIX | Skin, lungs, stomach, and intestines | α1[XXIX]3 | Plays an important role in epidermal integrity and function |
1.3 胶原蛋白分布
胶原蛋白原纤维由胶原蛋白II、XI和IX或胶原蛋白II和III (软骨
胶原纤维的形成已在肌腱中得到广泛研究,但纤维形成初始步骤的位点尚未明确定
胶原蛋白是参与人体创伤修复的主要蛋白质,因其高生物相容性、可生物降解性以及无毒性和免疫原性而成为有价值的生物材
含量仅约为0.001
特定的胶原蛋白类型在特定组织中具有独特的生物功能。例如,胶原蛋白VII作为锚定纤维的成分,参与真皮与表皮的黏
膜胶原蛋白如胶原蛋白XIII可能在骨骼生长和发育过程中对形态和结构具有调整作用,特别是在骨量的调节与骨骼承受机械负荷之间起到桥梁作用,确保骨骼能够根据使用需求保持健康和适
2 重组胶原蛋白的功能及应用领域
重组胶原蛋白是通过基因工程技术,将编码胶原蛋白的基因导入适当的宿主细胞中表达和纯化得到的蛋白质。由于其具有与天然胶原蛋白相似的结构和功能,重组胶原蛋白广泛应用于生物医药、组织工程、皮肤护理和伤口修复等领域(

图1 重组胶原蛋白的应用
Figure 1 Application of recombinant collagen.
2.1 医药与医疗
随着研究的不断深入,胶原蛋白在再生医学、组织工程以及生物医用材料中的应用前景非常广泛,涵盖了组织修复、药物递送以及蛋白质替代疗法等多个领
2.2 美容与美发
胶原蛋白具有显著的保湿、美白、抗衰老、防皱及淡斑等多重功
2.3 食品与保健
随着健康意识的提升和肥胖问题的日益严重,消费者对低脂肪食品的需求不断增加,同时对食品的感官品质要求也日益提高。由于胶原蛋白与多糖的相互作用能够改善胶原蛋白的凝胶特性、乳化特性、起泡性及其稳定性等功能特性,使其广泛应用于保持或改善食品的结构、质地、风味和口感等品
3 重组胶原蛋白生物合成
重组胶原蛋白凭借其安全性、可控性和生产的灵活性,正逐渐成为天然胶原蛋白的有力替代品,尤其在现代生物技术和医疗应用中展现出巨大的前
表达系统 Expression system | 表达重组胶原蛋白类型 Recombinant collagen types | 重组胶原蛋白表达水平 Recombinant collagen expression level (g/L) | 参考文献 References |
---|---|---|---|
细菌(大肠杆菌) Bacteria (E. coli) | 羟基化胶原蛋白Hydroxylated collagen | 0.80 |
[ |
人类I型胶原蛋白Human type I collagen | 0.50 |
[ | |
人类I型胶原蛋白Human type I collagen | 1.43 |
[ | |
人类I型胶原蛋白Human type I collagen | 1.88 |
[ | |
真核细胞(酵母) Eukaryotic cells (yeast) | I、II、III型胶原蛋白Type I, II, III collagen | 0.20-0.60 |
[ |
I型胶原蛋白Type I collagen | 0.50 |
[ | |
重组类人胶原蛋白 Recombinant human collagen | 4.50 |
[ | |
III型胶原蛋白Type III collagen | 0.70 |
[ | |
人类III型胶原蛋白Human type III collagen | 8.00 |
[ | |
III型胶原蛋白Type III collagen | 0.20 |
[ | |
植物(烟草) Plant (Tobacco) | I型胶原蛋白Type I collagen | 20.00 |
[ |
昆虫Insect | II型胶原蛋白Type II collagen | 0.05 |
[ |
3.1 生物合成机制
胶原蛋白的生物合成过程见

图2 胶原蛋白的合成机制
Figure 2 Mechanism of collagen synthesis.
首先,脯氨酸-4-羟化酶(prolyl 4-hydroxylase, P4H)和赖氨酸羟化酶(lysyl hydroxylase, LH)分别对Gly-Xaa-Yaa序列中Yaa位点的脯氨酸和赖氨酸残基进行羟基化;若新生的胶原蛋白α链在折叠过程中发生异常,可能导致不良的三螺旋结构形成,这种错误的结构不仅在细胞内造成应激反应,还可能影响内质网的功
3.2 重组胶原蛋白在大肠杆菌中的表达
大肠杆菌表达体系因其清晰的遗传背景、低廉的发酵成本、短的生产周期和高效率,已被广泛用于大规模生产外源蛋白。在大肠杆菌(Escherichia coli)等原核表达系统中,胶原蛋白的表达面临一系列挑战。首先,原核系统由于缺乏复杂的内质网和高尔基体等细胞器,不能有效地进行蛋白质的翻译后修饰(如糖基化、二硫键的形成等
不可否认的是,缺乏适当的翻译后修饰(如二硫键的正确配对)和氨基酸序列的精确加工,也会导致胶原蛋白在大肠杆菌中失去生物活性,无法发挥其在医药、食品或美容领域的功能。因此,为了提高重组胶原蛋白在大肠杆菌中的表达质量和功能性,研究者们努力开发更先进的大肠杆菌表达系统,这些系统能够完成蛋白酶的加工、二硫键的正确形成,并具备更完善的翻译后修饰能力,类似于真核细胞的修饰机制,由此提高胶原蛋白的表达产量、纯度,并确保其结构和功能的完整性。此外,溶解氧(dissolved oxygen, DO)是大肠杆菌高密度发酵过程中的一个关键因素,若溶氧水平不适当,会对菌体的代谢过程产生负面影响,从而抑制目标产物的积
常海燕
3.3 重组胶原蛋白在酵母中的表达
酵母作为真核生物,具备对分泌的重组蛋白进行多种后期修饰的能
将人类I型、II型和III型胶原蛋白的编码基因导入到携带脯氨酸羟化酶基因的毕赤酵母工程菌中,所表达的重组胶原蛋白能够实现充分的脯氨酸羟基化;此外,通过持续供氧,最终实现了产量在0.2-0.6 g/L之间的水
3.4 重组胶原蛋白在其他系统中的表达
在重组胶原蛋白的生产中,除了常规的细胞培养系统外,研究人员还探索了多种其他表达系统,并取得了一定的进展。Stein
4 重组胶原蛋白分离纯化工艺
研究胶原蛋白的关键是获得高纯度、生物学活性且稳定的目标蛋白,这样才能进行性质研究并推动其大规模生
蛋白质下游分离和纯化工艺的理论基础主要依赖于蛋白质的理化特性,这些特性包括溶解度、密度、电离行为、亲水性、分子配位吸附特性、分子大小与形状以及其生物学功能等。其中,胶原蛋白制备常用的技术包括超滤、层析和磁性吸附(
Technology | Principle | Advantage | Shortcoming | Application |
---|---|---|---|---|
Ultrafiltration | Use a semi-permeable membrane to filter collagen based on molecular weight, separating it from impurities | Simple operation, low cost, and efficient removal of macromolecular impurities | Less efficient at separating small molecules or dissolved salts; membranes require regular replacement | Protein purification, macromolecular impurity removal, and collagen concentration |
Chromatography | Separate collagen based on properties such as molecular size, hydrophilicity, or charge | Good separation effect; enables targeted separation of different collagen types | Complex, time-consuming process with high equipment costs | Different types of collagen separation and purification |
Magnetic adsorption | Collagen is adsorbed onto magnetic particles and separated using a magnetic field | Fast, reusable, with high collagen adsorption efficiency | Magnetic particles may impact collagen, requiring careful control during operation | Separation and purification of collagen, loaded drug delivery system, etc. |
Saallah
5 总结与展望
胶原蛋白是人体和动物体内最丰富的结构蛋白,广泛应用于生物医学、材料科学等领域。尽管在胶原蛋白的重组表达技术上取得了显著进展,但大规模生产稳定且具有天然特性的胶原蛋白仍面临多项技术难题。
胶原蛋白分子的独特三螺旋结构和稳定性依赖于一些天然酶的作用,特别是脯氨酸-4-羟化酶(P4H)和脯氨酰-3-羟化酶(P3H)。然而,大规模生产胶原蛋白时,最初的一个重大挑战是缺乏这些天然酶,导致重组胶原蛋白无法正确折叠或形成所需的三螺旋结构。为了克服这一问题,科学家尝试将胶原蛋白编码基因与P4H亚基编码基因共表达,取得了一定的成功。这一方法能够促进胶原蛋白分子正确折叠,进而形成热稳定的三螺旋结
尽管胶原蛋白重组表达技术面临诸多挑战,但随着基因工程、合成生物学、细胞培养技术和生物打印技术的不断发展,未来在这一领域的研究仍有广阔的前
糖基化是胶原蛋白的重要特性之一,未来的研究可以关注如何在重组胶原蛋白的生产过程中实现高效、精确的糖基化。通过共表达赖氨酰羟化酶等关键酶,或者利用合成生物学技术设计特定的糖基化途径,可能为重组胶原蛋白的糖基化修饰提供新的思路。此外,基于胶原蛋白的糖基化模式和细胞相互作用机制,还可以开发新的细胞特异性胶原蛋白变体,以满足不同生物医学应用中的需求。在生物医学应用方面,重组胶原蛋白的支架材料和细胞培养仍是关键研究领域。近年来,3D打印技术和电纺丝法的进展使得科学家能够更精确地制造胶原蛋白支架,并能够在其中嵌入细胞以模拟组织的生长和发育。这为未来的组织工程提供了巨大的发展空间。通过将重组胶原蛋白与干细胞、3D生物打印等技术结合,可能为临床上更复杂的组织修复和再生提供新的解决方
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
作者贡献声明
夏煌慧:总体框架的确定,数据的收集与整理,并负责稿件撰写与修订工作;黄建忠:写作指导,为文章的结构和内容提供指导意见,特别是在论文的修改和完善过程中,提供了重要的学术建议和反馈。
利益冲突
作者声明不存在任何可能会影响本文所报告工作的已知经济利益或个人关系。
参考文献
DZOBO K, DANDARA C. The extracellular matrix: its composition, function, remodeling, and role in tumorigenesis[J]. Biomimetics, 2023, 8: 146. [百度学术]
AVILA RODRÍGUEZ MI, RODRÍGUEZ BARROSO LG, SÁNCHEZ ML. Collagen: a review on its sources and potential cosmetic applications[J]. Journal of Cosmetic Dermatology, 2018, 17(1): 20-26. [百度学术]
TANG YP, YANG XL, HANG BJ, LI JT, HUANG L, HUANG F, XU ZN. Efficient production of hydroxylated human-like collagen via the co-expression of three key genes in Escherichia coli origami (DE3)[J]. Applied Biochemistry and Biotechnology, 2016, 178(7): 1458-1470. [百度学术]
PERSIKOV AV, RAMSHAW JAM, KIRKPATRICK A, BRODSKY B. Electrostatic interactions involving lysine make major contributions to collagen triple-helix stability[J]. Biochemistry, 2005, 44(5): 1414-1422. [百度学术]
FALLAS JA, GAUBA V, HARTGERINK JD. Solution structure of an ABC collagen heterotrimer reveals a single-register helix stabilized by electrostatic interactions[J]. Journal of Biological Chemistry, 2009, 284(39): 26851-26859. [百度学术]
SEROR J, STERN M, ZARKA R, ORR N. The potential use of novel plant-derived recombinant human collagen in aesthetic medicine[J]. Plastic and Reconstructive Surgery, 2021, 148(6S): 32S-38S. [百度学术]
GOLDBERG I, SALERNO AJ, PATTERSON T, WILLIAMS JI. Cloning and expression of a collagen-analog-encoding synthetic gene in Escherichia coli[J]. Gene, 1989, 80: 305-314. [百度学术]
JOHN DC, WATSON R, KIND AJ, KADLER KE, BULLEID NJ. Expression of an engineered form of recombinant procollagen in mouse milk[J]. Nature Biotechnology, 1999, 17: 385-389. [百度学术]
RUGGIERO F, EXPOSTO JY, BOURNAT P, GRUBER V, PERRET S, COMTE J, OLAGNIER B, GARRONE R, THEISEN M. Triple helix assembly and processing of human collagen produced in transgenic tobacco plants[J]. FEBS Letters, 2000, 469: 132-136. [百度学术]
VUORELA A, MYLLYHARJU J, NISSI R, PIHLAJANIEMI T, KIVIRIKKO KI. Assembly of human prolyl 4-hydroxylase and type III collagen in the yeast Pichia pastoris: formation of a stable enzyme tetramer requires coexpression with collagen and assembly of a stable collagen requires coexpression with prolyl 4-hydroxylase[J]. EMBO Journal, 1997, 16: 6702-6712. [百度学术]
MA L, LIANG X, YU S, ZHOU JW. Expression, characterization, and application potentiality evaluation of recombinant human-like collagen in Pichia pastoris[J]. Bioresources and Bioprocessing, 2022, 9 (1): 119-215. [百度学术]
CHANG SW, SHEFELBINE SJ, BUEHLER MJ. Structural and mechanical differences between collagen homo-and heterotrimers: relevance for the molecular origin of brittle bone disease[J]. Biophysical Journal, 2012, 102: 640-648. [百度学术]
RAMACHANDRAN GN, KARTHA G. Structure of collagen[J]. Nature, 1954, 174(4423): 269-270. [百度学术]
SHOULDERS MD, RAINES RT. Collagen structure and stability[J]. Annual Review of Biochemistry, 2009, 78: 929-958. [百度学术]
KNIGHT D. Unconventional collagens[J]. Journal of Cell Science, 2001, 113: 4141-2. [百度学术]
GORDON MK, HAHN RA. Collagen[J]. Cell and Tissue Research, 2010, 339(1): 247-257. [百度学术]
YAMAUCHI M, SRICHOLEPCH M. Lysine post-translational modifications of collagen[J]. Essays In Biochemistry, 2012, 52: 113-133. [百度学术]
BRODSKY B, RAMSHAW JAM. The collagen triple-helix structure[J]. Matrix Biology, 1997, 15(8/9): 545-554. [百度学术]
RICARD-BLUM S. The collagen family[J]. Cold Spring Harbor Perspectives in Biology, 2011, 3(1): a004978. [百度学术]
LEÓN-LÓPEZ A, MORALES-PEÑALOZA A, MARTÍNEZ-JUÁREZ VM, Apolonio Vargas-Torres, Dimitrios I Zeugolis, Gabriel Aguirre-Álvarez. Hydrolyzed collagen-sources and applications[J]. Molecules, 2019, 24(22): 4031. [百度学术]
RICHARDS AJ, SNEAD MP. Molecular basis of pathogenic variants in the fibrillar collagens[J]. Genes, 2022, 13(7): 1199. [百度学术]
NORMAN O, KOIVUNEN JT, KAARTEENAHO R, SALO AM, MÄKI JM, MYLLYHARJU J, PIHLAJANIEMI T, HEIKKINEN A. Contribution of collagen XIII to lung function and development of pulmonary fibrosis[J]. BMJ Open Respiratory Research, 2023, 10(1): e001850. [百度学术]
CHOU M, LI H. Genomic organization and characterization of the human type XXI collagen (COL21A1) gene[J]. Genomics, 2002, 79 3: 395-401. [百度学术]
GORDON M, ZHOU P, HAHN R, GERECKE DR. Chondrocyte Columns Are Shorter in the Growth Plate of Collagen XXIV Null Mice[J]. The FASEB Journal, 2017, 31(1): 742.6. [百度学术]
TANAKA T, WAKABAYASHI T, OIZUMI H, NISHIO S, SATO TR, HARADA A, FUJII D, MATSUO Y, HASHIMOTO T, IWATSUBO T. CLAC-P/Collagen type XXV is required for the intramuscular innervation of motoneurons during neuromuscular development[J]. The Journal of Neuroscience, 2014, 34: 1370-1379. [百度学术]
LUO Y, YE Y, ZHANG Y, CHEN L, QU X, YI N, RAN J, CHEN Y. New insights into COL26A1 in thyroid carcinoma: prognostic prediction, functional characterization, immunological drug target and ceRNA network[J]. Translational Cancer Research, 2023, 12: 3384-3408. [百度学术]
CHRISTIANSEN HE, LANG MR, PACE JM, PARICHY DM. Critical early roles for col27a1a and col27a1b in Zebrafish Notochord morphogenesis, vertebral mineralization and post-embryonic axial growth[J]. PLoS One, 2009, 4(12): e8481. [百度学术]
LI L, YE H, CHEN Q, WEI L. COL28 promotes proliferation, migration, and EMT of renal tubular epithelial cells[J]. Ren Fail, 2023, 45(1): 2187236. [百度学术]
SÖDERHÄLL C, MARENHOLZ I, KERSCHER T, RÜSCHENDORF F, ESPARZA-GORDILLO J, WORM M, GRUBER C, MAYR G, ALBRECHT M, ROHDE K, SCHULZ H, WAHN U, HUBNER N, LEE YA. Variants in a novel epidermal collagen gene (COL29A1) are associated with atopic dermatitis[J]. PLoS Biology, 2007, 5(9): e242. [百度学术]
RICARD-BLUM S, RUGGIERO F. The collagen superfamily: from the extracellular matrix to the cell membrane[J]. Pathologie-Biologie, 2005, 53(7): 430-442. [百度学术]
GARA SK, GRUMATI P, URCIUOLO A, BONALDO P, KOBBE B, KOCH M, PAULSSON M, WAGENER R. Three novel collagen VI chains with high homology to the alpha3 chain[J]. The Journal of Biological Chemistry, 2008, 283(16): 10658-10670. [百度学术]
AOUACHERIA A, GEOURJON C, AGHAJARI N, NAVRATIL V, DELÉAGE G, LETHIAS C, EXPOSITO JY. Insights into early extracellular matrix evolution: spongin short chain collagen-related proteins are homologous to basement membrane type IV collagens and form a novel family widely distributed in invertebrates[J]. Molecular Biology And Evolution, 2006, 23: 2288-2302. [百度学术]
WU J, WEIS MA, KIM LS, CARTER BG, EYRE DR. Differences in chain usage and cross-linking specificities of cartilage type V/XI collagen isoforms with age and tissue[J]. Journal of Biological Chemistry, 2009, 284: 5539-5545. [百度学术]
WU JJ, WEIS MA, KIM LS, EYRE DR. Type III collagen, a fibril network modifier in articular cartilage[J]. Journal of Biological Chemistry, 2010, 285(24): 18537-18544. [百度学术]
BRUCKNER P. Suprastructures of extracellular matrices: paradigms of functions controlled by aggregates rather than molecules[J]. Cell and Tissue Research, 2010, 339(1): 7-18. [百度学术]
NEUMAN RE, LOGAN MA. The determination of collagen and elastin in tissues[J]. The Journal of Biological Chemistry, 1950, 186(2): 549-556. [百度学术]
DARVISH DM. Collagen fibril formation in vitro: from origin to opportunities[J]. Materials Today Bio, 2022, 15: 100322. [百度学术]
ZHANG G, YOUNG BB, EZURA Y, FAVATA M, SOSLOWSKY LJ, CHAKRAVARTI S, BIRK DE. Development of tendon structure and function: regulation of collagen fibrillogenesis[J]. Journal of Musculoskeletal & Neuronal Interactions, 2005, 5(1): 5-21. [百度学术]
CANTY EG, LU YH, MEADOWS RS, HOLMES DF, KADLER KE. Coalignment of plasma membrane channels and protrusions (fibripositors) specifies the parallelism of tendon[J]. Journal of Cell Biology, 2004, 165(4): 553-563. [百度学术]
CAO L, ZHANG Z, YUAN D, YU M, MIN J. Tissue engineering applications of recombinant human collagen: a review of recent progress[J]. Frontiers in Bioengineering and Biotechnology, 2024, 12: 1358246. [百度学术]
WOSICKA-FRĄCKOWIAK H, PONIEDZIAŁEK K, WOŹNY S, KUPRIANOWICZ M, NYGA M, JADACH B, MILANOWSKI B. Collagen and its derivatives serving biomedical purposes: a review[J]. Polymers, 2024, 16(18): 2668. [百度学术]
张栋. 胶原蛋白海绵与重组人表皮细胞因子联合应用促进慢性难愈性创面愈合[J]. 青海医学院学报, 2011, 32(2): 132-134. [百度学术]
ZHANG D. Combined application of collagen protein sponge and recombinant human epidermal growth factor for the enhancement of refractory wound healing[J]. Journal of Qinghai Medical College, 2011, 32(2): 132-134 (in Chinese). [百度学术]
KADLER K. Extracellular matrix 1: fibril-forming collagens[J]. Protein Profile, 1995, 2(5): 491-619. [百度学术]
MARTEL-PELLETIER J, BOILEAU C, PELLETIER JP, ROUGHLEY PJ. Cartilage in normal and osteoarthritis conditions[J]. Best Practice & Research Clinical Rheumatology, 2008, 22(2): 351-384. [百度学术]
BRUCKNER-TUDERMAN L, SCHNYDER UW, WINTERHALTER KH, BRUCKNER P. Tissue form of type VII collagen from human skin and dermal fibroblasts in culture[J]. European Journal of Biochemistry, 1987, 165(3): 607-611. [百度学术]
CHUNG HJ, STEPLEWSKI A, CHUNG KY, UITTO J, FERTALA A. Collagen fibril formation. A new target to limit fibrosis[J]. The Journal of Biological Chemistry, 2008, 283(38): 25879-25886. [百度学术]
HYNES RO. The extracellular matrix: not just pretty fibrils[J]. Science, 2009, 326(5957): 1216-1219. [百度学术]
CHUNG HJ, UITTO J. Type VII collagen: the anchoring fibril protein at fault in dystrophic epidermolysis bullosa[J]. Dermatologic Clinics, 2010, 28(1): 93-105. [百度学术]
SWEENEY E, ROBERTS D, CORBO T, JACENKO O. Congenic mice confirm that collagen X is required for proper hematopoietic development[J]. PLoS One, 2010, 5(3): e9518. [百度学术]
KOCH M, SCHULZE J, HANSEN U, ASHWOOD T, KEENE DR, BRUNKEN WJ, BURGESON RE, BRUCKNER P, BRUCKNER-TUDERMAN L. A novel marker of tissue junctions, collagen XXII[J]. The Journal of Biological Chemistry, 2004, 279(21): 22514-22521. [百度学术]
PATTARO C, GRANDI A, VITART V, HAYWARD C, FRANKE A, AULCHENKO YS, JOHANSSON A, WILD SH, MELVILLE SA, ISAACS A, POLASEK O, ELLINGHAUS D, KOLCIC I, NÖTHLINGS U, ZGAGA L, ZEMUNIK T, GNEWUCH C, SCHREIBER S, CAMPBELL S, HASTIE N, et al. A meta-analysis of genome-wide data from five European isolates reveals an association of COL22A1, SYT1, and GABRR2 with serum creatinine level[J]. BMC Medical Genetics, 2010, 11: 41. [百度学术]
MATSUO N, TANAKA S, YOSHIOKA H, KOCH M, GORDON MK, RAMIREZ F. Collagen XXIV (Col24a1) gene expression is a specific marker of osteoblast differentiation and bone formation[J]. Connective Tissue Research, 2008, 49(2): 68-75. [百度学术]
HJORTEN R, HANSEN U, UNDERWOOD RA, TELFER HE, FERNANDES RJ, KRAKOW D, SEBALD E, WACHSMANN-HOGIU S, BRUCKNER P, JACQUET R, LANDIS WJ, BYERS PH, PACE JM. Type XXVII collagen at the transition of cartilage to bone during skeletogenesis[J]. Bone, 2007, 41(4): 535-542. [百度学术]
ALLAMAND V, BRIÑAS L, RICHARD P, STOJKOVIC T, QUIJANO-ROY S, BONNE G. ColVI myopathies: where do we stand, where do we go?[J]. Skeletal Muscle, 2011, 1: 30. [百度学术]
YLÖNEN R, KYRÖNLAHTI T, SUND M, ILVES M, LEHENKARI P, TUUKKANEN J, PIHLAJANIEMI T. Type XIII collagen strongly affects bone formation in transgenic mice[J]. Journal of Bone and Mineral Research, 2005, 20(8): 1381-1393. [百度学术]
HAS C, KERN JS. Collagen XVII[J]. Dermatologic Clinics, 2010, 28(1): 61-66. [百度学术]
BANYARD J, BAO LR, HOFER MD, ZURAKOWSKI D, SPIVEY KA, FELDMAN AS, HUTCHINSON LM, KUEFER R, RUBIN MA, ZETTER BR. Collagen XXIII expression is associated with prostate cancer recurrence and distant metastases[J]. Clinical Cancer Research, 2007, 13(9): 2634-2642. [百度学术]
VEIT G, KOBBE B, KEENE DR, PAULSSON M, KOCH M, WAGENER R. Collagen XXVIII, a novel von willebrand factor A domain-containing protein with many imperfections in the collagenous domain[J]. Journal of Biological Chemistry, 2006, 281(6): 3494-3504. [百度学术]
FOX MA, SANES JR, BORZA DB, ESWARAKUMAR VP, FÄSSLER R, HUDSON BG, JOHN SWM, NINOMIYA Y, PEDCHENKO V, PFAFF SL, RHEAULT MN, SADO Y, SEGAL Y, WERLE MJ, UMEMORI H. Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals[J]. Cell, 2007, 129(1): 179-193. [百度学术]
FOX MA. Novel roles for collagens in wiring the vertebrate nervous system[J]. Current Opinion in Cell Biology, 2008, 20(5): 508-513. [百度学术]
SU JM, GORSE K, RAMIREZ F, FOX MA. Collagen XIX is expressed by interneurons and contributes to the formation of hippocampal synapses[J]. The Journal of Comparative Neurology, 2010, 518(2): 229-253. [百度学术]
HONDIUS DC, EIGENHUIS KN, MORREMA THJ, VAN DER SCHORS RC, VAN NIEROP P, BUGIANI M, LI KW, HOOZEMANS JJM, SMIT AB, ROZEMULLER AJM. Proteomics analysis identifies new markers associated with capillary cerebral amyloid angiopathy in Alzheimer’s disease[J]. Acta Neuropathologica Communications, 2018, 6(1): 46. [百度学术]
FORSELL C, BJÖRK BF, LILIUS L, AXELMAN K, FROELICH FABRE S, FRATIGLIONI L, WINBLAD B, GRAFF C. Genetic association to the amyloid plaque associated protein gene COL25A1 in Alzheimer’s disease[J]. Neurobiology of Aging, 2010, 31(3): 409-415. [百度学术]
CHENG JS, DUBAL DB, KIM DH, LEGLEITER J, CHENG IH, YU GQ, TESSEUR I, WYSS-CORAY T, BONALDO P, MUCKE L. Collagen VI protects neurons against Abeta toxicity[J]. Nature Neuroscience, 2009, 12(2): 119-121. [百度学术]
YOU S, ZHU Y, LI H, HE F, LIU S, YANG X, WANG L, ZENG H, DAI J, HU L. Recombinant humanized collagen remodels endometrial immune microenvironment of chronic endometritis through macrophage immunomodulation[J]. Regenerative Biomaterials, 2023, 10: rbad033. [百度学术]
SILVA T, MOREIRA-SILVA J, MARQUES A, DOMINGUES A, BAYON Y, REIS RL. Marine origin collagens and its potential applications[J]. Marine Drugs, 2014, 12: 5881-5901. [百度学术]
LIM YS, OK YJ, HWANG SY, KWAK JY, YOON S. Marine collagen as a promising biomaterial for biomedical applications[J]. Marine Drugs, 2019, 17: 467. [百度学术]
ROSHANBINFAR K, KOLESNIK-GRAY M, ANGELONI M, SCHRUEFER S, FIEDLER M, SCHUBERT DW, FERRAZZI F, KRSTIC V, ENGEL FB. Collagen hydrogel containing polyethylenimine-gold nanoparticles for drug release and enhanced beating properties of engineered cardiac tissues[J]. Advanced Healthcare Materials, 2023, 12: 2202408. [百度学术]
SAN ANTONIO JD, JACENKO O, FERTALA A, ORGEL JPRO. Collagen structure-function mapping informs applications for regenerative medicine[J]. Bioengineering (Basel), 2020, 8(1): 3. [百度学术]
NGUYEN TU, WATKINS KE, KISHORE V. Photochemically crosslinked cell-laden methacrylated collagen hydrogels with high cell viability and functionality[J]. Journal of Biomedical Materials Research A, 2019, 107 (7): 1541-1550. [百度学术]
WANG HM, CHOU YT, WEN ZH, WANG ZR, CHEN CH, HO ML. Novel biodegradable porous scaffold applied to skin regeneration[J]. PLoS One, 2013, 8(6): e56330. [百度学术]
SIBILLA S, GODFREY M, BREWER S, BUDH-RAJA A, GENOVESE L. An overview of the beneficial effects of hydrolysed collagen as a neutraceutical on skin properties: scientific background and clinical studies[J]. Open Neutraceutical Journal, 2015, 8: 29-42. [百度学术]
SOLOVIEVA EV, FEDOTOV AY, MAMONOV VE, KOMLEV VS, PANTELEYEV AA. Fibrinogen-modified sodium alginate as a scaffold material for skin tissue engineering[J]. Biomedical Materials, 2018, 13(2): 025007. [百度学术]
WANG C, BRISSON BK, TERAJIMA M, LI Q, HOXHA K, HAN B, GOLDBERG AM, LIU XS, MARCOLONGO MS, ENOMOTO-IWAMOTO M, YAMAUCHI M, VOLK SW, HAN L. Type III collagen is a key regulator of the collagen fibrillar structure and biomechanics of articular cartilage and meniscus[J]. Matrix Biology, 2020, 85: 47-67. [百度学术]
何杏杏, 赵越, 鲁朝刚, 李想. 胶原蛋白、弹性蛋白、纤连蛋白在化妆品中的功效及评价研究[J]. 精细与专用化学品, 2023, 31(10): 39-43. [百度学术]
HE XX, ZHAO Y, LU C/Z)G, LI X. Study on the efficacy and evaluation of collagen, elastin and fibronectin in cosmetics[J]. Fine and Specialty Chemicals, 2023, 31(10): 39-43 (in Chinese). [百度学术]
RAMSHAW JA, PENG Y, GLATTAUER V, WERKMEISTER JA. Collagens as biomaterials[J]. Journal of Materials Science-Materials in Medicine, 2009, 20(1): S3-S8. [百度学术]
张慧君, 罗仓学, 张新申, 宋秘钊, 蒋小萍. 胶原蛋白的应用[J]. 皮革科学与工程, 2003, 13(6): 37-41, 46. [百度学术]
ZHANG HJ, LUO CX, ZHANG XS, SONG MZ, JIANG XP. Application of collagen protein[J]. Leather Science and Engineering, 2003, 13(6): 37-41, 46 (in Chinese). [百度学术]
PILLAIYAR T, MANICKAM M, NAMASIVAYAM V. Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32(1): 403-425. [百度学术]
FAN J, ZHUANG Y, LI B. Effects of collagen and collagen hydrolysate from jellyfish umbrella on histological and immunity changes of mice photoaging[J]. Nutrients, 2013, 5(1): 223-233. [百度学术]
NURS S, ARCHANA S. Collagen: new dimension in cosmetic and healthcare[J]. International Journal of Biochemistry Research and Reviews, 2016, 14: 1-8. [百度学术]
林德贤, 胡孝君, 苟彦君, 张小龙, 代寻. 胶原蛋白与多糖分子相互作用研究及其在食品中的应用进展[J/OL]. 食品与发酵工业, 2024. DOI: 10.13995/j.cnki.11-1802/ts.039252. [百度学术]
LIN DX, HU XJ, GOU YJ, ZHANG XL, DAI X. Research progress on molecular interaction between collagen and polysaccharide and its application in food[J/OL]. Food and Fermentation Industries, 2024. DOI: 10.13995/j.cnki.11-1802/ts.039252 (in Chinese). [百度学术]
HAM YK, HWANG KE, KIM HW, SONG DH, KIM YJ, CHOI YS, KIM CJ. Effects of fat replacement with a mixture of collagen and dietary fibre on small calibre fermented sausages[J]. International Journal of Food Science & Technology, 2016, 51(1): 96-104. [百度学术]
HU Y, LIU L, GU ZP, DAN WH, DAN NH, YU XX. Modification of collagen with a natural derived cross-linker, alginate dialdehyde[J]. Carbohydrate Polymers, 2014, 102: 324-332. [百度学术]
KRKIĆ N, LAZIĆ V, PETROVIĆ L, GVOZDENOVIĆ J, PEJIĆ D. The properties of chitosan-laminated collagen film[J]. Food Technology and Biotechnology, 2012, 50(4): 483-489. [百度学术]
LI J, ZHANG YJ, LV ZY, LIU K, MENG CX, ZOU B, LI KY, LIU FZ, ZHANGB. The observed difference of macrophage phenotype on different surface roughness of mineralized collagen[J]. Regenerative Biomaterials, 2020, 7(2): 203-211. [百度学术]
FERTALA A. Three decades of research on recombinant collagens: reinventing the wheel or developing new biomedical products?[J]. Bioengineering, 2020, 7(4): 155. [百度学术]
CHOI SM, CHAUDHRY P, ZO SM, HAN SS. Advances in protein-based materials: from origin to novel biomaterials[J]. Advances in Experimental Medicine and Biology, 2018, 1078: 161-210. [百度学术]
GIROTTI A, ORBANIC D, IBÁÑEZ-FONSECA A, GONZALEZ-OBESO C, RODRÍGUEZ-CABELLO JC. Recombinant technology in the development of materials and systems for soft-tissue repair[J]. Advanced Healthcare Materials, 2015, 4(16): 2423-2455. [百度学术]
OLSEN D, YANG CL, BODO M, CHANG R, LEIGH S, BAEZ J, CARMICHAEL D, PERÄLÄ M, HÄMÄLÄINEN ER, JARVINEN M, POLAREK J. Recombinant collagen and gelatin for drug delivery[J]. Advanced Drug Delivery Reviews, 2003, 55(12): 1547-1567. [百度学术]
JONES EY, MILLER A. Analysis of structural design features in collagen[J]. Journal of Molecular Biology, 1991, 218(1): 209-219. [百度学术]
刘斌. 巴氏毕赤酵母基因工程菌高密度发酵表达重组人源胶原蛋白[D]. 南京: 南京理工大学博士学位论文, 2012. [百度学术]
LIU B. Expression of recombinant human collagen by high-density fermentation of Pichia pastoris genetically engineered bacteria[D]. Nanjing: Doctoral Dissertation of Nanjing University of Science and Technology, 2012 (in Chinese). [百度学术]
滕飞, 柯博文, 全冰华, 王勇, 易祥. 重组I型人源化胶原蛋白在大肠杆菌中的可溶性表达及纯化[J]. 现代食品科技, 2024, 40(12): 1-8. [百度学术]
TENG F, KE BW, QUAN BH, WANG Y, YI X. Soluble Expression and purification of recombinant humanized type I collagen fusion protein in Escherichia coli[J]. Modern Food Science and Technology, 2024, 40(12): 1-8 (in Chinese). [百度学术]
XIE WJ, WU QQ, KUANG ZP, CONG J, ZHANG Q, HUANG Y, SU Z, XIANG Q. Temperature-controlled expression of a recombinant human-like collagen I peptide in Escherichia coli[J]. Bioengineering, 2023, 10(8): 926. [百度学术]
MYLLYHARJU J, NOKELAINEN M, VUORELA A, KIVIRIKKO KI. Expression of recombinant human type I-III collagens in the yeast Pichia pastoris[J]. Biochemical Society Transactions, 2000, 28(4): 353-357. [百度学术]
NOKELAINEN M, TU H, VUORELA A, NOTBOHM H, KIVIRIKKO KI, MYLLYHARJU J. High-level production of human type I collagen in the yeast Pichia pastoris[J]. Yeast, 2001, 18(9): 797-806. [百度学术]
侯增淼, 李晓颖, 李敏, 杨金芳, 杨小琳, 赵金礼. 重组人源性胶原蛋白的制备及表征[J]. 生物工程学报, 2019, 35(2): 319-326. [百度学术]
HOU ZM, LI XY, LI M, YANG JF, YANG XL, ZHAO JL. Preparation and characterization of recombinant human-source collagen[J]. Chinese Journal of Biotechnology, 2019, 35(2): 319-326 (in Chinese). [百度学术]
FANG JY, MA Z, LIU DY, WANG Z, CHENG S, ZHENG S, WU H, XIA P, CHEN X, YANG R, HAO L, ZHANG Y. Co-expression of recombinant human collagen α1(III) chain with viral prolyl 4-hydroxylase in Pichia pastoris GS115[J]. Protein Expression and Purification, 2023, 201: 106184. [百度学术]
梁鑫, 梁波, 张仁怀, 吕自力, 艾华伟, 郑飞, 单旭东, 陈浩然. 甲醇浓度对毕赤酵母发酵表达重组人Ⅲ型胶原蛋白的影响[J]. 四川生理科学杂志, 2020, 42(3): 247-251. [百度学术]
LIANG X, LIANG B, ZHANG RH, LV ZL, AI HW, ZHENG F, SHAN XD, CHEN HR. Effects of methanol concentration on expression of recombinant human type Ⅲ collagen in Pichia pastoris[J]. Sichuan Journal of Physiological Sciences, 2020, 42(3): 247-251 (in Chinese). [百度学术]
石艺平. 人源Ⅲ型胶原蛋白在毕赤酵母中表达及性质研究[D]. 福州: 福建师范大学硕士学位论文, 2014. [百度学术]
SHI YP. Expression and characterization of human type Ⅲ collagen in Pichia pastoris[D]. Fuzhou: Master’s Thesis of Fujian Normal University, 2014 (in Chinese). [百度学术]
STEIN H, WILENSKY M, TSAFRIR Y, ROSENTHAL M, AMIR R, AVRAHAM T, OFIR K, DGANY O, YAYON A, SHOSEYOV O. Production of bioactive, post-translationally modified, heterotrimeric, human recombinant type-I collagen in transgenic tobacco[J]. Biomacromolecules, 2009, 10(9): 2640-2645. [百度学术]
NOKELAINEN M, HELAAKOSKI T, MYLLYHARJU J, NOTBOHM H, PIHLAJANIEMI T, FIETZEK PP, KIVIRIKKO KI. Expression and characterization of recombinant human type II collagens with low and high contents of hydroxylysine and its glycosylated forms[J]. Matrix Biology, 1998, 16(6): 329-338. [百度学术]
LI HH, HUNG HY, YU JS, LIAO YC, LAI MC. Hypoxia-induced translation of collagen-modifying enzymes PLOD2 and P4HA1 is dependent on RBM4 and eIF4E2 in human colon cancer HCT116 cells[J]. FEBS J, 2025, 292(4): 881-898. [百度学术]
BATEMAN JF, LAMANDE SR, RAMSHAW JAM. Collagen superfamily[M]//COMPER WD. Extracellular Matrix, Vol. 2: Molecular Components and Interactions. Amsterdam: Harwood Academic Publishers, 1996: 22-67. [百度学术]
HINTZE V, STEPLEWSKI A, ITO H, JENSEN DA, RODECK U, FERTALA A. Cells expressing partially unfolded R789C/p.R989C type II procollagen mutant associated with spondyloepiphyseal dysplasia undergo apoptosis[J]. Human Mutation, 2008, 29(6): 841-851. [百度学术]
BÄCHINGER HP, BRUCKNER P, TIMPL R, PROCKOP DJ, ENGEL J. Folding mechanism of the triple helix in type-III collagen and type-III pN-collagen. Role of disulfide bridges and peptide bond isomerization[J]. European Journal of Biochemistry, 1980, 106(2): 619-632. [百度学术]
DIJK FS, NESBITT IM, ZWIKSTRA EH, NIKKELS PGJ, PIERSMA SR, FRATANTONI SA, JIMENEZ CR, HUIZER M, MORSMAN AC, COBBEN JM, VAN ROIJ MHH, ELTING MW, VERBEKE JIML, WIJNENDTS LCD, SHAW NJ, HÖGLER W, MCKEOWN C, SISTERMANS EA, DALTON A, MEIJERS-HEIJBOER H, et al. PPIB mutations cause severe osteogenesis imperfecta[J]. American Journal of Human Genetics, 2009, 85(4): 521-527. [百度学术]
PLOTKIN H. Syndromes with congenital brittle bones[J]. BMC Pediatrics, 2004, 4: 16. [百度学术]
ZENG B, MACDONALD JR, BANN JG, BECK K, GAMBEE JE, BOSWELL BA, BÄCHINGER HP. Chicken FK506-binding protein, FKBP65, a member of the FKBP family of peptidylprolyl cis-trans isomerases, is only partially inhibited by FK506[J]. Biochemical Journal, 1998, 330(1): 109-114. [百度学术]
GORRES KL, RAINES RT. Prolyl 4-hydroxylase[J]. Critical Reviews in Biochemistry and Molecular Biology, 2010, 45: 106-124. [百度学术]
SHARMA U, CARRIQUE L, VADON-LE GOFF S, MARIANO N, GEORGES RN, DELOLME F, KOIVUNEN P, MYLLYHARJU J, MOALI C, AGHAJARI N, HULMES DJS. Structural basis of homo- and heterotrimerization of collagen I[J]. Nature Communications, 2017, 10(8): 14671. [百度学术]
SATOH M, HIRAYOSHI K, YOKOTA S, HOSOKAWA N, NAGATA K. Intracellular interaction of collagen-specific stress protein HSP47 with newly synthesized procollagen[J]. Journal of Cell Biology, 1996, 133: 469-483. [百度学术]
GORUR A, YUAN L, KENNY SJ, BABA S, XU K, SCHEKMAN R. COPII-coated membranes function as transport carriers of intracellular procollagen I[J]. Journal of Cell Biology, 2017, 216: 1745-1759. [百度学术]
BRINCKMANN J, NOTBOHM H, MÜLLER PK. Collagen: Primer in Structure, Processing and Assembly[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. [百度学术]
AMYOONY J, GORMAN M, DABAS T, MOSS R, MCSWEENEY MB. Consumer perception of collagen from different sources: an investigation using hedonic scale and check all that apply[J]. Journal of Food Science, 2023, 88(12): 5236-5247. [百度学术]
MERKULEVA IA, NIKITIN VN, BELAYA TD, MUSTAEV EA, SHCHERBAKOV DN. The effects of the combined co-expression of GroEL/ES and trigger factor chaperones on orthopoxvirus phospholipase F13 production in E. coli[J]. BioTech (Basel), 2024, 13(4): 57. [百度学术]
YU ZX, AN B, RAMSHAW JAM, BRODSKY B. Bacterial collagen-like proteins that form triple-helical structures[J]. Journal of Structural Biology, 2014, 186(3): 451-461. [百度学术]
LIU S, LI YM, WANG M, MA Y, WANG J. Efficient coexpression of recombinant human fusion collagen with prolyl 4-hydroxylase from Bacillus anthracis in Escherichia coli[J]. Biotechnology and Applied Biochemistry, 2023, 70(2): 761-772. [百度学术]
蔡萌萌, 王健, 陈宁, 徐庆阳. 溶氧对l-羟脯氨酸发酵的影响及其控制[J]. 发酵科技通讯, 2018, 47(3): 166-169. [百度学术]
CAI MM, WANG J, CHEN N, XU QY. Effect of dissolved oxygen on the fermentation of l-hydroxyproline and its control[J]. Bulletin of Fermentation Science and Technology, 2018, 47(3): 166-169 (in Chinese). [百度学术]
ZHOU Y, HAN LR, HE HW, BU S, YU DL, FENG JT, ZHANG X. Effects of agitation, aeration and temperature on production of a novel glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and scale-up based on volumetric oxygen transfer coefficient[J]. Molecules, 2018, 23(1): 125. [百度学术]
常海燕, 范代娣, 骆艳娥, 马晓轩, 米钰, 朱晨辉, 迟雷. 重组大肠杆菌高密度发酵生产类人胶原蛋白Ⅱ条件优化[J]. 微生物学通报, 2009, 36(6): 870-874. [百度学术]
CHANG HY, FAN DD, LUO YE, MA XX, MI Y, ZHU CH, CHI L. Optimization of recombinant E. coli high-density fermentation for expressing human-like collagen Ⅱ[J]. Microbiology China, 2009, 36(6): 870-874 (in Chinese). [百度学术]
范代娣, 段明瑞, 米钰, 宋纪蓉, 惠俊峰, 王德伟, 王国柱. 重组E. coli工程菌高密度培养生产人源型胶原蛋白[J]. 化工学报, 2002, 53(7): 752-754. [百度学术]
FAN DD, DUAN MR, MI Y, SONG JR, HUI JF, WANG DW, WANG GZ. High density fermentation of recombinant E. coli for production of human-like collagen[J]. CIESC Journal, 2002, 53(7): 752-754 (in Chinese). [百度学术]
NEOPHYTOU M, ALCOCER MJC. Recombinant allergens production in yeast[J]. Methods in Molecular Biology, 2017, 1592: 47-56. [百度学术]
RAMSHAW JA, WERKMEISTER JA, GLATTAUER V. Recent progress with recombinant collagens produced in Escherichia coli[J]. Current Opinion In Biomedical Engineering, 2019, 10: 149-155. [百度学术]
INOUE T, TODA S, NARISAWA Y, SUGIHARA H. Subcutaneous adipocytes promote the differentiation of squamous cell carcinoma cell line (DJM-1) in collagen gel matrix culture[J]. Journal of Investigative Dermatology, 2001, 117(2): 244-250. [百度学术]
CEREGHINO JL, CREGG JM. Heterologous protein expression in the methylotrophic yeast Pichia pastoris[J]. FEMS Microbiology Reviews, 2000, 24(1): 45-66. [百度学术]
ALLAMPALLI SSP, SEKHAR S, SIVAPRAKASAM S. Enhanced production of human interferon α2b in glycoengineered Pichia pastoris by robust control of methanol feeding and implications of various control strategies[J]. Biochemical Engineering Journal, 2024, 201: 109152. [百度学术]
WANG C, GUO XL, FAN MT, YUE L, WANG H, WANG J, ZHA Z, YIN H. Production of recombinant human type I collagen homotrimers in CHO cells and their physicochemical and functional properties[J]. Journal of Biotechnology, 2024, 395: 149-160. [百度学术]
GUO X, MA Y, WANG H, YIN H, SHI X, CHEN Y, GAO G, SUN L, WANG J, WANG Y, FAN D. Status and developmental trends in recombinant collagen preparation technology[J]. Regenerative Biomaterials, 2023, 11: rbad106. [百度学术]
SAALLAH S, ROSLAN J, JULIUS FS, SAALLAH S, MOHAMAD RAZALI UH, PINDI W, SULAIMAN MR, PA'EE KF, MUSTAPA KAMAL SM. Comparative study of the yield and physicochemical properties of collagen from sea cucumber (Holothuria scabra), obtained through dialysis and the ultrafiltration membrane[J]. Molecules, 2021, 26(9): 2564. [百度学术]
徐兰举, 齐磊, 刘鑫, 申翠美, 杜亚东. 一种具有功能结构的重组人源III型胶原蛋白及其表达方法: CN201911384531.4.X[P]. 2021-10-29. [百度学术]
XU LJ, QI L, LIU X, SHEN CM, DU YD. A type of recombinant human type III collagen with functional structure and its expression method: CN201911384531.4.X[P]. 2021-10-29. [百度学术]
SHI JJ, MA XX, GAO Y, FAN D, ZHU C, MI Y, XUE W. Hydroxylation of human type III collagen alpha chain by recombinant coexpression with a viral prolyl 4-hydroxylase in Escherichia coli[J]. The Protein Journal, 2017, 36(4): 322-331. [百度学术]
LUKOMSKI S, NAKASHIMA K, ABDI I, CIPRIANO VJ, IRELAND RM, REID SD, ADAMS GG, MUSSER JM. Identification and characterization of the scl gene encoding a group A Streptococcus extracellular protein virulence factor with similarity to human collagen[J]. Infection and Immunity, 2000, 68(12): 6542-6553. [百度学术]
HUMTSOE JO, KIM JK, XU Y, KEENE DR, HÖÖK M, LUKOMSKI S, WARY KK. A streptococcal collagen-like protein interacts with the α2β1 integrin and induces intracellular signaling[J]. The Journal of Biological Chemistry, 2005, 280(14): 13848-13857. [百度学术]
AN B, KAPLAN DL, BRODSKY B. Engineered recombinant bacterial collagen as an alternative collagen-based biomaterial for tissue engineering[J]. Frontiers in Chemistry, 2014, 2: 40. [百度学术]
YOSHIZUMI A, YU ZX, SILVA T, THIAGARAJAN G, RAMSHAW JAM, INOUYE M, BRODSKY B. Self-association of Streptococcus pyogenes collagen-like constructs into higher order structures[J]. Protein Science, 2009, 18(6): 1241-1251. [百度学术]
DENG AP, YANG Y, DU SM, YANG S. Electrospinning of in situ crosslinked recombinant human collagen peptide/chitosan nanofibers for wound healing[J]. Biomaterials Science, 2018, 6(8): 2197-2208. [百度学术]
TYTGAT L, DOBOS A, MARKOVIC M, van DAMME L, van HOORICK J, BRAY F, THIENPONT H, OTTEVAERE H, DUBRUEL P, OVSIANIKOV A, van VLIERBERGHE S. High-resolution 3D bioprinting of photo-cross-linkable recombinant collagen to serve tissue engineering applications[J]. Biomacromolecules, 2020, 21(10): 3997-4007. [百度学术]
HU K, HU MM, XIAO YH, CUI Y, YAN J, YANG G, ZHANG F, LIN G, YI H, HAN L, LI LH, WEI Y, CUI F. Preparation recombination human-like collagen/fibroin scaffold and promoting the cell compatibility with osteoblasts[J]. Journal of Biomedical Materials Research Part A, 2021, 109(3): 346-353. [百度学术]